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Abstract

Well designed domain specific languages enable the easy
expression of problems, the application of domain specific
optimizations, and dramatic improvements in productivity
for their users. In this paper we describe a compiler for
polymer chemistry, and in particular rubber chemistry, that
achieves all of these goals. The compiler allows the devel-
opment of a system of ordinary differential equations de-
scribing a complex rubber reaction – a task that used to re-
quire months – to be done in days. The generated code, like
much machine generated code, is more complex than hu-
man written code, and stresses commercial compilers to the
point of failure. However, because of knowledge of the form
of ODEs generated, the compiler can perform specialized
common sub-expression and other algebraic optimizations
that simplifies the code sufficiently to allow it to be compiled
(eliminating all but 6.9% of the operations in our largest
program) and to provide five times faster performance on
our largest benchmark codes.

1 Introduction

Rubber chemistry, although of tremendous economic im-
portance, is not well understood. Current chemical formu-
lations have been found by years of trial and error, guided
by intuition and incomplete theory. A major research goal
in this area is to develop models, based on quantum chem-
istry, to give a deeper understanding of rubber chemistry
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and to increase the ability to predict the properties of a par-
ticular rubber formulation. Unfortunately, a researcher is
forced to manually construct systems of ODEs containing
hundreds of equations and thousands to millions of floating
point operations and variable references. This process can
take months, and because of the detailed solution descrip-
tion required from the chemist, is extremely error prone,
requiring additional weeks to verify that the proposed sys-
tem is the same as the model represented by the system of
ODEs. Once a model is proposed, simulating the system
and computationally fixing unbound parameters in the sys-
tem can take additional days.

In an ideal world, the chemist would describe reac-
tions using a high level language in a matter of hours or
a few days, a compiler would produce efficient code for the
ODEs, and running the simulation and computationally fix-
ing unbound parameters would take minutes or hours. The
bottleneck in the process would be the chemist’s creativ-
ity, not the drudge work of developing systems of equations
followed by waiting for days for a computation to finish.
This would allow a researcher to turn-around multiple so-
lutions each week, dramatically increasing the productivity
of the researcher, and greatly improving the rate of scien-
tific progress. This paper describes a system that brings the
chemistry researcher closer to this ideal world.

Our system is a compiler for a chemical reaction lan-
guage and a runtime that allows researchers to provide a
high level description of the reactions they wish to test, and
then have the labor intensive and error prone ODE devel-
opment phase of the cycle performed automatically. Our
domain specific language, like many, produces as output a
program in another relatively high-level language (C, in our
case). As is often the case with machine generated code,
the code that is naively generated by our compiler is more
complex than that which is ever produced by a human, and
sometimes exceeds the limits of the C Compiler, causing
the compiler to fail. In particular, in our largest test case we
produce basic blocks whose expressions contain approxi-
mately 3.3 million floating point operations. By employing
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Figure 1. The work flow for understanding the chemistry behind compounds.

specialized algebraic and common sub-expression elimina-
tion algorithms we reduce the code size by eliminating all
but 6.9% of the original arithmetic operations in the code,
increasing performance by over five times. Finally, the code
produced by the compiler will allow the resulting system of
ODEs to be solved in parallel, allowing the computation
time to be reduced to a matter of hours.

Figure 1 shows the workflow, consisting of collecting ex-
perimental data, determining the fit against (perhaps newly
developed) possible reactions, optimizing the parameters of
the model and testing the results, and statistically analyz-
ing the results. Tweaking of the reaction model and op-
timization might need to be performed repeatedly until a
good correlation with the experimental results is obtained.
In particular the expression of a reaction model as a system
of ODEs, and the linear optimization of the model to de-
termine its correlation with experimental results, has been
automated by our system. Because of the enormous size of
the ODEs, manually generating and maintaining these equa-
tions is not possible for large and realistic reaction systems
without help from a system such as ours.

