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Abstract 

Given two replication schemes oldX  and newX ,
the Replica Transfer Scheduling Problem (RTSP) aims 

at reaching newX , starting from oldX , with minimal 
implementation cost. In this paper we generalize the 
problem description to include special cases, where
deadlocks can occur while in the process of 

implementing newX . We address this impediment by 
introducing artificial (dummy) transfers. We then 
prove that RTSP-decision is NP-complete and propose
two kinds of heuristics. The first attempts to replace 
dummy transfers with valid ones, while the second 
minimizes the implementation cost. Experimental 
evaluation of the algorithms illustrates the merits of 
our approach.  

1. Introduction 

Data replication is commonly used in distributed 
systems to increase performance and availability [22]. 
Some well-known problems that must be addressed in 
this context: replica placement (i.e. deciding which 
data object to duplicate on which servers) [17], replica 
discovery and request redirection [12], and maintaining 
consistency between replicas [1]. In this paper we focus 
on a related scheduling problem, referred to as the
Replica Transfer Scheduling Problem (RTSP) [14]. A 
generic description of RTSP is as follows: given M

servers, N objects, an existing replication scheme oldX

and a new scheme newX  we wish to implement (the 
latter being presumably the output of a replica 
placement algorithm), find a sequence of object 

transfers and deletions for transforming oldX  into 
newX  with the minimum cost. 
Although a significant amount of work exists on 

replica placement, little has been done to tackle RTSP 
(see related work). In this paper we formulate RTSP as 
a cost optimization problem and prove that the relevant 
decision problem is NP-complete. We identify special 

cases of interest where reaching newX  cannot be 
guaranteed due to a deadlock, and extend our 
formulation to address this problem. Based on our 
observations we develop heuristics for producing the 
minimum cost schedule. Experiments demonstrate the 
efficacy of our approach. 

The rest of the paper is organized as follows. 
Section 2 illustrates the motivation behind the problem 
and discusses related work. Section 3 presents the 
system model and gives the problem formulation. 
Section 4 describes the heuristics which are 
experimentally evaluated at Section 5. Finally, Section 
6 concludes the paper. 

2. Motivation and previous work 

2.1. Motivation 

RTSP arises in distributed systems that employ 
replication to minimize the overall client access cost. 
Consider for instance a distibuted video server system 
[5]. If only a single copy of each popular movie exists, 
the respective host servers (as well as the network for 
accessing them) will most likely be overloaded from
user requests. It is thus meaningful to create multiple 
copies for the most popular movies and distribute them 
to different servers. However, user preferences change 
with time: a previously popular movie gradually 
becomes (relatively) unpopular after most users have 1-4244-0910-1/07/$20.00 ©2007 IEEE



viewed it, while new movies are constantly added to
the system. This means that the replication scheme for 
the movies must be changed after a certain time period 
has elapsed (e.g. on a daily basis). The aim of RTSP is 
to minimize the transition cost when moving from one 
replication scheme to another.  

The transition from the previous replication 

placement oldX  to the next one newX  involves object 
transfers towards new servers and deletions of old 
replicas. Depending on the target system, different
optimization parameters and goals can be considered. 
We adopt a network distance metric which has been 
used in the past to describe access cost in content
distribution networks (CDNs) and distributed Web 
servers [9], [13], [22]. Hence, the goal of an RTSP
algorithm is to produce a schedule for implementing
this transition with the minimum possible 
network/communication cost due to object transfers 
between servers. 

2.2. Previous work 

RTSP has been mostly tackled in the past as part of
the placement problem [10], [13]. With this approach 
the implementation cost of each replica creation is
incorporated in the target function that is evaluated 
when deciding for the placement scheme. However, a 
placement algorithm is inferior when deciding upon the 
transfer schedule compared to an RTSP algorithm, the 
reason being that the former must decide without 

knowing the final newX  it will reach. In [13] we 
motivated the case and in [14] demonstrated the 
benefits of tackling RTSP separately. In this paper we 
provide a general RTSP formulation that tackles 
deadlock cases and develop new heuristics to deal with 
the problem. These heuristics are evaluated together 
with the winner algorithms of [14] (i.e. GOLCF and 
OP1 illustrated in Sec. 4.2).    

Considerable work has been done in replica 
placement under various contexts e.g., video and Web 
[22] servers, content distribution networks [20] and the 
Grid [8]. For comprehensive summaries the interested 
reader is referred to [10], [18]. Furthermore, a large 
literature exists on problems related to scheduling, e.g. 
task scheduling in parallel systems [6], [11] and vehicle 
sequencing [3], [7]. Of particular interest are works 
tackling the problem of scheduling tasks that require 
data transfers [4], [8], [19], [21]. Although data 
transfers are involved, the described algorithms in these 
papers are not directly applicable here, since they
operate over a fixed task graph. In contrast no fixed 
task graph exists in RTSP since (among other things) 
transfers might be done towards arbitrary intermediate 

nodes). Furthermore, RTSP aims at minimizing the cost 
of replica transfers instead of meeting time criteria. 
However, we believe that research in the above 
described task scheduling problem and on RTSP are 
rather complimentary even if stemmed from different
research areas. Therefore as part of our future work we 

plan to study RTSP when newX  must be reached 
within a time deadline, as well as its possible 
applications to task scheduling problems.

