
Implementing Replica Placements: Feasibility and Cost Minimization

Thanasis Loukopoulos1, Nikos Tziritas1, Petros Lampsas2, and Spyros Lalis1

1Department of Computer and
Communications Engineering

University of Thessaly
Glavani 37, 38221 Volos, Greece
{luke, nitzirit, lalis}@inf.uth.gr

2Department of Informatics and Computer
Technology

Technological Educational Institute of Lamia
3rd km Old Ntl. Rd., 35100 Lamia, Greece

plam@teilam.gr

Abstract

Given two replication schemes oldX and newX ,
the Replica Transfer Scheduling Problem (RTSP) aims

at reaching newX , starting from oldX , with minimal
implementation cost. In this paper we generalize the
problem description to include special cases, where
deadlocks can occur while in the process of

implementing newX . We address this impediment by
introducing artificial (dummy) transfers. We then
prove that RTSP-decision is NP-complete and propose
two kinds of heuristics. The first attempts to replace
dummy transfers with valid ones, while the second
minimizes the implementation cost. Experimental
evaluation of the algorithms illustrates the merits of
our approach.

1. Introduction

Data replication is commonly used in distributed
systems to increase performance and availability [22].
Some well-known problems that must be addressed in
this context: replica placement (i.e. deciding which
data object to duplicate on which servers) [17], replica
discovery and request redirection [12], and maintaining
consistency between replicas [1]. In this paper we focus
on a related scheduling problem, referred to as the
Replica Transfer Scheduling Problem (RTSP) [14]. A
generic description of RTSP is as follows: given M

servers, N objects, an existing replication scheme oldX

and a new scheme newX we wish to implement (the
latter being presumably the output of a replica
placement algorithm), find a sequence of object

transfers and deletions for transforming oldX into
newX with the minimum cost.
Although a significant amount of work exists on

replica placement, little has been done to tackle RTSP
(see related work). In this paper we formulate RTSP as
a cost optimization problem and prove that the relevant
decision problem is NP-complete. We identify special

cases of interest where reaching newX cannot be
guaranteed due to a deadlock, and extend our
formulation to address this problem. Based on our
observations we develop heuristics for producing the
minimum cost schedule. Experiments demonstrate the
efficacy of our approach.

The rest of the paper is organized as follows.
Section 2 illustrates the motivation behind the problem
and discusses related work. Section 3 presents the
system model and gives the problem formulation.
Section 4 describes the heuristics which are
experimentally evaluated at Section 5. Finally, Section
6 concludes the paper.

2. Motivation and previous work

2.1. Motivation

RTSP arises in distributed systems that employ
replication to minimize the overall client access cost.
Consider for instance a distibuted video server system
[5]. If only a single copy of each popular movie exists,
the respective host servers (as well as the network for
accessing them) will most likely be overloaded from
user requests. It is thus meaningful to create multiple
copies for the most popular movies and distribute them
to different servers. However, user preferences change
with time: a previously popular movie gradually
becomes (relatively) unpopular after most users have 1-4244-0910-1/07/$20.00 ©2007 IEEE

viewed it, while new movies are constantly added to
the system. This means that the replication scheme for
the movies must be changed after a certain time period
has elapsed (e.g. on a daily basis). The aim of RTSP is
to minimize the transition cost when moving from one
replication scheme to another.

The transition from the previous replication

placement oldX to the next one newX involves object
transfers towards new servers and deletions of old
replicas. Depending on the target system, different
optimization parameters and goals can be considered.
We adopt a network distance metric which has been
used in the past to describe access cost in content
distribution networks (CDNs) and distributed Web
servers [9], [13], [22]. Hence, the goal of an RTSP
algorithm is to produce a schedule for implementing
this transition with the minimum possible
network/communication cost due to object transfers
between servers.

2.2. Previous work

RTSP has been mostly tackled in the past as part of
the placement problem [10], [13]. With this approach
the implementation cost of each replica creation is
incorporated in the target function that is evaluated
when deciding for the placement scheme. However, a
placement algorithm is inferior when deciding upon the
transfer schedule compared to an RTSP algorithm, the
reason being that the former must decide without

knowing the final newX it will reach. In [13] we
motivated the case and in [14] demonstrated the
benefits of tackling RTSP separately. In this paper we
provide a general RTSP formulation that tackles
deadlock cases and develop new heuristics to deal with
the problem. These heuristics are evaluated together
with the winner algorithms of [14] (i.e. GOLCF and
OP1 illustrated in Sec. 4.2).

Considerable work has been done in replica
placement under various contexts e.g., video and Web
[22] servers, content distribution networks [20] and the
Grid [8]. For comprehensive summaries the interested
reader is referred to [10], [18]. Furthermore, a large
literature exists on problems related to scheduling, e.g.
task scheduling in parallel systems [6], [11] and vehicle
sequencing [3], [7]. Of particular interest are works
tackling the problem of scheduling tasks that require
data transfers [4], [8], [19], [21]. Although data
transfers are involved, the described algorithms in these
papers are not directly applicable here, since they
operate over a fixed task graph. In contrast no fixed
task graph exists in RTSP since (among other things)
transfers might be done towards arbitrary intermediate

nodes). Furthermore, RTSP aims at minimizing the cost
of replica transfers instead of meeting time criteria.
However, we believe that research in the above
described task scheduling problem and on RTSP are
rather complimentary even if stemmed from different
research areas. Therefore as part of our future work we

plan to study RTSP when newX must be reached
within a time deadline, as well as its possible
applications to task scheduling problems.