This paper provides a high level overview of our system,
and focuses on an extremely effective set of algebraic op-
timizations, which combined with a domain specific com-
mon subexpression elimination algorithm yields over a fac-
tor of 5 speedup performance improvement on realistically
sized problems when compared to the results of a commer-
cial compiler. Moreover, because of the complexity of the
expressions to be optimized, the commercial compiler fails
at high optimization levels. These optimizations, and the
parallel code generated, provide researchers with rapid turn-
around for their models, leading to large improvements in
their effectiveness. To summarize the technical contribu-
tions of the paper:

• We describe our system for automating the testing of
chemistry models;

• We describe the scalar algebraic optimizations and
common subexpression elimination algorithms devel-
oped and implemented specifically for our system that
remove redundant computations from the ODEs pro-
duced by our system;

• We describe the parallel runtime, developed and imple-
mented specifically for our system, for quickly finding
the optimized ODE solutions;

• We present experimental data, from a research project
studying the vulcanization of rubber, that shows the
effectiveness of our domain specific compiler, the se-
quential optimizations, and the parallel templates.

The rest of the paper is organized as follows. Section 2
provides an overview of the system, and describes the ODEs
generated by the system before optimization. Section 3 de-
scribes the optimizations we perform to remove redundant
computation from the system. Section 4 describes the par-
allel templates and library support that allow the efficient
computation of the optimized ODEs’ solutions. Section 5
gives our experimental results. Finally, Sections 6 and 7
describe related work and conclusions.

2 System overview

Our tool set, the Reaction Modeling Suite, is shown in
Figure 2. The solid-line boxes are the components de-
scribed in this paper. The first component is the Chemical
Compiler, which accepts a high-level language specifica-
tion of the chemical reactions using syntax similar to that of
Prickett’s Reaction Description Language (RDL) [11, 10,
9]. From the reaction descriptions, the chemical compiler
automatically generates the reaction network that describes
all possible reactions.

Each molecule specified can have variants that arise be-
cause many molecules differ from one another only in the
lengths of chains of some atom (typically sulfur in rubbers.)
Our input language allows all these variants to be expressed
in a compact form which is then expanded by the chem-
ical compiler. The input language is also used to specify
the reactions among all of the input compounds. In gen-
eral, rules can be generated for six reactions: (1) discon-
nect two atoms; (2) connect two atoms; (3) decrease the
bond order between two atoms; (4) increase the bond order
between two atoms; (5) remove a hydrogen atom; and (6)
add hydrogen atoms. The language is rich enough to allow
these rules to be applied with context sensitive knowledge,
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Figure 2. The Reaction Modeling Suite.

1. −A + B + B \\ [KA] ;
2. −C − D + E \\ [KCD] ;

. . .

Figure 3. The intermediate equations (i.e. the
reaction network) generated by the chemical
compiler.

e.g. to only break sulfur to sulfur bonds when the bonds
are between sulfur atoms a least three atoms from the end
of a chain of sulfurs. As well, certain actions and forms
can be forbidden. Internally, molecules are stored and ma-
nipulated using the SMILES Java classes [1], a symbolic
chemistry manipulation library. The output of the frontend
is a set of expressions (called a reaction network) that rep-
resent the possible reactions, as seen in Figure 3. In each
expression, A, B, C, . . . are molecules and radicals (hence-
forth simply referred to as molecules) being produced or
consumed, where “-” indicates a consumed molecule, “+”
indicates a produced molecule, and names beginning with
“K” indicate a kinetic rate constant, as described below.

The second component is the Rate Constant Informa-
tion Processor (RCIP). Kinetic rate constants are terms that
describe the relative rates at which different reactions oc-
cur, and are set by the chemist, aided by the Gaussian ‘03
Quantum Chemistry Package [2]. Input data to the RCIP
are expressions that define some constants as integer con-
stants, and other constants as expressions of these integer
constants. It then associates the rate constants with expres-
sions in the reaction network, as shown in Figure 3.

The third component is the Equation Generator, which
takes the reaction network created by the chemical com-
piler and generates ODEs to describe the reactions involv-
ing each variant of the molecules (see Figure 4). Equations
are formed as follows. For each term T in the right hand
side of the intermediate equations (e.g. A and B in Equation
1 of Figure 3) an equation with the left hand side of dT/dt
is formed. The right hand side of the equation consists of
the product of the rate constant for the intermediate reaction
and each reactant term in the right hand side of the interme-
diate equation. The sign of the right hand side is the sign of
T in the intermediate equation, thus if T is a reactant, the

sign of the hand side is negative. After these equations are
formed, the final ODEs (see Figure 5) are formed by sum-
ming all of the right hand sides of equations with the same
left hand side. The resulting ODEs are shown in Figure 5.

The equation generator maintains an equation table that
stores all of the ODEs that have been created. Every entry in
this table represents one molecule, and consists of a doubly
linked list of nodes, each representing one sum-of-products
in the equation, broken down into individual terms.