3. Problem formulation 

3.1. System model 

Consider a generic distributed system with M
servers and N  data objects. Let iS  and )( iSs  denote 

the name and the storage capacity (measured in abstract 
data units, e.g. bytes) of the ith server, Mi ≤≤1 . Also, 
let kO  and )( kOs  denote the kth data object and its 

size, Nk ≤≤1 . Let X  be a NM × replication 
matrix used to encode a replication placement as 
follows: ikX  equals 1 if iS  is a replicator of kO , else 

ikX  equals 0. Servers communicate via (virtual) point-

to-point links. Let ijl  denote the communication cost 

(per data unit) between iS  and jS . We assume that ijl

is fixed and jiij ll = . Let ),,( XkiNS  and ),,(2 XkiNS

denote the “nearest” and “second-nearest” (cheapest in 
terms of communication cost) replicator of kO  for iS

in the replication scheme X . Note that ),,( XkiN  and 

),,(2 XkiN  are defined only if there exist at least one 

and two replicators of kO , respectively. 

3.2. RTSP definition 

Let ikjT  denote the transfer of object kO  to server 

iS  using jS  as the source, and ikD  denote the 

deletion of kO  at iS . Let },...,,{ 21 tAAAH =  denote a 

schedule of t such actions. Also, let uX  and 1+uX

denote the replication matrix before and after uA , 

respectively.  

A transfer action ikju TA =  is valid iff jS  is a 

replicator of kO  ( 1=u
jkX ), iS  is not a replicator of 

kO  ( 0=u
ikX ) and has free storage for hosting a copy 

thereof ( )()()(
'

'' k
k

k
u
iki OsOsXSs ≥− ∑

∀

). Similarly, a 



delete action iku DA =  is valid iff iS  is a replicator of 

kO  ( 1=u
ikX ). Each action uA  transforms the (current) 

replication matrix uX  to 1+uX  depending on its type: 

11
=⇒=

+u
ikikju XTA  and 01

=⇒=
+u

ikiku XDA . A 

schedule H = },....,{ 21 tAAA  is valid with respect to 

),( 11 +tXX  if it defines a sequence of valid actions 

that transform 1X  into 1+tX  in a stepwise fashion.  
Finally, let )( uHC  be the cost of the uth action in 

schedule H : ijku lOsHC )()( =  if ikju TA = , or 0 if 

iku DA = . Hence the implementation cost of schedule 

H = },....,{ 21 tAAA :  ∑
=

+
=

t

u
u

tH HCXXI
1

11 )(),(  (1).  

RTSP can then be stated as: given two replication 

schemes oldX  and newX , find a schedule H  that is 

valid with respect to ),( newold XX  and minimizes the 

implementation cost (1). 

3.3. Feasibility issues 

As defined, RTSP does not always have a solution. 
Consider the example of Fig. 1(a) involving 4 servers 
and 4 objects (A, B, C and D). All objects are of equal 
size and all the servers have enough capacity to hold 
only one object. Here there exists no valid schedule for 

implementing newX  based on oldX . This is more 
clearly presented by drawing the transfer graph, i.e. a 
directed graph with nodes depicting system servers and 
arcs named after objects, where the following holds: for 
each outstanding replica (that needs to be created 
according to the new replication placement), there are 
arcs from each potential source towards the destination. 
Fig. 1(b) depicts the transfer graph of the network of 

Fig. 1(a). Observe that the transfers form a circle and a 
deadlock-like situation occurs. For instance, in order to 
transfer object D to 1S , 1S  must first delete object A 

to free space for the transfer, which results in 2S  not 

being able to obtain A since the only source of it is 
deleted.  

To tackle feasibility issues such as this, we extend 
the RTSP formulation to include an artificial source 
holding copies of all objects. We call this artificial 
source the dummy server ( dS ) and refer to the 

transfers that use this server as a source (e.g. ikdT ) as 

dummy transfers. To be consistent with the rest of the 
formulation we treat the dummy server just as any other 
server with the exception that the cost for using it as a 
source is the largest among all servers. More 
specifically, we set the link cost between it and any 
other server to be  )1)(max( +⋅ ijla  where 1≥a  is a 

constant. In its extended version, RTSP is guaranteed 

to have a solution (as long as newX  does not violate 
the storage constraints of the servers). The worst case 
obviously corresponds to the following scenario: First 
delete every replica in all servers but the dummy, and 
then perform all required object transfers from the
dummy server. 