3. Problem formulation

3.1. System model

Consider a generic distributed system with M
servers and N data objects. Let iS and)(iSs denote

the name and the storage capacity (measured in abstract
data units, e.g. bytes) of the ith server, Mi ≤≤1 . Also,
let kO and)(kOs denote the kth data object and its

size, Nk ≤≤1 . Let X be a NM × replication
matrix used to encode a replication placement as
follows: ikX equals 1 if iS is a replicator of kO , else

ikX equals 0. Servers communicate via (virtual) point-

to-point links. Let ijl denote the communication cost

(per data unit) between iS and jS . We assume that ijl

is fixed and jiij ll = . Let),,(XkiNS and),,(2 XkiNS

denote the “nearest” and “second-nearest” (cheapest in
terms of communication cost) replicator of kO for iS

in the replication scheme X . Note that),,(XkiN and

),,(2 XkiN are defined only if there exist at least one

and two replicators of kO , respectively.

3.2. RTSP definition

Let ikjT denote the transfer of object kO to server

iS using jS as the source, and ikD denote the

deletion of kO at iS . Let },...,,{ 21 tAAAH = denote a

schedule of t such actions. Also, let uX and 1+uX

denote the replication matrix before and after uA ,

respectively.

A transfer action ikju TA = is valid iff jS is a

replicator of kO (1=u
jkX), iS is not a replicator of

kO (0=u
ikX) and has free storage for hosting a copy

thereof ()()()(
'

'' k
k

k
u
iki OsOsXSs ≥− ∑

∀

). Similarly, a

delete action iku DA = is valid iff iS is a replicator of

kO (1=u
ikX). Each action uA transforms the (current)

replication matrix uX to 1+uX depending on its type:

11
=⇒=

+u
ikikju XTA and 01

=⇒=
+u

ikiku XDA . A

schedule H = },....,{ 21 tAAA is valid with respect to

),(11 +tXX if it defines a sequence of valid actions

that transform 1X into 1+tX in a stepwise fashion.
Finally, let)(uHC be the cost of the uth action in

schedule H : ijku lOsHC)()(= if ikju TA = , or 0 if

iku DA = . Hence the implementation cost of schedule

H = },....,{ 21 tAAA : ∑
=

+
=

t

u
u

tH HCXXI
1

11)(),((1).

RTSP can then be stated as: given two replication

schemes oldX and newX , find a schedule H that is

valid with respect to),(newold XX and minimizes the

implementation cost (1).

3.3. Feasibility issues

As defined, RTSP does not always have a solution.
Consider the example of Fig. 1(a) involving 4 servers
and 4 objects (A, B, C and D). All objects are of equal
size and all the servers have enough capacity to hold
only one object. Here there exists no valid schedule for

implementing newX based on oldX . This is more
clearly presented by drawing the transfer graph, i.e. a
directed graph with nodes depicting system servers and
arcs named after objects, where the following holds: for
each outstanding replica (that needs to be created
according to the new replication placement), there are
arcs from each potential source towards the destination.
Fig. 1(b) depicts the transfer graph of the network of

Fig. 1(a). Observe that the transfers form a circle and a
deadlock-like situation occurs. For instance, in order to
transfer object D to 1S , 1S must first delete object A

to free space for the transfer, which results in 2S not

being able to obtain A since the only source of it is
deleted.

To tackle feasibility issues such as this, we extend
the RTSP formulation to include an artificial source
holding copies of all objects. We call this artificial
source the dummy server (dS) and refer to the

transfers that use this server as a source (e.g. ikdT) as

dummy transfers. To be consistent with the rest of the
formulation we treat the dummy server just as any other
server with the exception that the cost for using it as a
source is the largest among all servers. More
specifically, we set the link cost between it and any
other server to be)1)(max(+⋅ ijla where 1≥a is a

constant. In its extended version, RTSP is guaranteed

to have a solution (as long as newX does not violate
the storage constraints of the servers). The worst case
obviously corresponds to the following scenario: First
delete every replica in all servers but the dummy, and
then perform all required object transfers from the
dummy server.

We note that the existence of a dummy server which
contains all objects but is (very) expensive to access is
not far from reality. For instance when a new (or a very
old / unpopular) movie is added in a distributed video
server system, the first replica is most probably created
by reading some (very slow) deep archival system. The
fact that we treat such cases as normal server-to-server
transfers is merely a convenient abstraction. By making
the cost of dummy transfers sufficiently large (as a
function of constant a) any algorithm that minimizes
the implementation cost will also minimize the number
of dummy transfers, replacing them with transfers from
other (normal) servers. By allowing a to take values
less than 1, it is also possible to model situations where
creating a replica using other means, instead of proper
network transfers, is more efficient. In this paper we do
not investigate such cases.

3.4. Proof of NP-completeness

Clearly, RTSP-decision belongs to NP since given a
schedule H, checking whether it is valid with respect to

),(newold XX , as well as calculating its cost can be

done in polynomial time. Following, we prove that
RTSP-decision is NP-complete by reducing the (0,1)
Knapsack-decision to it.

(a) The network. (b) The transfer graph.

Figure 1. Example of an infeasible RTSP

problem statement.