The resulting ODEs contain many common terms which
lead to significant amounts of redundant computation. Our
optimizations, discussed in Section 3, remove these redun-
dancies. The output from the Equation Generator is a C
code function that that evaluates the ODEs.

The task of the fifth component, the Parallel Parameter
Estimator, is to estimate values for the rate constants that
are both consistent with quantum chemistry, and that allow
the model to most closely match the experimental data. This
component uses a parallel non-linear optimization of the
ODEs’ solutions, and by varying the rate constants it finds
the closest match of the simulated model to experimental
results. The closeness of this match serves as the quality
metric for the accuracy of the model. This component uses
all available processors to find a solution.

3 Optimizations

The output from the rate constant information processor
is an exhaustive listing of all possible chemical reactions
with regressed rate constants. The equation generator trans-
forms these reactions into ODEs. The resulting ODEs have
a large amount of computational redundancy – as we see
in the experimental results section the single node running
time experiences a five-fold increase in performance by re-
moving these redundancies.

In this section we describe the optimizations performed
by our system’s algebraic optimizer to remove these redun-
dancies.

3.1 Equation Simplification

The first optimization is to simplify the equations, in par-
ticular this optimization changes the equation:
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1. dA/dt = −KA ∗ A;
2. dB/dt = +KA ∗ A;
3. dB/dt = +KA ∗ A;
4. dC/dt = −KC ∗ D ∗ C;
5. dD/dt = −KC ∗ D ∗ C;
6. dE/dt = +KC ∗ D ∗ C;

. . .

Figure 4. The initial set of ODEs produced
from the reaction network of Figure 3.

1. dA/dt = −KA ∗ A;

2. dB/dt = +KA ∗ A + KA ∗ A;

3. dC/dt = −KC ∗ D ∗ C;

4. dD/dt = −KC ∗ D ∗ C;

5. dE/dt = +KC ∗ D ∗ C;

. . .

Figure 5. The final set of ODEs produced from
the equations of Figure 4

.

dA

dt
= 2 ∗ k1 ∗ B ∗ C + ... + 3 ∗ k1 ∗ B ∗ C + ...

into
dA

dt
= 5 ∗ k1 ∗ B ∗ C + ...

After this optimization, each product in the sum-of-
products representation of each molecule differs in at least
one non-constant term from every other product. The trans-
formation is performed on-the-fly as the equations are gen-
erated. When a sum-of-products is to be added to the linked
list representing the equation for a reaction, it is combined,
whenever possible, with another term that differs from it
only in the constant terms.

3.2 Distributive Optimization

The second optimization is the distributive optimization.
This optimization transforms the equation from:

dA

dt
= k1 ∗ B ∗ C + k1 ∗ B ∗ D + k1 ∗ E ∗ F (1)

into

dA

dt
= k1 ∗ (B ∗ C + B ∗ D + E ∗ F ) (2)

and then into

dA

dt
= k1 ∗ (B ∗ (C + D) + E ∗ F ) (3)

Figure 6 gives the algorithm for the transformation. We
use the following expression to illustrate the action of algo-
rithm.

k ∗ p1 + k ∗ p2 + . . . + k ∗ pn + pn+1 + . . . + pm

The data structure P in lines 2 and 3 of the algorithm are
created by the equation generator. The algorithmDistOpt
performs the distributive optimization, and is invoked by
line 3 for every equation E in the set of ODEs, terminates
when all sums-of-products have been examined (the while
loop condition of line 7), and returns the result of the op-
timization which is accumulated in Pres , and which is ini-
tially empty. The multi-set T holds the terms in the equation
being optimized.

The algorithm finds the term k that appears in the most
products, i.e. the term that appears most in T , and c, the
number of times k appears. In the example above, k is that
term.

If c = 1, then the most common term only appears once,
and no optimization is possible. If c > 1, all of the products
containing k are found (line 10), and the sum of those prod-
ucts with k factored out are multiplied by k (see line 11).
This results in the equation above being rewritten as:

k ∗ (p1 + p2 + . . . + pn) + Γ

which generates the intermediate result in Equation 2 above.
The algorithm is then applied to k (p1 + p2 + . . . + pn)

(the recursive call in line 11), and Γ (later iterations of the
while loop at line 7). This generates the result in Equation
3 above. Thus the algorithm is applied to each created sub-
term until no further optimization is possible.