We note that the existence of a dummy server which 
contains all objects but is (very) expensive to access is 
not far from reality. For instance when a new (or a very 
old / unpopular) movie is added in a distributed video 
server system, the first replica is most probably created 
by reading some (very slow) deep archival system. The 
fact that we treat such cases as normal server-to-server 
transfers is merely a convenient abstraction. By making 
the cost of dummy transfers sufficiently large (as a 
function of constant a ) any algorithm that minimizes 
the implementation cost will also minimize the number 
of dummy transfers, replacing them with transfers from 
other (normal) servers. By allowing a  to take values 
less than 1, it is also possible to model situations where 
creating a replica using other means, instead of proper 
network transfers, is more efficient. In this paper we do 
not investigate such cases. 

3.4. Proof of NP-completeness 

Clearly, RTSP-decision belongs to NP since given a 
schedule H, checking whether it is valid with respect to 

),( newold XX , as well as calculating its cost can be 

done in polynomial time. Following, we prove that 
RTSP-decision is NP-complete by reducing the (0,1) 
Knapsack-decision to it. 

(a) The network. (b) The transfer graph. 

Figure 1. Example of an infeasible RTSP 

problem statement. 



The (0,1) Knapsack-decision problem can be 
defined as follows [15]: Given n objects, having benefit 
values nbbb ,...,, 21  and sizes nsss ,...,, 21 , is there a 

subset W of the objects, such as Ss
Wi

i ≤∑
∈

 and 

∑
∈

≥
Wi

i Kb  ( ib , is , S, K are positive integers i∀ ). 

Assuming an instance of the (0,1) Knapsack-decision
we construct an equivalent RTSP instance as follows: 
We consider a network of 3+= nM  servers 

1S ,..., 3+nS  and 1+= nN  objects 1O ,..., 1+nO . Objects 

1O ,..., nO  correspond to the n Knapsack objects 

( ii sOs =)( ), while 1+nO  is a dummy object of size 

∑
≤≤

+ =
ni

in OsOs
1

1 )()( . For each Knapsack object iO  we 

define iS  to be a replicator of it. 1S ,..., nS  store 

nothing else (other than the relevant object replica) in 
oldX . 1+nS  is a server of capacity 

∑
≤≤

+ +=
ni

in OsSSs
1

1 )()(  (where S is the Knapsack 

size). 1+nS  only stores 1+nO  in oldX . 2+nS  is a server 

of capacity ∑
≤≤

+ =
ni

in OsSs
1

2 )()(  storing the Knapsack 

objects in oldX . Finally, 3+nS  is a server only holding 

a replica of 1+nO . The following links exist: (i) a link 

between 1+nS  and 2+nS  with link cost 1, (ii) links 

between 1S ,..., nS  and 1+nS , each of link cost 

'
1 iin bl =+ , ni ≤≤1 , where 

)(

)(
1'

i

ni
ii

i Os

Osb

b
∏
≤≤

= , (iii) a 

link between 3+nS  and 2+nS  of cost ∑
≤≤

+
ni

ib
1

' )1( . Fig. 2 

explains the above.  
newX  is set to be identical to oldX , with the 

exception that 1+nS  and 2+nS  must interchange 

objects. Consider, an optimal order of actions H-OPT, 

implementing newX . We observe that the transfer of  

1+nO  from 3+nS  cannot belong to H-OPT since the 

involved cost ∑ ∑
≤≤ ≤≤

+
ni ni

ii Osb
1 1

' )()1(  is larger than the 

total cost of the schedule (let 'H ) that starts with the 
transfer of 1+nO  from 1+nS  and continues with the 

transfers of all Knapsack objects from 1S ,..., nS , for a 

total cost of ∑∑
≤≤≤≤

+
ni

ii
ni

i OsbOs
1

'

1
)()( . Thus, H-OPT must 

contain the transfer of 1+nO  from 1+nS .  

We also observe that 'H ≠ H-OPT, since 1+nS

starts with S unused storage space, which can be used 
to transfer at least one Knapsack object (let iO ) at a 

cost lower than performing the transfer from iS

( )( iOs  compared to )('
ii Osb ). Therefore, H-OPT

begins with a sequence of Knapsack object transfers
from 2+nS  to 1+nS , followed by the transfer of 1+nO

from 1+nS  to 2+nS , followed by the transfers of the 

remaining Knapsack objects from 1S ,..., nS  to 1+nS . 