The (0,1) Knapsack-decision problem can be
defined as follows [15]: Given n objects, having benefit
values nbbb ,...,, 21 and sizes nsss ,...,, 21 , is there a

subset W of the objects, such as Ss
Wi

i ≤∑
∈

 and

∑
∈

≥
Wi

i Kb (ib , is , S, K are positive integers i∀).

Assuming an instance of the (0,1) Knapsack-decision
we construct an equivalent RTSP instance as follows:
We consider a network of 3+= nM servers

1S ,..., 3+nS and 1+= nN objects 1O ,..., 1+nO . Objects

1O ,..., nO correspond to the n Knapsack objects

(ii sOs =)(), while 1+nO is a dummy object of size

∑
≤≤

+ =
ni

in OsOs
1

1)()(. For each Knapsack object iO we

define iS to be a replicator of it. 1S ,..., nS store

nothing else (other than the relevant object replica) in
oldX . 1+nS is a server of capacity

∑
≤≤

+ +=
ni

in OsSSs
1

1)()((where S is the Knapsack

size). 1+nS only stores 1+nO in oldX . 2+nS is a server

of capacity ∑
≤≤

+ =
ni

in OsSs
1

2)()(storing the Knapsack

objects in oldX . Finally, 3+nS is a server only holding

a replica of 1+nO . The following links exist: (i) a link

between 1+nS and 2+nS with link cost 1, (ii) links

between 1S ,..., nS and 1+nS , each of link cost

'
1 iin bl =+ , ni ≤≤1 , where

)(

)(
1'

i

ni
ii

i Os

Osb

b
∏
≤≤

= , (iii) a

link between 3+nS and 2+nS of cost ∑
≤≤

+
ni

ib
1

')1(. Fig. 2

explains the above.
newX is set to be identical to oldX , with the

exception that 1+nS and 2+nS must interchange

objects. Consider, an optimal order of actions H-OPT,

implementing newX . We observe that the transfer of

1+nO from 3+nS cannot belong to H-OPT since the

involved cost ∑ ∑
≤≤ ≤≤

+
ni ni

ii Osb
1 1

')()1(is larger than the

total cost of the schedule (let 'H) that starts with the
transfer of 1+nO from 1+nS and continues with the

transfers of all Knapsack objects from 1S ,..., nS , for a

total cost of ∑∑
≤≤≤≤

+
ni

ii
ni

i OsbOs
1

'

1
)()(. Thus, H-OPT must

contain the transfer of 1+nO from 1+nS .

We also observe that 'H ≠ H-OPT, since 1+nS

starts with S unused storage space, which can be used
to transfer at least one Knapsack object (let iO) at a

cost lower than performing the transfer from iS

()(iOs compared to)('
ii Osb). Therefore, H-OPT

begins with a sequence of Knapsack object transfers
from 2+nS to 1+nS , followed by the transfer of 1+nO

from 1+nS to 2+nS , followed by the transfers of the

remaining Knapsack objects from 1S ,..., nS to 1+nS .

Let 'W be the set of objects that appear in the H-OPT
schedule before the transfer of 1+nO . The cost of H-

OPT is thus given by:

∑∑∑
+≠∧∉≤≤+≠∧∈

++
1

'

11 ''

)()()(
niWi

ii
ni

i
niWi

i OsbOsOs

But H-OPT is the schedule of minimum possible

cost, meaning that 'W is selected (the exact order with

which 'W is selected has no impact at the cost) such
that the following is minimized:

∑∑∑
+≠∧∉≤≤+≠∧∈

++
1

'

11 ''
)()()(

niWi
ii

ni
i

niWi
i OsbOsOs (2)

After substitutions (2) gives:
min(∑∏∑

+≠∧∉≤≤+≠∧∈

+
111 ''

)()(
niWi
i

ni
i

niWi
i bOsOs), since ∑

≤≤ ni
iOs

1
)(

is constant. But notice, that the following holds:
niOsbOs ii

ni
i ≤≤∀≥∏

≤≤

1)()(
1

 (3)

Thus, (2) reduces to min(∑∏
+≠∧∉≤≤ 11 '

)(
niWi
i

ni
i bOs), which

since ∏
≤≤ ni

iOs
1

)(is constant, gives min(∑
+≠∧∉ 1' niWi
ib).

Therefore, we conclude that H-OPT minimizes
∑

+≠∧∉ 1' niWi
ib that is equivalent to maximizing ∑

+≠∧∈ 1' niWi
ib ,

which is the problem statement of the (0,1) Knapsack
optimization problem.

The following concludes the reduction: given a (0,1)
Knapsack-decision instance, we create a network as
above and ask whether there exists a valid schedule H:

SsKbsXXI
i i

i
i

ii
newold

+−+≤ ∑ ∏∑
∀ ∀∀

)(),((by (2)

∑
≤≤

+
ni

ib
1

')1('
1b '

2b '
nb

Figure 2. Network structure for reducing

Knapsack to RTSP.

and (3)). If H exists so does a solution to the (0,1)
Knapsack-decision instance.

4. Scheduling heuristics

In the sequel we describe our heuristics. We start by
describing heuristics that aim at minimizing the number
of dummy transfers and proceed with algorithms that
optimize the implementation cost of the transfer
schedule.

4.1. Minimizing dummy transfers

The algorithms here are divided into two categories.

The first one takes as input oldX , newX and attempts
to build a schedule where no dummy transfers occur.
As discussed in the previous section, this may not
always be feasible. Furthermore, since these are
heuristics rather than exhaustive search algorithms,
they may produce a schedule with dummy transfers
even though one without a dummy transfer may be
(theoretically) feasible. The second category takes as

input an existing schedule oldH that is valid with

respect to),(newold XX and produces a new schedule
newH with a smaller number of dummy transfers.