Finally, in line 12, Pk and k are subtracted from their
respective sets so that they are not considered again.

Before applying the optimizations Equation 1 contains
six multiplications and two additions. After applying the
optimizations, as shown in Equation 3, there are only three
multiplications and two additions.

3.3 Common Subexpression Elimination

After the distributive optimization, there are many com-
mon subexpressions both within and across equations. To
remove this redundant computation we implement the third
optimization, a form of common subexpression elimination
(CSE). Our CSE optimization changes the equations from:

dA

dt
= ... + (A + B + C + D) ∗ k1 ∗ E + . . .

dB

dt
= ... + (A + B + C + D) ∗ k2 ∗ F + . . .

dC

dt
= ... + (A + B + C) ∗ k3 ∗ G + . . .
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1. for each ODE E

2. P = set of sum of products in E

3. Popt = DistOpt(P)

4. DistOpt(P )

5. Pres = ∅
6. Let T = terms(P ) /* T is a multiset */

7. while P %= ∅
8. (k, c) = mostFrequent(T )

9. if c > 1

10. Pk = {p : p a product ∈ E, k ∈ p}
11. Pres = Pres ∪ k · DistOpt({Σp∈Pk

(p/k))})

12. P = P − Pk; T = T − k

13. else
14. Pres = Pres ∪ P

15. P = ∅
16. return Pres

Figure 6. The Distributive Optimization Algo-
rithm

into:

temp[0] = A + B + C . . .

temp[1] = temp[0] + D . . .

dA

dt
= ... + temp[0] ∗ k3 ∗ G + . . .

dB

dt
= ... + temp[1] ∗ k2 ∗ F + . . .

dC

dt
= ... + temp[1] ∗ k3 ∗ G + . . .

The optimization, as described in the algorithm of Fig-
ure 7, proceeds as follows. First, the sub-expressions that
form equations are stored in an indexed structure keyed on
the sub-expression length (exprList in the algorithm.)
The terms of each sub-expression are stored in a canon-
ical lexicographical order – this allows an easy match-
ing of expressions. The algorithm considers in turn each
elong , the longest sub-expression not yet processed (or one
of the longest, if there are several sub-expressions whose
length is equal to the length of elong ). This is done by
the foreach loop of line 3 of the algorithm. The algo-
rithm then examines all sub-expressions eleq whose length
is equal to the length of elong (lines 4-6) or less than than
the length of elong (lines 7-11). When matching equal
length expressions, any subexpression that matches elong

is replaced by elong ’s temporary. The replacement is done
by the replacePrefix function. When matching a

shorter expression to a prefix of a longer expression, the
search is done from longest to shortest strings, since finding
the longest matching prefix of elong corresponds to find-
ing the most redundancy in the computation. The match-
ing is facilitated by the canonical order imposed on the
terms making up each temporary. When a match is found,
the prefix of elong is replaced by the shorter expression’s
(Eleq) temporary, and the search stops. We note that the
replacePrefix function also marks the genTemp bit
of the subexpression whose temporary is to be used, ensur-
ing that an assignment into that temporary of the subexpres-
sion is performed.

An Expression is a structure with three fields

expr: the expression

lhs-list:
list of left-hand sides this expression is
assigned to

temp:
a temporary name the expr can be as-
signed to

genTemp: a boolean – initially false, set to true if
expr should be assigned to temp in final
code.

exprList[1:maxLen]: an array of lists of expressions

maxLen: the maximum number of terms in any expr.

exprList[i]: list of all expr with i terms

1. len = maxLen

2. while (len > 1)

3. foreach Elong ∈ exprList [len]

4. foreach Eleq in exprList[len]that is not Elong

5. if matchesPrefix(Eleq .expr,Elong .expr)

6. replacePrefix(Eleq , Elong)

7. for (i = 1; i < len ; i + +)

8. foreach Eleq in exprList [len]that is not Elong

9. if matchesPrefix(Eleq .expr,Elong .expr)

10. replacePrefix(Elong , Eleq )

11. break
12. for (i = 1; i < maxLen; i + +)

13. foreach e ∈ exprList [i] such that e.genTemp)

14. genAssign(e.temp, e.expr)

Figure 7. Common Sub-Expression Optimiza-
tion Algorithm.