Let 'W  be the set of objects that appear in the H-OPT
schedule before the transfer of 1+nO . The cost of H-

OPT is thus given by: 

∑∑∑
+≠∧∉≤≤+≠∧∈

++
1

'

11 ''

)()()(
niWi

ii
ni

i
niWi

i OsbOsOs

But H-OPT is the schedule of minimum possible 

cost, meaning that 'W  is selected (the exact order with 

which 'W  is selected has no impact at the cost) such 
that the following is minimized:  

∑∑∑
+≠∧∉≤≤+≠∧∈

++
1

'

11 ''
)()()(

niWi
ii

ni
i

niWi
i OsbOsOs    (2) 

After substitutions (2) gives: 
min( ∑∏∑

+≠∧∉≤≤+≠∧∈

+
111 ''

)()(
niWi
i

ni
i

niWi
i bOsOs ), since ∑

≤≤ ni
iOs

1
)(

is constant. But notice, that the following holds: 
niOsbOs ii

ni
i ≤≤∀≥∏

≤≤

1)()(
1

   (3) 

Thus, (2) reduces to min( ∑∏
+≠∧∉≤≤ 11 '

)(
niWi
i

ni
i bOs ), which 

since ∏
≤≤ ni

iOs
1

)(  is constant, gives min( ∑
+≠∧∉ 1' niWi
ib ). 

Therefore, we conclude that H-OPT minimizes 
∑

+≠∧∉ 1' niWi
ib  that is equivalent to maximizing ∑

+≠∧∈ 1' niWi
ib , 

which is the problem statement of the (0,1) Knapsack 
optimization problem. 

The following concludes the reduction: given a (0,1) 
Knapsack-decision instance, we create a network as 
above and ask whether there exists a valid schedule H:  

SsKbsXXI
i i

i
i

ii
newold

+−+≤ ∑ ∏∑
∀ ∀∀

)(),(  (by (2) 

∑
≤≤

+
ni

ib
1

' )1( '
1b '

2b '
nb

Figure 2. Network structure for reducing 

Knapsack to RTSP. 



and (3)). If H exists so does a solution to the (0,1) 
Knapsack-decision instance. 

4. Scheduling heuristics 

In the sequel we describe our heuristics. We start by 
describing heuristics that aim at minimizing the number 
of dummy transfers and proceed with algorithms that
optimize the implementation cost of the transfer 
schedule. 

4.1. Minimizing dummy transfers 

The algorithms here are divided into two categories. 

The first one takes as input oldX , newX  and attempts 
to build a schedule where no dummy transfers occur.
As discussed in the previous section, this may not 
always be feasible. Furthermore, since these are 
heuristics rather than exhaustive search algorithms, 
they may produce a schedule with dummy transfers 
even though one without a dummy transfer may be 
(theoretically) feasible. The second category takes as 

input an existing schedule oldH  that is valid with 

respect to ),( newold XX  and produces a new schedule 
newH  with a smaller number of dummy transfers. 

Ideally, these heuristics may completely eliminate the 
number of dummy transfers. 

Build initial schedule: Random Deletions First 
(RDF). RDF starts with an empty schedule and 
performs first all the deletions of superfluous replicas, 

i.e. replicas for which 0=new
ikX  and 1=old

ikX , 

followed by all transfers of outstanding replicas, i.e.  

replicas for which 1=new
ikX  and 0=old

ikX . The order 

in which both deletions and transfers are performed is 
random, while the nearest source is selected in each 
transfer. Note that since all deletions happen at the 
beginning of the schedule it is possible that the last 
replica of an object for which an outstanding transfer 

exists is deleted. In this case the corresponding object 
transfer action will use the dummy server as a source.  

To better understand the process, consider the 
network of Fig. 3 with 4 servers and 4 objects named 
after A, B, C, D. All objects are of equal size and all 
servers have enough capacity to store 2 objects. The 
figure shows the link costs between servers, and for 

each server what objects it holds in oldX  and what 

objects it should hold in newX . By applying the 
algorithm, the schedule starts with all deletions in 
random order. For instance one possible outcome is:
{ AD1 , BD4 , BD3 , CD2 , AD4 , DD2 }. The algorithm 

then randomly adds transfers as long as there are 
outstanding replicas. One possible resulting schedule 
(where servers with outstanding replicas are considered 
in the order of 1S , 4S , 3S , 2S , 2S , 4S )  is the 

following: { AD1 , BD4 , BD3 , AD4 , DD2 , CD2 , DdT1 , 

34CT , 13DT , 12BT , AdT2 , 34DT }. Notice that the 

transfer sequence begins with a dummy transfer of 
object D at server 1S  ( DdT1 ). Subsequent transfers of 

object D (e.g. 13DT ) can be done from the newly 

created source. Furthermore, the transfer of D to 4S

(last action in the schedule) uses 3S  as source instead 

of 1S  since 21 1434 =<= ll . 