Ideally, these heuristics may completely eliminate the
number of dummy transfers.

Build initial schedule: Random Deletions First
(RDF). RDF starts with an empty schedule and
performs first all the deletions of superfluous replicas,

i.e. replicas for which 0=new
ikX and 1=old

ikX ,

followed by all transfers of outstanding replicas, i.e.

replicas for which 1=new
ikX and 0=old

ikX . The order

in which both deletions and transfers are performed is
random, while the nearest source is selected in each
transfer. Note that since all deletions happen at the
beginning of the schedule it is possible that the last
replica of an object for which an outstanding transfer

exists is deleted. In this case the corresponding object
transfer action will use the dummy server as a source.

To better understand the process, consider the
network of Fig. 3 with 4 servers and 4 objects named
after A, B, C, D. All objects are of equal size and all
servers have enough capacity to store 2 objects. The
figure shows the link costs between servers, and for

each server what objects it holds in oldX and what

objects it should hold in newX . By applying the
algorithm, the schedule starts with all deletions in
random order. For instance one possible outcome is:
{ AD1 , BD4 , BD3 , CD2 , AD4 , DD2 }. The algorithm

then randomly adds transfers as long as there are
outstanding replicas. One possible resulting schedule
(where servers with outstanding replicas are considered
in the order of 1S , 4S , 3S , 2S , 2S , 4S) is the

following: { AD1 , BD4 , BD3 , AD4 , DD2 , CD2 , DdT1 ,

34CT , 13DT , 12BT , AdT2 , 34DT }. Notice that the

transfer sequence begins with a dummy transfer of
object D at server 1S (DdT1). Subsequent transfers of

object D (e.g. 13DT) can be done from the newly

created source. Furthermore, the transfer of D to 4S

(last action in the schedule) uses 3S as source instead

of 1S since 21 1434 =<= ll .

Build initial schedule: Grouped by Server Deletions
First (GSDF). GSDF builds a valid schedule as
follows. It selects servers randomly and for each one it
performs deletions for its superfluous replicas followed
by transfers for its outstanding replicas. Again,
transfers are done from the nearest source or the
dummy server if no source is available at that point.
For example in the network of Fig. 3 one possible
schedule built by GSDF could be the following (servers
are considered in the order of 2S , 3S , 4S , 1S):

{ CD2 , DD2 , 12AT , 12BT , BD3 , DdT3 , AD4 , BD4 ,

34CT , 34DT , AD1 , 31DT }. The rationale of GSDF is

that by performing all the outstanding transfers of a
single server just after all its superfluous replicas are
deleted and before considering the outstanding replicas
for other servers, the resulting schedule will have less
dummy transfers compared to RDF. Also notice that
the server which is selected first by the algorithm will
never need any dummy transfers since the only replicas
deleted at this point are its own superfluous replicas.

Initial schedule exists: Move dummy transfers prior
to deletions (H1). H1 works on top of an existing
schedule with the aim of eliminating dummy transfers.
More specifically it scans the schedule from left to

S1 S2

Xold: A,B

Xnew: B,D

S4 S3

Xold: C,D

Xnew: A,B

Xold: B,C

Xnew: C,D
Xold: A,B

Xnew: C,D

1

2 1

1

1

1

Figure 3. A network example.

right and whenever a dummy transfer is identified it
attempts to move it before some deletion of a
respective replica. Consider for instance the schedule
produced by RDF in the example of Fig. 3 : { AD1 ,

BD4 , BD3 , AD4 , DD2 , CD2 , DdT1 , 34CT , 13DT ,

12BT , AdT2 , 34DT }. H1 will try first to restore DdT1

by moving the transfer before the first deletion of
object D it comes across as it scans the schedule
starting from DdT1 and moving towards its beginning.

In the example, the resulting schedule after DdT1 is

restored to validity will be as follows: {…, AD4 ,

21DT , DD2 , CD2 , 34CT , 13DT , ...}.

Restoring dummy transfers by moving them before
respective deletions is not always possible though.
Consider for instance what happens when attempting to
restore AdT2 . According to the above method the

resulting schedule will be: { AD1 , BD4 , BD3 , 42 AT ,

AD4 , 21DT , DD2 , CD2 , 34CT , 13DT , 12BT , 34DT }.

However this schedule is invalid since when 42AT is

reached, the capacity constraint of server 2S will be

violated (neither object C nor D has been deleted from

2S prior to 42 AT thus a transfer is done towards a

server with no adequate capacity to hold the object).
Such capacity violations can be repaired by moving
adequate deletions before the shifted dummy transfer.
In the example this amounts to moving either CD2 or

DD2 before 42AT , resulting in schedule { AD1 , BD4 ,

BD3 , CD2 , 42AT , AD4 , 21DT , DD2 , 34CT , 13DT ,

12BT , 34DT }. Notice that a further case of interest rises,

if instead of CD2 we decided to move DD2 . In this

case 21DT should be moved as well (otherwise it will

lead to a dummy transfer) and the resulting schedule
will be the following: { AD1 , BD4 , BD3 , 21DT , DD2 ,

42 AT , AD4 , CD2 , 34CT , 13DT , 12BT , 34DT }. As

already discussed, moving 21DT might result in

capacity violation at 1S if it overpasses any deletions

involving 1S (in the example it does not).