When emitting code, assignments to temporaries are
generated (lines 13 and 14) before reads of that temporary.
Within common sub-expressions of the same length, the
temporary assignments are generated before any other as-
signments, including assignments using the temporary. For
common sub-expressions of different lengths, the shorter
common sub-expression is always generated first, thus en-
suring the value is written before being used in a longer
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sub-expression.

Because the terms in all expressions are in a canonical
lexicographical order, and all like terms have been gathered
in the distributive optimization, the number of comparisons
between two expressions is the number of expression terms
of the longer expression in the worst case. As a result, the
asymptotic time complexity of this algorithm is O(m2n),
where m is the number of expressions, and n is the aver-
age number of expression terms of each expression. We
note that this is better than other string matching algorithms
which cannot make these assumptions because of the nature
of their input. These algorithms require, for example, time
proportional to the terms in both expressions [6].

Our CSE algorithm differs from the standard algorithms
in the literature (e.g. [13]) in several ways. First, because
we control the generation of our code, we know that uses of
variables are not aliased, are only written once (per iteration
of the ODE solver loop), and because the values are float-
ing point numbers, pairs of variables with different names
are less likely to have the same value than are integer vari-
ables. Moreover, those variables with different names most
likely to have the same value, i.e. the rate constants, have
been renamed based on common values by the rate constant
information processor discussed earlier. Therefore, we can
use the name of a variable to label its value, simplifying
our algorithm. In the final code for the system of ODEs
the left and right hand sides of the ODEs could appear to
be aliased to the target C compiler, preventing the target C
compiler from optimizing these expressions. Finally, our
CSE optimization exploits the structure of the code in op-
timizing expressions. With any CSE optimization it is nec-
essary to choose which, of many possible expressions, to
optimize. For example, given the expressions d(a + b + c),
d ∗ a + d ∗ c and a + c and a + b, general CSE algorithms
will catch some of the redundancy, but not all, since form-
ing all possible representations of these values will be very
time consuming. Because of the structure of our equations
and constituent expressions, we know that a canonical fully
non-distributed representation is best, and represent all ex-
pressions this way. Our CSE optimization only uses O(mn)
storage for bookkeeping, where m is the number of expres-
sions, and n is the average number of terms in each ex-
pression. Just as importantly, our techniques greatly reduce
the size of the code going into the more general optimiz-
ing compiler, allowing much less storage to be needed for
the richer, general IR used by these compilers, and allowing
them to compile the C code representation of a larger set
of ODEs used in our simulations. As shown in the exper-
imental results section, we can compile programs at least
10 times larger using our optimizations that when not using
them.

4 Parallel Parameter Estimator

The optimized ordinary differential equations are passed
to the ODE Solver and non-linear optimizer routines where
the system solves for the kinetic parameters. Before pass-
ing the ODEs to the runtime, it is necessary for the chemist
using the system to set bounds on the different kinetic pa-
rameters. These bounds are used to constrain the possible
solutions found by the non-linear solver. The ODE solver
is used to find the solutions to the set of ODEs, and the re-
sulting solution is passed to the non-linear solver to find the
tightest fit to the experimental results. If a tight correlation
exists between the runtime result and the experimental re-
sults, the model expressed in the original equations and ki-
netic bounds is assumed to be a good estimator of the chem-
ical reactions for the set of inputs under investigation.

4.1 The ODE Solver

For our ODE solver we use the IMSL libraries for
AIX. The IMSL C library provides two ODE solvers, a
Runge-Kutta solver and an Adams-Gear solver. The Runge-
Kutta solver (imsl f ode runge kutta) solves an ini-
tial value problem for ordinary differential equations using
the Runge Kutta Verner fifth order and sixth order method.
This function is efficient for non-stiff systems. The Adams-
Gear solver (imsl f ode adams gear) solves a stiff
initial value problem for ordinary differential equations.
Because chemical reactions proceed to equilibrium, where
molecules and their variants effectively complete their reac-
tions in different epochs, the differential equations model-
ing the behavior of such systems are stiff. Therefore we use
the Adams-Gear solver.