Build initial schedule: Grouped by Server Deletions
First (GSDF). GSDF builds a valid schedule as 
follows. It selects servers randomly and for each one it 
performs deletions for its superfluous replicas followed 
by transfers for its outstanding replicas. Again, 
transfers are done from the nearest source or the 
dummy server if no source is available at that point. 
For example in the network of Fig. 3 one possible 
schedule built by GSDF could be the following (servers 
are considered in the order of 2S , 3S , 4S , 1S ):  

{ CD2 , DD2 , 12AT , 12BT , BD3 , DdT3 , AD4 , BD4 , 

34CT , 34DT , AD1 , 31DT }. The rationale of GSDF is 

that by performing all the outstanding transfers of a 
single server just after all its superfluous replicas are 
deleted and before considering the outstanding replicas 
for other servers, the resulting schedule will have less 
dummy transfers compared to RDF. Also notice that 
the server which is selected first by the algorithm will 
never need any dummy transfers since the only replicas 
deleted at this point are its own superfluous replicas.    

Initial schedule exists: Move dummy transfers prior
to deletions (H1). H1 works on top of an existing 
schedule with the aim of eliminating dummy transfers. 
More specifically it scans the schedule from left to 

S1 S2

Xold: A,B

Xnew: B,D

S4 S3

Xold: C,D

Xnew: A,B

Xold: B,C

Xnew: C,D
Xold: A,B

Xnew: C,D

1

2 1

1

1

1

Figure 3. A network example. 



right and whenever a dummy transfer is identified it 
attempts to move it before some deletion of a 
respective replica. Consider for instance the schedule 
produced by RDF in the example of Fig. 3 : { AD1 , 

BD4 , BD3 , AD4 , DD2 , CD2 , DdT1 , 34CT , 13DT , 

12BT , AdT2 , 34DT }. H1 will try first to restore  DdT1

by moving the transfer before the first deletion of
object D it comes across as it scans the schedule 
starting from DdT1  and moving towards its beginning. 

In the example, the resulting schedule after DdT1  is 

restored to validity will be as follows:  {…, AD4 , 

21DT , DD2 , CD2 , 34CT , 13DT , ...}.   

Restoring dummy transfers by moving them before 
respective deletions is not always possible though.
Consider for instance what happens when attempting to 
restore AdT2 . According to the above method the 

resulting schedule will be: { AD1 , BD4 , BD3 , 42 AT , 

AD4 , 21DT , DD2 , CD2 , 34CT , 13DT , 12BT , 34DT }. 

However this schedule is invalid since when 42AT  is 

reached, the capacity constraint of server 2S  will be 

violated (neither object C nor D has been deleted from 

2S  prior to 42 AT  thus a transfer is done towards a 

server with no adequate capacity to hold the object). 
Such capacity violations can be repaired by moving 
adequate deletions before the shifted dummy transfer. 
In the example this amounts to moving either CD2  or  

DD2  before  42AT , resulting in schedule { AD1 , BD4 , 

BD3 , CD2 , 42AT , AD4 , 21DT , DD2 , 34CT , 13DT , 

12BT , 34DT }. Notice that a further case of interest rises, 

if instead of CD2  we decided to move DD2 . In this 

case 21DT  should be moved as well (otherwise it will 

lead to a dummy transfer) and the resulting schedule 
will be the following: { AD1 , BD4 , BD3 , 21DT , DD2 , 

42 AT , AD4 , CD2 , 34CT , 13DT , 12BT , 34DT }. As 

already discussed, moving 21DT  might result in 

capacity violation at 1S  if it overpasses any deletions 

involving 1S  (in the example it does not).  

Summarizing, the algorithm attempts to move a 
dummy transfer before a deletion of a respective 
replica so that it can be changed into a valid transfer, 
e.g. before: H ={.., jkD , 1G , ikdT , ...}, after: 'H ={.., 

ikjT , jkD , 1G , ...}, where 1G  represents a sub-

schedule containing deletions and transfers. In doing 
so, it checks for the following cases: 

(i) No deletions at 1G  involving iS : If  1G  contains 

no deletions of the form 'ikD  then 'H  is valid and the 

algorithm proceeds with the next dummy transfer. 
(ii) Storage capacity violation - repairable with 

standalone deletions: If 1G  contains deletions of the 

form 'ikD  then by moving ikdT  the capacity constraint 

of iS  might be violated. In this case the algorithm 

checks whether by moving the standalone deletions of 

iS  (i.e. deletions of the form 'ikD  that are not preceded 

by any transfer of the form ikiT '''  in 1G ) before ikjT  the 

capacity constraint is met, e.g. 1G ={ 1.1G , 'ikD , 2.1G } 

before: H ={.., jkD , 1.1G , 'ikD , 2.1G , ikdT , ...}, after 

'H ={.., 'ikD , ikjT , jkD , 1.1G , 2.1G , ...}. If so, the 

algorithm accepts the change and proceeds.  
(iii) Storage capacity violation - non repairable 