Summarizing, the algorithm attempts to move a
dummy transfer before a deletion of a respective
replica so that it can be changed into a valid transfer,
e.g. before: H ={.., jkD , 1G , ikdT , ...}, after: 'H ={..,

ikjT , jkD , 1G , ...}, where 1G represents a sub-

schedule containing deletions and transfers. In doing
so, it checks for the following cases:

(i) No deletions at 1G involving iS : If 1G contains

no deletions of the form 'ikD then 'H is valid and the

algorithm proceeds with the next dummy transfer.
(ii) Storage capacity violation - repairable with

standalone deletions: If 1G contains deletions of the

form 'ikD then by moving ikdT the capacity constraint

of iS might be violated. In this case the algorithm

checks whether by moving the standalone deletions of

iS (i.e. deletions of the form 'ikD that are not preceded

by any transfer of the form ikiT ''' in 1G) before ikjT the

capacity constraint is met, e.g. 1G ={ 1.1G , 'ikD , 2.1G }

before: H ={.., jkD , 1.1G , 'ikD , 2.1G , ikdT , ...}, after

'H ={.., 'ikD , ikjT , jkD , 1.1G , 2.1G , ...}. If so, the

algorithm accepts the change and proceeds.
(iii) Storage capacity violation - non repairable

with standalone deletions: In case no standalone
deletions for iS exist or they do not suffice to restore

the capacity constraint, the algorithm considers moving
deletions together with the transfers that precede them,
e.g. before: H ={.., jkD , 1.1G , ikiT ''' , 'ikD , 2.1G ,

ikdT , ...}, after 'H ={.., ikiT ''' , 'ikD , ikjT , jkD , 1.1G ,

2.1G , ...}. If the move of ikiT ''' occurs without capacity

violation at ''iS , 'H is accepted. Otherwise, H1

recursively attempts to restore validity by considering
the equivalent to 'H schedule ''H ={.., 'ikD , ikjT ,

jkD , 1.1G , dkiT ''' , 2.1G , ...}, i.e. by treating ikiT ''' as a

dummy transfer and checking for it the conditions (i)-
(iii). Notice that after each recursion the sub-schedule

1G that separates the dummy transfer from the

respective deletion will decrease (e.g. becomes 1.1G

after the first call). When it reaches Ø the recursion
will terminate and the algorithm will keep the resulting
schedule if it is valid otherwise it will backtrack to the
initial schedule H , leaving the original dummy
transfer (ikdT) as is and proceeding with the next

dummy transfer.

Initial schedule exists: Create superfluous replicas
(H2). H2 uses a complimentary approach to H1 in
restoring dummy transfers. Namely, it creates
additional free storage space or takes advantage of
available storage to introduce superfluous replicas that
will act as proper sources for dummy transfers. The
algorithm takes as input a schedule H which is
scanned from left to right until a dummy transfer kdiT '

is encountered. It then identifies the first deletion kiD ''

of kO preceding kdiT ' and attempts to inject a new

transfer of kO at a server iS immediately before the

deletion kiD '' . Notice that H1 would attempt to move

kdiT ' before kiD '' which might not be possible if the

capacity at 'iS is violated. Instead, H2 will take

advantage of any server that has enough free space in
order to restore kdiT ' . After kdiT ' is restored the

superfluous replica created is deleted.
Assuming H is of the form { 1G , kiD '' , 2G , kdiT ' ,

3G } and that iS has enough free space to store kO ,

the resulting schedule 'H will be { 1G , ''ikiT , kiD '' ,

2G , kiiT ' , ikD , 3G }. In case no server has enough free

space to store kO , the algorithm attempts to create

space by performing deletions of superfluous replicas,
provided that at least one replica will still exist for each
object. If freeing enough space is impossible, the
original schedule H is restored and kdiT ' is left as a

dummy transfer, otherwise the schedule is updated with
the superfluous transfer and the necessary deletions.
The algorithm then proceeds with checking the next
dummy transfer of the schedule.

4.2. Minimizing implementation cost

The algorithms of this category aim at minimizing
the implementation cost (rather than trying to eliminate
dummy transfers). In doing so, it is possible that
dummy transfers are replaced with valid ones, however
this happens as a side-effect. Here too, we distinguish
the algorithms depending on whether they operate on
an existing schedule (OP1) or build one from scratch
(AR, GOLCF).

All Random (AR). The outstanding replicas to be
created and the superfluous replicas to be deleted, if
needed, are chosen randomly.

Greedy Object Lowest Cost First (GOLCF) [14].
Each superfluous replica kO on iS is associated with

a benefit value ikB equal to the cost difference for

transferring outstanding replicas of kO on all jS for

which iS is the nearest replicator, via iS or the

second-nearest replicator:
∑

=∀

−=
iXkjNj

XkjjNXkjjNkik llOsB
),,(:

),,(),,(2)((4).

The algorithm picks an object kO at random and

iteratively transfers it to all severs that require a replica
thereof. In each iteration, the server iS with the lowest

communication cost from the currently nearest source
of kO (i.e.),,(XkiiNl) is selected. If it is necessary to

delete one or more superfluous replicas on iS , these

are chosen in order of increasing benefit values as per
(4). When there is no outstanding replica for kO , the

next object is picked. The algorithm terminates when
all objects have been considered. The motivation is that
by focusing on the “full” replication of one object at a
time, it is possible to optimize the order of the
corresponding transfers.