4.2 The Non-linear Optimizer

The IMSL C library also provides constrained
minimization functions. We use the non-linear
least squares with simple variable bounds algorithm
(imsl f bounded least squares). This function
uses a modified Levenberg-Marquardt [7, 8] method and
an active set strategy to solve the non-linear least squares
problems subject to simple bounds on the variables.
Figure 8 shows the set-up of arguments and the call to
this routine used in our system. The lower bounds, upper
bounds and initial values for the kinetic rates are set, and
the optimization function is called to optimize the problem,
as described next. The values returned by the non-linear
optimizer will be the optimized values of the kinetic rate
constants: they will both be within the constraints set by
the chemist, and the values that provide the closest match
to the experimental results.
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int main(int argc, char *argv[ ]) {
/* initialize */
set xlb[ ] lower bounds of kinetic parameters;
set xub[ ] upper bounds of kinetic parameters;
set xguess[ ] initial guess values of kinetic parameters;

/* call optimization */
optimized results =

imsl f bounded least squares(void objective fcn(),int m,
int n, float xlb[ ], float xub[ ], float xguess[ ] ...);

return 0;
}

Figure 8. Code that Invokes the Nonlinear Op-
timizer.

4.3 Objective Function

The objective function, shown in Figure 9, is the input
to the optimization function, and allows the optimality, or
closeness, of the ODE solution for a set of kinetic values to
the experimental result to be determined. There are three
major inputs to the optimization function. The first is the
kinetic rate constants mentioned above. The second is the
set of ODEs generated by the compiler. The third is a set of
files that contain experimental data. Each file contains more
than 3000 records of the form < ti, property value >,
where ti is a time step and property value is a measure
of the property that is to be predicted by the chemical
model (e.g. elasticity or stiffness of the rubber compound).
The ODE solver function is called to calculate the simu-
lated property values. The difference between simulated
data values and experimental data values is stored into
error vector[]. Multiple files are used at runtime to
provide the results of multiple experiments. Each file pro-
duces a local error vector[], with a sum reduction
being done overall of these vectors to produce a global
error vector[].

4.4 Parallel Computation of the Opti-
mized Solution

Because of the complexity of these reactions (real sys-
tems have thousands of equations), solving the ODEs and
optimizing the kinetic parameters is computationally expen-
sive. As seen above, the objective function opens multiple
experimental data files and reads them one by one. The
solver consumes most of the computation time in the sys-
tem (99% of the time in a 16 data file run) and an even
larger percentage with more files. Because our goal is to
allow a chemist to quickly try out many different mod-
els (e.g. kinetic rate constant bounds) for a calculation, it

#include <mpi.h>
object function(int m, int n, float rate constant[],

float global error vector[]) {
MPI Comm rank (MPI COMM WORLD, &id);
MPI Comm size (MPI COMM WORLD, &p);

calculate the number of data files;
size = BLOCK SIZE();
for(i=0; i<size; i++) {

/*get information from experimental data files*/
open this data file;
get number of time steps from this data file;
get data values at each time steps from this data file;

/* initialize ODE solver */
imsl f ode adams gear mgr(IMSL ODE INITIALIZE,

&state,...);
for(j=0; j<number timestep; j++) {

/* integrate from t to tend */
simulated value = imsl f ode adams gear(&t, tend,

state,ode fcn, . . . );

/*calculate the difference between two results*/
error vector[j] += function(simulated value,

experimental value);
}

/* end ODE solver function*/
imsl f ode adams gear mgr(IMSL ODE RESET, &state, . . . );
record time for solving this data file;

}
MPI AllReduce(error vector, global error vector, max steps,

MPI FLOAT, MPI SUM, MPI COMM WORLD);
MPI AllReduce(local time, global time, number datafile,

MPI FLOAT, MPI SUM, MPI COMM WORLD);
apply dynamic load balancing algorithm;

}

Figure 9. The Parallel Objective Function us-
ing MPI.

is essential for the utility of the system that it provides a
solution as quickly as possible. We therefore parallelized
our system using MPI, as shown in Figure 9. The num-
ber of concurrent processes is specified when the program
begins, and remains constant throughout the execution of
the program. Each process potentially opens several dif-
ferent data files – the data files are replicated across the
processors – and computes the error (of the ODE solu-
tion relative to the experimental data solution) and places
it into error vector[]. Next, MPI AllReduce() is
used to reduce the errors across the different data files into
global error vector[], which is then sent to every
process.

In order to reduce the idle time and improve the effi-
ciency of processors, we also implement a dynamic load
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balancing algorithm. The aim of load balancing is to opti-
mize the workload distribution, so every processor get equal
amount of workload. In our dynamic load balancing algo-
rithm, the time to solve each data file is recorded and put
into a priority queue built out of a non-increasing sorted
time list. The next item, which corresponds to the data file
with the largest solving time among remaining data file in
the priority queue, is allocated to the processor with least
total allocated time so far. As a result, at the next objec-
tive function call, every processor will receive the balanced
workload calculated by the current objective function call.
Because the data files are replicated, each processor has the
data necessary to compute the workload it is assigned.