with standalone deletions: In case no standalone 
deletions for iS  exist or they do not suffice to restore 

the capacity constraint, the algorithm considers moving 
deletions together with the transfers that precede them, 
e.g. before: H ={.., jkD , 1.1G , ikiT ''' , 'ikD , 2.1G , 

ikdT , ...}, after 'H ={.., ikiT ''' , 'ikD , ikjT , jkD , 1.1G , 

2.1G , ...}. If the move of ikiT '''  occurs without capacity 

violation at ''iS , 'H  is accepted. Otherwise, H1 

recursively attempts to restore validity by considering 
the equivalent to 'H  schedule ''H ={.., 'ikD , ikjT , 

jkD , 1.1G , dkiT ''' , 2.1G , ...}, i.e. by treating ikiT '''  as a 

dummy transfer and checking for it the conditions (i)-
(iii). Notice that after each recursion the sub-schedule 

1G  that separates the dummy transfer from the 

respective deletion will decrease (e.g. becomes 1.1G

after the first call). When it reaches Ø the recursion 
will terminate and the algorithm will keep the resulting 
schedule if it is valid otherwise it will backtrack to the 
initial schedule H , leaving the original dummy 
transfer ( ikdT ) as is and proceeding with the next 

dummy transfer. 

Initial schedule exists: Create superfluous replicas 
(H2). H2 uses a complimentary approach to H1 in 
restoring dummy transfers. Namely, it creates 
additional free storage space or takes advantage of
available storage to introduce superfluous replicas that 
will act as proper sources for dummy transfers. The
algorithm takes as input a schedule H  which is 
scanned from left to right until a dummy transfer kdiT '

is encountered. It then identifies the first deletion kiD ''



of kO  preceding kdiT '  and attempts to inject a new 

transfer of kO  at a server iS  immediately before the 

deletion kiD '' . Notice that H1 would attempt to move  

kdiT '  before kiD ''  which might not be possible if the 

capacity at 'iS  is violated. Instead, H2 will take 

advantage of any server that has enough free space in 
order to restore kdiT ' . After kdiT '  is restored the 

superfluous replica created is deleted. 
Assuming H  is of the form { 1G , kiD '' , 2G , kdiT ' , 

3G } and that iS  has enough free space to store kO , 

the resulting schedule 'H  will be { 1G , ''ikiT , kiD '' , 

2G , kiiT ' , ikD , 3G }. In case no server has enough free 

space to store kO , the algorithm attempts to create 

space by performing deletions of superfluous replicas, 
provided that at least one replica will still exist for each 
object. If freeing enough space is impossible, the 
original schedule H  is restored and kdiT '  is left as a 

dummy transfer, otherwise the schedule is updated with 
the superfluous transfer and the necessary deletions. 
The algorithm then proceeds with checking the next 
dummy transfer of the schedule. 

4.2. Minimizing implementation cost 

The algorithms of this category aim at minimizing 
the implementation cost (rather than trying to eliminate 
dummy transfers). In doing so, it is possible that 
dummy transfers are replaced with valid ones, however 
this happens as a side-effect. Here too, we distinguish 
the algorithms depending on whether they operate on
an existing schedule (OP1) or build one from scratch 
(AR, GOLCF). 

All Random (AR). The outstanding replicas to be 
created and the superfluous replicas to be deleted, if 
needed, are chosen randomly. 

Greedy Object Lowest Cost First (GOLCF) [14]. 
Each superfluous replica kO  on iS  is associated with 

a benefit value ikB  equal to the cost difference for 

transferring outstanding replicas of kO  on all jS  for 

which iS  is the nearest replicator, via iS  or the 

second-nearest replicator: 
∑

=∀

−=
iXkjNj

XkjjNXkjjNkik llOsB
),,(:

),,(),,(2)(  (4). 

The algorithm picks an object kO  at random and 

iteratively transfers it to all severs that require a replica 
thereof. In each iteration, the server iS  with the lowest 

communication cost from the currently nearest source 
of kO  (i.e. ),,( XkiiNl ) is selected. If it is necessary to 

delete one or more superfluous replicas on iS , these 

are chosen in order of increasing benefit values as per 
(4). When there is no outstanding replica for kO , the 

next object is picked. The algorithm terminates when 
all objects have been considered. The motivation is that 
by focusing on the “full” replication of one object at a 
time, it is possible to optimize the order of the 
corresponding transfers.  