Initial schedule exists: Changing action order
(OP1) [14]. Schedule H is scanned from left to right
until a transfer action ''kjiT is encountered. Scanning is

continued until another transfer ikjT for the same object

kO is found. Assume H is of the form {…, ''kjiT , 1G

, ikjT , 2G }, where 1G and 2G are sub-schedules

containing transfer and deletion actions. The algorithm
then considers moving ikjT before ''kjiT in order to

reduce the implementation cost for all subsequent
transfers found in the schedule. For each transfer
involving kO in { ''kjiT , 1G , 2G }, the respective

benefit of moving ikjT is equal to 0 if '''''' jiii ll > , else it

is equal to the cost difference between transferring kO

on ''iS via the currently used source ''jS and iS , i.e.

))(('''''' iijik llOs − . The cost for implementing the

transfer of kO on iS at the uth position of the schedule

is
),,(

)(uXkiiNk lOs . The algorithm considers modifying

the schedule only if the total benefit outweighs the
implementation cost, in which case the transfers of kO

that benefit from this change are also updated to use iS

as their source.
However, additional validity checks are required to

decide whether to consider such a modification. Let

mlilD ..1
 denote the sequence of deletions

1ilD ,
2ilD , …,

milD . Then, in the general case, H is of the form {…,

nkkiD ..' 1
, ''kjiT , 1G ,

mlilD ..1
, ikjT , 2G }, where

nkkiD ..' 1

and
mlilD ..1

 are the deletions performed on 'iS and iS

to enable transfers ''kjiT and ikjT , respectively. The

suggested reordering (before updating the sources of
subsequent transfers of kO) results in schedule

'H ={…,
mlilD ..1

,
),,(uXkiikN

T ,
nkkiD ..' 1
, ''kjiT , 1G , 2G },

i.e. superfluous deletions for server iS are brought

before ikjT , which is further evaluated according to the

following special cases:
(i) No crucial deletions: If no deletions lmilD ..1

precede ikjT and 1G does not contain any deletions

itself, schedule 'H ={…,
),,(uXkiikN

T ,
nkkiD ..' 1
, ''kjiT ,

1G , 2G } is valid and is adopted.

(ii) Void transfers and deletions: If 1G is of the

form { 1.1G , ''ikjT , 2.1G , ikD , 3.1G }, schedule

'H ={…,
mlilD ...1

,
),,(uXkiikN

T ,
nkkiD ..' 1
, ''kjiT , 1.1G ,

''ikjT , 2.1G , ikD , 3.1G , 2G } is invalid because ''ikjT

creates a second replica of kO on iS as it now follows

),,(uXkiikN
T . Similarly, if 1G is of the form { 1.1G ,

''' jilT , 2.1G }, where mlll ≤≤ '1 , schedule 'H = {…,

mlilD ...1
,

),,(uXkiikN
T ,

nkkiD ..' 1
, ''kjiT , 1.1G , ''' jilT , 2.1G ,

2G } is invalid because it contains a deletion 'ilD for

replica 'lO on iS that does not exist; it will be created

at a later stage via ''' jilT . In both cases, 'H is dropped.

(iii) Outdated transfer sources: If 1G is of the form

{ 1.1G , iljT ''' , 2.1G }, where mlll ≤≤ '1 , schedule 'H =

{…,
mlilD ...1

,
),,(uXkiikN

T ,
nkkiD ..' 1

, ''kjiT , 1.1G , iljT ''' ,

2.1G , 2G } is invalid since iljT ''' assumes that iS is a

replicator of 'lO , but this replica is deleted via 'ilD

earlier on. Nevertheless, 'H can be made valid by

substituting iS with
),',''(uXljN

S , assuming that iljT ''' is

the uth action in 'H . Updating each such outdated
transfer may however introduce an additional penalty
equal to))((''),',''(''' ijXljNjl llOs u − , which must be

taken into account.
(iv) Capacity constraint violation: If 1G is of the

form { 1.1G , 'ilD , 2.1G }, where mlll ,...,' 1≠ , schedule

'H = {…,
mlilD ..1

,
),,(uXkiikN

T ,
nkkiD ..' 1

, ''kjiT , 1.1G ,

'ilD , 2.1G , 2G } is invalid if the deletion of 'lO on iS

was required, in addition to deletions lmilD ..1 , to create

space for kO and to enable transfer ikjT in schedule

H . In this case, 'H can be made valid by moving 'ilD

before
),,(uXkiikN

T , resulting in schedule {…, ',..1 llil m
D ,

),,(uXkiikN
T ,

nkkiD ..' 1
, kiiT ' , 1.1G , 2.1G , 2G }. This in

turn requires checking for outdated transfer sources in
sub-schedule 1.1G as per (iii).

The schedule is changed in case (i), or in cases (iii)
and (iv) provided that the benefit outweighs the
respective implementation cost as well as the total
penalty for adjusting all outdated transfer sources.
Each time the schedule is changed, it is scanned from
start. The algorithm terminates if the entire schedule is
scanned without being able to introduce any changes.

5. Experiments

Here we present results from the experimental
evaluation. Sec. 5.1 describes the simulation
parameters while Sec. 5.2 illustrates the results. Due to
space restrictions we are forced to omit a large part of
our evaluation, leaving it for an extended version.