5 Experimental Results

5.1 Benchmark programs

The system is being actively used within our group to
model the vulcanization process of rubber. Therefore, the
input for our experiments are the kinetic models for the
vulcanization process implemented for the vulcanization of
natural rubber by the benzothiazolesulfenamide class of ac-
celerators. There are five test cases with different sets of
chemical equations, but the same 10 distinct kinetic pa-
rameters. Experimental data is used to determine the ki-
netic parameters and validate the predictions of the reac-
tion model. Measurements of different rubber formulations
have been employed to determine the time evolution of the
concentration of crosslinks – strands of sulfur that link rub-
ber molecules and therefore affect the stiffness of the rub-
ber – for different formulations cured at different tempera-
tures. We tested this reaction model using 16 experimental
data files, which contain the time evolution of the crosslink
concentrations for different formulations at the same tem-
perature. The total execution time of the runtime phase
is recorded to evaluate the performance. The models used
were developed as part of an ongoing project in predicting
the properties of rubber compounds.

By automatically generating these ODEs, our compiler
now does in minutes or hours what used to take researchers
days or months to accomplish.

5.2 Experiment Environment

We performed our experiments on a 320 processor IBM
RISC System/6000 POWER Parallel System (SP) with 375
mhz processors located at Purdue University. The 320 pro-
cessors are divided among 64 thin nodes (quad-processor
systems with 4.5 GB of memory) and 4 high nodes (16-
processor systems with 64 GB of memory). Both Ethernet
and IBM’s proprietary switches connect the nodes. For our
experiments we used the faster IBM proprietary switch and

thin nodes, and used one processor per node. The com-
piler is mpCC r, which uses the AIX xlc compiler, version
6.0.0.0. The options used were “-O4 -qmaxmem=-1” to al-
low maximum memory to be used by the compiler during
the compilation. If compiler failed at this level of optimiza-
tion, we reduced the optimization level from “O4” to “O3”,
and on down to the default optimization level until the com-
pilation succeeded, or failed at all optimization levels.

5.3 Results of Algebraic Optimization

We first measure the single node performance of our
compiler optimizations using one processor of one node
on the IBM/SP. The results shown in Table 1 demonstrate
the performance improvements using different optimization
combinations. Note that we cannot run the CSE optimiza-
tion without first running the algebraic optimizations. As
can be seen, the program encounters a compiler error when
running test case 5, which has the largest set of chemical
equations. The error message given is “Compilation ended
due to lack of space”, which results from more than 4.5GB
of memory being needed by the compiler. When we turn
on the optimization options (-O4) in the compiler, the pro-
gram encounters the same compiler error after test case 3.
The compiler can compile test case 2 with the highest op-
timization level, and the resulting code, without any of our
optimizations, runs in 82% of the time of the unoptimized
program.

As Table 1 shows, our algebraic and CSE optimizations
greatly reduce the size of chemical equations. In test case 5
(the largest), the number of multiplies is reduced to 1.35%
of the original number, and the number of addition and
subtraction operations is reduced to 20.6% of the original
number, with overall arithmetic operations being reduced to
6.9% of the original number. Test case 4 achieved a speedup
of 5.26, and we could not measure the speedup for test case
5 because the program would not compile (because of a lack
of space) without our algebraic optimizations. The signifi-
cance of the Algebraic Optimizer and Common Subexpres-
sion Elimination algorithms is both that the execution time
is reduced greatly, and users can create and test the very
complex reaction models necessary to simulate real chemi-
cal reaction systems like (like test case 5), which could oth-
erwise not be compiled and run.