Initial schedule exists: Changing action order 
(OP1) [14]. Schedule H  is scanned from left to right 
until a transfer action ''kjiT  is encountered. Scanning is 

continued until another transfer ikjT  for the same object 

kO  is found. Assume H  is of the form {…, ''kjiT , 1G

, ikjT , 2G }, where 1G  and 2G  are sub-schedules 

containing transfer and deletion actions. The algorithm 
then considers moving ikjT  before ''kjiT  in order to 

reduce the implementation cost for all subsequent 
transfers found in the schedule. For each transfer 
involving kO  in { ''kjiT , 1G , 2G }, the respective 

benefit of moving ikjT  is equal to 0 if '''''' jiii ll > , else it 

is equal to the cost difference between transferring kO

on ''iS  via the currently used source ''jS  and iS , i.e. 

))(( '''''' iijik llOs − . The cost for implementing the 

transfer of kO  on iS  at the uth position of the schedule 

is 
),,(

)( uXkiiNk lOs . The algorithm considers modifying 

the schedule only if the total benefit outweighs the 
implementation cost, in which case the transfers of kO

that benefit from this change are also updated to use iS

as their source.   
However, additional validity checks are required to

decide whether to consider such a modification. Let

mlilD ..1
 denote the sequence of deletions 

1ilD , 
2ilD , …, 

milD . Then, in the general case, H  is of the form {…, 

nkkiD ..' 1
, ''kjiT , 1G , 

mlilD ..1
, ikjT , 2G }, where 

nkkiD ..' 1

and 
mlilD ..1

 are the deletions performed on 'iS  and iS

to enable transfers ''kjiT  and ikjT , respectively. The 

suggested reordering (before updating the sources of 
subsequent transfers of kO ) results in schedule 

'H ={…, 
mlilD ..1

, 
),,( uXkiikN

T , 
nkkiD ..' 1
, ''kjiT , 1G , 2G }, 

i.e. superfluous deletions for server iS  are brought 



before ikjT , which is further evaluated according to the 

following special cases: 
(i) No crucial deletions: If no deletions lmilD ..1

precede ikjT  and 1G  does not contain any deletions 

itself, schedule 'H ={…, 
),,( uXkiikN

T , 
nkkiD ..' 1
, ''kjiT , 

1G , 2G } is valid and is adopted.  

(ii) Void transfers and deletions: If 1G  is of the 

form { 1.1G , ''ikjT , 2.1G , ikD , 3.1G }, schedule 

'H ={…, 
mlilD ...1

, 
),,( uXkiikN

T , 
nkkiD ..' 1
, ''kjiT , 1.1G , 

''ikjT , 2.1G , ikD , 3.1G , 2G } is invalid because ''ikjT

creates a second replica of kO  on iS  as it now follows 

),,( uXkiikN
T . Similarly, if 1G  is of the form { 1.1G , 

''' jilT , 2.1G }, where  mlll ≤≤ '1 , schedule 'H = {…, 

mlilD ...1
, 

),,( uXkiikN
T , 

nkkiD ..' 1
, ''kjiT , 1.1G , ''' jilT , 2.1G , 

2G } is invalid because it contains a deletion 'ilD  for 

replica 'lO  on iS  that does not exist; it will be created 

at a later stage via ''' jilT . In both cases, 'H  is dropped. 

(iii) Outdated transfer sources: If 1G  is of the form 

{ 1.1G , iljT ''' , 2.1G }, where mlll ≤≤ '1 , schedule 'H =  

{…, 
mlilD ...1

, 
),,( uXkiikN

T , 
nkkiD ..' 1

, ''kjiT , 1.1G , iljT ''' , 

2.1G , 2G } is invalid since iljT '''  assumes that iS  is a 

replicator of 'lO , but this replica is deleted via 'ilD

earlier on. Nevertheless, 'H  can be made valid by 

substituting iS  with 
),',''( uXljN

S , assuming that iljT '''  is 

the uth action in 'H . Updating each such outdated 
transfer may however introduce an additional penalty 
equal to ))(( ''),',''(''' ijXljNjl llOs u − , which must be 

taken into account.  
(iv) Capacity constraint violation: If 1G  is of the 

form { 1.1G , 'ilD , 2.1G }, where mlll ,...,' 1≠ , schedule 

'H = {…, 
mlilD ..1

, 
),,( uXkiikN

T , 
nkkiD ..' 1

, ''kjiT , 1.1G , 

'ilD , 2.1G , 2G } is invalid if the deletion of 'lO  on iS

was required, in addition to deletions lmilD ..1 , to create 

space for kO  and to enable transfer ikjT  in schedule 

H . In this case, 'H  can be made valid by moving 'ilD

before 
),,( uXkiikN

T , resulting in schedule {…, ',..1 llil m
D , 

),,( uXkiikN
T , 

nkkiD ..' 1
, kiiT ' , 1.1G , 2.1G , 2G }. This in 

turn requires checking for outdated transfer sources in 
sub-schedule 1.1G as per (iii). 