5.1. Experimental setup

The server network was generated using the BRITE
tool [15], for 50 server nodes each having a
connectivity of 1, resulting in a tree-graph. Node
connections followed the Barabasi-Albert model,
which has been used to describe power-law router
graphs [2]. Links were assigned a fixed cost, uniformly
distributed between 1 and 10. Server-to-server
communication costs were set equal to the aggregated
link cost along the shortest paths. A set of 1,000
objects was used and the constant factor a that
controls the cost of dummy transfers was set to 1. In all
the experiments we measure the number of dummy
transfers left in the schedule and the implementation
cost.

5.2. Results

In the first experiment we set the size of all objects
to 5,000 data units and varied the number of replicas
for each object. Fig. 4 and 5 plot the results as the
number of replicas for each object varies from 1 to 5.

All servers store the same number of objects in oldX

which remains unaltered in newX . Server capacities

were set to be equal, and sufficient to just satisfy oldX

and newX without leaving any additional free space.
The allocation of objects to the servers is performed

randomly in oldX . newX is the result of the servers

interchanging their objects in a way that oldX and
newX have no common replicas (overlap 0%).
Fig. 4 depicts the number of dummy transfers for the

cases where H1 and H2 are applied over AR and
GOLCF. We can observe that as more replicas per

object exist in oldX , the number of dummy transfers

drops. This is due to the fact that with more replicas
available, the probability that either AR or GOLCF
deletes the last replica of an object decreases. As
anticipated, GOLCF is a better choice compared to AR
which builds a schedule in a completely random
fashion. Especially noteworthy is the improvement
achieved by applying H1 and H2 (almost nullifying
dummy transfers in the two replicas per object case).
As a result H1 and H2 also manage to reduce the
implementation cost of the GOLCF+OP1 schedule
(Fig. 5). The combinations of H1+H2 with RDF and
GSDF resulted in similar trends and are not shown.

The second experiment is similar to the first one
with the exception that object size is varied uniformly
between 1,000 and 5,000. Fig. 6 and 7 show the
dummy transfers and the implementation cost
respectively. In Fig. 6 we only plot GOLCF variants.
Here too, H1+H2 appear to have the largest
contribution in minimizing dummy transfers which
results in large implementation cost savings as shown
in Fig. 7.

In the last experiment the setup was similar to the
first experiment, i.e. equally sized objects, no common

replicas between oldX and newX , replicas equally
distributed to servers and servers having the minimum
capacity sufficient to store the objects specified by

oldX and newX . However, we wanted to test the
behavior of the algorithms when free storage space is
available in the system. Therefore, we fixed the number
of replicas per object to 2 and introduced at a random
server additional capacity to store one more object. Fig.
8 and 9 show the results as the number of the servers
having extra capacity rises. We can observe that the
remaining dummy transfers after applying H1+H2 drop
as the capacity increases. This implies that the H1+H2
combination explores the extra space more efficiently
compared to standalone GOLCF (the corresponding
plot is almost flat). As a result, the implementation cost
of GOLCF+H1+H2+OP1 is smaller compared to
standalone GOLCF+OP1 (Fig. 9).

Summarizing the experiments, GOLCF+OP1
provides a good starting point for building a schedule,
while the application of H1 and H2 drastically
improves it by reducing the number of dummy transfers
at the initial schedule.

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

0 1 2 3 4 5 6

Initial Replicas per Object

Im
p

le
m
e
n
ta
ti
o
n

 C
o
s
t

GOLCF+OP1

GOLCF+H1+H2+OP1

0

20

40

60

80

100

120

0 2 4 6 8 10 12

Servers

D
u

m
m

y
 T
ra
n
s
fe
rs

GOLCF

GOLCF+H1+H2

2.E+07

2.E+07

2.E+07

3.E+07

3.E+07

3.E+07

3.E+07

3.E+07

4.E+07

0 2 4 6 8 10 12

Servers

Im
p

le
m
e
n
ta
ti
o
n

 C
o
s
t

GOLCF+OP1

GOLCF+H1+H2+OP1

Figure 7. Implementation

cost as the replicas per

object increase (uniform

object sizes).

Figure 8. Number of dummy

transfers as more servers

acquire extra capacity.

Figure 9. Implementation cost

as more servers acquire extra

capacity.

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6

Initial Replicas per Object

D
u

m
m

y
 T
ra
n
s
fe
rs

AR AR+H1

AR+H1+H2 GOLCF

GOLCF+H1 GOLCF+H1+H2

2.E+07

3.E+07

3.E+07

4.E+07

4.E+07

5.E+07

5.E+07

6.E+07

0 1 2 3 4 5 6

Initial Replicas per Object

Im
p

le
m
e
n
ta
ti
o
n

 C
o
s
t

GOLCF+OP1

GOLCF+H1+H2+OP1

0

50

100

150

200

250

0 1 2 3 4 5 6

Initial Replicas per Object

D
u

m
m

y
 T
ra
n
s
fe
rs

GOLCF GOLCF+H1+H2

Figure 4. Number of dummy

transfers as the replicas per

object increase (equal object

sizes).

Figure 5. Implementation cost

as the replicas per object

increase (equal object sizes).

Figure 6. Number of dummy

transfers as the replicas per

object increase (uniform

object sizes).

6. Conclusions

In this paper we investigated the replica transfer
scheduling problem taking into account feasibility and
cost optimization issues. We introduced various
heuristic operators and evaluated their performance
also with reference to a previously developed algorithm
(GOLCF+OP1). Results demonstrate that especially H1
and H2 contribute largely on optimizing the transfer
schedule, making GOLCF+H1+H2+OP1 a clear winner
over other alternatives. Our ongoing work includes an
extended version with a larger experimental evaluation.