5.4 Results of Parallel Computation Us-
ing MPI

Table 2 demonstrates the performance using different
numbers of nodes. Only one processor is used in each node.
As the number of nodes increases, the execution time de-
creases, and the speedup increases. This speedup is over
and above the speedups that were obtained from the se-
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Test case Test case Test case Test case Test case
1 2 3 4 5

Number of Equations 450 10000 24500 125000 250000
Number of *

without algebraic/CSE optimizations 2670 85500 229000 1320000 2400000
Number of (+ and -)

without algebraic/CSE optimizations 1770 36600 94800 520000 974000
Execution Time (seconds) compiler

without algebraic/CSE optimizations 924 4290 7480 42800 error
Execution Time (seconds) compiler compiler compiler

with C compiler optimizations only 920 3530 error error error
Number of *

(with algebraic/CSE optimizations, 629 7450 11800 22000 32400
no C compiler optimizations)

Number of (+ and -)
(with algebraic/CSE optimizations, 761 22800 56800 125000 201000

no C compiler optimizations)
Execution Time (seconds)

(with algebraic/CSE optimizations, 824 2500 4240 8130 15459
no C compiler optimizations)

Table 1. Results in IBM/SP Using Different Optimization Combination

Total Time Total Time
Number (seconds) speedup (seconds) speedup

of Without Without With With
nodes Dynamic load Dynamic load Dynamical load Dynamical load

1 15459 1 15459 1
2 7619 1.99 7784 2.03
4 3874 3.91 3598 3.99
8 1935 7.08 2183 7.99

16 1210 12.78 1210 12.78

Table 2. Results in IBM/SP Using MPI

quential optimizations. Since 16 data files are used in all
test cases, each processor handles one data file when using
16 nodes, it cannot be further parallelized. Speedup in 16
nodes is only 12.78, the result of a load imbalance caused
by different amounts of work involved in processing each
file. After applying our dynamic load balancing algorithm,
the speed up is nearly linear. We note a small super linear
speedup at two nodes which we attribute to either measure-
ment noise or memory effects. At 16 nodes, there is only
one task to schedule per processor, so the load balancing al-
gorithm has no affect, causing the performance of the load
balanced and non-load balanced runs to be identical.

6 Related Work

With improvements in computational power, interest in
exploiting computers to design new materials increased dra-
matically. Katare et al. [4, 5] applied a reaction modeling
suite to material design applications in catalysis, polymers
and fuel additives. They employed hybrid optimization
heuristic techniques like genetic algorithms to design bet-
ter additives for fuels. Ghosh et al. [3] showed the feasibil-
ity of computer aided design of rubber formulation through
reaction kinetic modeling.

Prickett et al. [11, 10, 9] designed a computer language
to describe general types of reactions. Their Reaction De-
scriptive Language (RDL) can be used to describe various
reaction networks, with reaction classes being defined by
sequence of commands to locate the reaction site and ma-
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nipulate the reactants to form the product. The syntax of
RDL has been adopted in our reaction compiler.

The Chemistry Development Kit (CDK) is a freely avail-
able open-source Java library for Structural Chemo- and
Bioinformatics. It is now supported by more than 20 de-
velopers world-wide. The CDK provides methods for many
common tasks in molecular informatics, including 2D and
3D rendering of chemical structures, I/O routines, SMILES
parsing and generation, ring searches, isomorphism check-
ing, structure diagram generation, etc. [1] We use the CDK
library to handle molecule manipulation operations in our
chemical compiler.

There are two broad categories of CSE elimination tech-
niques: partial redundancy elimination and value number-
ing. Partial redundancy elimination does not consider the
possibility of reordering expressions. Instead, they work
with expressions available in 3-address code [14]. Value
numbering accomplishes a form of symbolic execution and
is capable of finding a much larger class of redundancies.
however, the problem of obtaining optimal results (even if
restricted to basic blocks) is NP-complete [13].

In [15], Xiong et al. describe the SPL component of the
Spiral [12] library generator. SPL is a domain specific lan-
guage for developing signal processing codes. They show
that common subexpression elimination is important in this
context for good performance. In SPL a value numbering
algorithm is used, but unlike our algorithm does not appear
to be tuned specifically for the programs being compiled.

7 Conclusions

Our domain specific chemistry compiler allows a
chemist to generate a high-level and easily debugged de-
scription of a reaction that can be quickly converted into
a set of ODEs. This saves weeks of time in creating this
set of equations. Because we exploit existing library sup-
port and a parallel template we are able to quickly provide
feedback as to how well the model proposed by the chemist
matches existing experimental data, allowing the chemist to
quickly explore alternate models if necessary. Moreover,
because of domain specific information about the structure
of the computation, efficient node code and effective par-
allelization is straightforward, and guarantees good parallel
performance. The framework should dramatically increase
the productivity of chemists, and aid in the rapid advances
in the production of new materials.
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