The schedule is changed in case (i), or in cases (iii) 
and (iv) provided that the benefit outweighs the 
respective implementation cost as well as the total
penalty for adjusting all outdated transfer sources. 
Each time the schedule is changed, it is scanned from 
start. The algorithm terminates if the entire schedule is 
scanned without being able to introduce any changes. 

5. Experiments 

Here we present results from the experimental 
evaluation. Sec. 5.1 describes the simulation 
parameters while Sec. 5.2 illustrates the results. Due to 
space restrictions we are forced to omit a large part of 
our evaluation, leaving it for an extended version.

5.1. Experimental setup 

The server network was generated using the BRITE 
tool [15], for 50 server nodes each having a 
connectivity of 1, resulting in a tree-graph. Node 
connections followed the Barabasi-Albert model, 
which has been used to describe power-law router 
graphs [2]. Links were assigned a fixed cost, uniformly 
distributed between 1 and 10. Server-to-server 
communication costs were set equal to the aggregated 
link cost along the shortest paths.  A set of 1,000
objects was used and the constant factor a  that 
controls the cost of dummy transfers was set to 1. In all 
the experiments we measure the number of dummy 
transfers left in the schedule and the implementation 
cost.  

5.2. Results 

In the first experiment we set the size of all objects 
to 5,000 data units and varied the number of replicas 
for each object. Fig. 4 and 5 plot the results as the 
number of replicas for each object varies from 1 to 5. 

All servers store the same number of objects in oldX

which remains unaltered in newX . Server capacities 

were set to be equal, and sufficient to just satisfy oldX

and newX  without leaving any additional free space. 
The allocation of objects to the servers is performed 

randomly in oldX . newX  is the result of the servers 

interchanging their objects in a way that oldX  and 
newX  have no common replicas (overlap 0%). 
Fig. 4 depicts the number of dummy transfers for the 

cases where H1 and H2 are applied over AR and 
GOLCF. We can observe that as more replicas per 

object exist in oldX , the number of dummy transfers 



drops. This is due to the fact that with more replicas 
available, the probability that either AR or GOLCF 
deletes the last replica of an object decreases. As
anticipated, GOLCF is a better choice compared to AR 
which builds a schedule in a completely random 
fashion. Especially noteworthy is the improvement 
achieved by applying H1 and H2 (almost nullifying 
dummy transfers in the two replicas per object case). 
As a result H1 and H2 also manage to reduce the 
implementation cost of the GOLCF+OP1 schedule 
(Fig. 5). The combinations of H1+H2 with RDF and 
GSDF resulted in similar trends and are not shown. 

The second experiment is similar to the first one 
with the exception that object size is varied uniformly 
between 1,000 and 5,000. Fig. 6 and 7 show the 
dummy transfers and the implementation cost 
respectively. In Fig. 6 we only plot GOLCF variants. 
Here too, H1+H2 appear to have the largest 
contribution in minimizing dummy transfers which 
results in large implementation cost savings as shown 
in Fig. 7. 

In the last experiment the setup was similar to the
first experiment, i.e. equally sized objects, no common 

replicas between oldX  and newX , replicas equally 
distributed to servers and servers having the minimum 
capacity sufficient to store the objects specified by  

oldX  and newX . However, we wanted to test the 
behavior of the algorithms when free storage space is 
available in the system. Therefore, we fixed the number 
of replicas per object to 2 and introduced at a random 
server additional capacity to store one more object. Fig. 
8 and 9 show the results as the number of the servers 
having extra capacity rises. We can observe that the 
remaining dummy transfers after applying H1+H2 drop
as the capacity increases. This implies that the H1+H2 
combination explores the extra space more efficiently 
compared to standalone GOLCF (the corresponding 
plot is almost flat). As a result, the implementation cost 
of GOLCF+H1+H2+OP1 is smaller compared to 
standalone GOLCF+OP1 (Fig. 9). 

Summarizing the experiments, GOLCF+OP1 
provides a good starting point for building a schedule, 
while the application of H1 and H2 drastically 
improves it by reducing the number of dummy transfers 
at the initial schedule. 
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Figure 7. Implementation 

cost as the replicas per 

object increase (uniform 

object sizes). 

Figure 8. Number of dummy 

transfers as more servers 

acquire extra capacity. 

Figure 9. Implementation cost 

as more servers acquire extra 

capacity. 
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6. Conclusions 

In this paper we investigated the replica transfer 
scheduling problem taking into account feasibility and 
cost optimization issues. We introduced various 
heuristic operators and evaluated their performance
also with reference to a previously developed algorithm 
(GOLCF+OP1). Results demonstrate that especially H1
and H2 contribute largely on optimizing the transfer 
schedule, making GOLCF+H1+H2+OP1 a clear winner 
over other alternatives. Our ongoing work includes an 
extended version with a larger experimental evaluation. 
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