Acknowledgements

This work was partially supported by the European
Social Fund and National Resources - (EPEAEK-II)
ARCHIMIDIS ΙΙ.

References

[1] T. Anderson, Y. Breitbart, H. Korth and A. Wool,
“Replication, Consistency and Practicality: Are These
Mutually Exclusive?,” in Proc. ACM SIGMOD’98,
Seattle, June 1998.

[2] A.L. Barabasi and R. Albert, “Emergence of Scaling in
Random Networks”, in Science, Vol 286, pp. 509-512,
Oct. 1999.

[3] C. Basnet, L. Foulds and J. Wilson, “An exact algorithm
for a milk tanker scheduling and sequencing problem,”
in Annals of Operations Research, Vol. 86, pp. 559-
568, 1999.

[4] O. Beaumont, A. Legrand and Y. Robert, “Optimal
Algorithms for Scheduling Divisible Workloads on
Heterogeneous Systems,” in Proc. 17th Int. Parallel and
Distributed Processing Symp. (IPDPS 2003), Nice,
France, 2003.

[5] C. Bisdikian and B. Patel, “Cost-based program
allocation for distributed multimedia-on-demand
systems,” IEEE Multimedia, vol. 3, no. 3, pp. 62–72,
1996.

[6] T. Braun, H. Siegel, N. Beck, L. Boloni, M.
Maheswaran, A. Reuther, J. Robertson, M. Theys and B.
Yao, “A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems,” in
Journal of Parallel and Distributed Computing (JPDC),
Vol. 61(6), pp. 810 – 837, June 2001.

[7] N. Christofides, “Vehicle Routing,” in The Traveling
Salesman Problem, Lawler, Lenstra, Rinooy Kan and
Shmoys, eds., John Wiley, pp. 431-448, 1985.

[8] F. Desprez and A. Vernois, “Simultaneous Scheduling
of Replication and Computation for Data-Intensive
Applications on the Grid,” Research Report RR2005-
01, INRIA, France, Jan. 2005.

[9] J. Kangasharju, J. Roberts, and K. Ross, “Object
replication strategies in content distribution networks,”
Computer Communications, vol. 25, no. 4, pp. 367–
383, 2002.

[10] M. Karlsson and C. Karamanolis, “Choosing replica
Placement Heuristics for Wide-Area Systems,” in Proc.
ICDCS’04, pp. 350-359.

[11] Yu-K. Kwok and I. Ahmad, “Static scheduling
algorithms for allocating directed task graphs to
multiprocessors,” in ACM Computing. Surveys, Vol.
31(4), pp. 406-471, 1999.

[12] N. Laoutaris, G. Smaragdakis, A. Bestavros and I.
Stavrakakis, “Mistreatrment in Distributed Caching
Groups: Causes and Implications,” in Proc. IEEE
INFOCOM 2006, Barcelona, Spain.

[13] T. Loukopoulos, P. Lampsas, and I. Ahmad,
“Continuous replica placement schemes in distributed
systems”, in Proc. 19th ACM International Conference
on Supercomputing (ACM ICS), Boston, MA, June
2005.

[14] T. Loukopoulos, N. Tziritas, P. Lampsas and S. Lalis,
“Investigating the Replica Transfer Scheduling
Problem,” to appear in Proc. 18th Int. Conf. on Parallel
and Distributed Computing and Systems (PDCS’06).

[15] S. Martello and P. Toth, “Knapsack Problems:
Algorithms and Computer Implementations,” John
Wiley & Sons-Interscience Series in Discrete
Mathematics and Optimization, 1990.

[16] A. Medina, A. Lakhina, I. Matta, and J. Byers, BRITE:
Boston University Representative Internet Topology
Generator, http://cs-pub.bu.edu/brite/index.htm, March
2001.

[17] L. Qiu, V. Padmanabhan, and G. Voelker, “On the
placement of web server replicas,” in Proc. IEEE
INFOCOM, April 2001, pp. 1587–1596.

[18] M. Rabinovich and O. Spatschek, “Web Caching and
Replication,” Addison-Wesley, 2002.

[19] T. Phan, K. Ranganathan and R.Sion, “Evolving
Toward the Perfect Schedule: Co-Scheduling Job
Assignments and Data Replication in Wide-Area
Systems Using a Genetic Algorithm,” in Proc. 11th

Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP 2005), June 19, 2005.

[20] P. Radoslav, R. Govindan, and D. Estrin, “Topology
informed Internet replica placement,” Computer
Communications, vol. 25, no. 4, pp. 384–392, 2002.

[21] O. Sinnen, L. Sousa and F. Sandnes, “Toward a
Realistic Task Scheduling Model,” in IEEE Trans. on
Parallel and Distributed Systems (TPDS), Vol. 17(3),
pp. 263-275, March 2006.

[22] X. Tang and J. Xu, “On Replica Placement for QoS-
Aware Content Distribution,” in Proc. IEEE
INFOCOM, March 2004, Hong Kong.

[23] L. Zhuo, C. Wang, and F. Lau, “Load balancing in
distributed web server systems with partial document
replication,” in Proc. ICPP’02, August 2002, pp. 305–
312.A.B. Smith, C.D. Jones, and E.F. Roberts, “Article
Title”, Journal, Publisher, Location, Date, pp. 1-10.

