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Abstract

Fault tolerance is an important issue for large ma-
chines with tens or hundreds of thousands of processors.
Checkpoint-based methods, currently used on most ma-
chines, rollback all processors to previous checkpoints after
a crash. This wastes a significant amount of computation
as all processors have to redo all the computation from that
checkpoint onwards. In addition, recovery time is bound by
the time between the last checkpoint and the crash. Proto-
cols based on message logging avoid the problem of rolling
back all processors to their earlier state. However, the
recovery time of existing message logging protocols is no
smaller than the time between the last checkpoint and crash.
We present a fault tolerance protocol, in this paper, that pro-
vides fast restarts by using the ideas of message logging
and object-based processor virtualization. We evaluate our
implementation of the protocol in the Charm++/Adaptive
MPI runtime system. We show that our protocol provides
fast restarts and, for many applications, has low fault-free
overhead.

1 Introduction

Massively parallel systems with tens of thousands and
even hundreds of thousands of processors, such as ASCI-
Purple, Red Storm and Bluegene/L, are being used for sci-
entific computation. More powerful machines with even
larger numbers of processors are being planned and de-
signed. Machines with large numbers of components are
likely to suffer from partial failures frequently. ASCI-Q
was reported to suffer a failure every few hours [4]. There-
fore any application running on machines with thousands
of processors for an appreciable length of time will have to
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be able to tolerate faults. Traditional checkpoint and restart
systems roll back all processors in an application, when a
single processor crashes. This not only wastes computing
time, but also slows down the progress of the application
in the presence of frequent faults. Even current fault tol-
erant protocols that do not roll back all processors ([4, 5])
redo all the computation of the crashed processor on a sin-
gle processor. As a result, the recovery time of all protocols
are bound by the time interval between the crash and the
previous checkpoint.

We present the design and implementation of a new pro-
tocol for fault tolerant computation in this paper. We com-
bine sender-side message logging and object based virtu-
alization to build a system that has low overhead during
normal execution and allows fast restarts when recovering
from a crash. We do not assume the existence of any “fully
reliable or stable” component that never fails (assumed by
other researchers), since we think that it is difficult to real-
ize such an assumption in real life. Our scheme has many
advantages compared with the traditional checkpoint/restart
scheme. First, only the work of the failed processor is re-
executed. On a large machine, processors that are not de-
pendent on data from the failed processor can continue to
execute further during crash recovery. More importantly,
object based virtualization [18] allows us to distribute the
work of the failed processor among the other processors
(especially those that are waiting for data from the failed
processor). This speeds up the restart procedure, making
the recovery time considerably lower than the time interval
between the last checkpoint and the crash. This would not
have been possible if all processors had rolled back to their
previous checkpoint as in traditional checkpointing based
protocols. With our scheme, an application can potentially
make progress even when the mean time between failure
(MTBF) is lower than the checkpoint period. Object-based
virtualization also helps us reduce the performance penalty
imposed by message logging on applications. Our scheme



distinguishes itself from other sender-side-message-logging
protocols, by using object based virtualization to speedup
recovery and moderate the cost of message logging.

Our scheme has been implemented for a version of MPI,
called Adaptive MPI[16], and so can be used by all MPI
programs. Applications written in Charm++[19], which is
the underlying layer of Adaptive MPI, can use our scheme
as well.

2 Related Work

We discuss existing fault tolerance protocols and the key
ideas of object based virtualization in this section.

Fault Tolerance: The solution space for fault toler-
ance protocols can be divided into two main categories:
check-point based and log-based recovery protocols [12].
Checkpoint-based protocols periodically save the state of a
computation to stable storage. After a crash, the computa-
tion is restarted from a previously saved state. Checkpoint-
based protocols can be divided into three types: uncoordi-
nated, coordinated and communication induced. Uncoordi-
nated checkpointing methods, which allow each processor
to save its checkpoint independent of the other processors,
are fast and memory efficient [25]. However, they suffer
from the fatal flaw of cascading rollbacks. In coordinated
checkpointing schemes, all the processors in a computation
coordinate to save a globally consistent state. Such schemes
are used by CoCheck [23], Starfish [1], Clip [10] and AMPI
[15, 26] to provide fault tolerant versions of MPI. A coor-
dinated checkpointing algorithm that uses application level
checkpointing is presented in [8]. Communication induced
checkpoint protocols try to combine the advantages of coor-
dinated and uncoordinated by allowing processors to take a
mix of independent and coordinated checkpoints[7]. How-
ever it was found that communication induced methods did
not scale well to large number of processors [2].

The second category of fault tolerance protocols depend
on stored message logs and uncoordinated checkpoints for
recovery. After a processor crashes, all the messages are
resent to the recovering processor and reprocessed in the
same order as before the crash. This brings the restarted
processor to its exact state before the crash, according to
the piecewise deterministic (PWD) assumption [24]. Mes-
sage logging can be divided into three classes based on the
frequency with which the message log is saved to stable
storage: pessimistic, optimistic and causal. Pessimistic log-
based protocols save each message to stable storage before
allowing it to be processed. Restart and garbage collection
of old logs are very simple. On the other hand, they increase
the message latency by saving each message to stable stor-
age before processing it. The overhead can be reduced by
using specialized hardware [3] or by storing the message
log in the sender’s memory [17]. MPICH-V1 and V2 [4, 5]

are systems that provide fault tolerant versions of MPI by
using pessimistic log based methods. Optimistic protocols
save the message logs temporarily in volatile storage before
sending them all to stable storage [24]. Though optimistic
schemes have a lower message latency overhead than pes-
simistic ones, they are susceptible to cascading rollbacks.
Moreover, garbage collection and recovery are more com-
plicated. Causal logging stores message logs temporarily in
volatile storage but prevents cascading rollbacks by track-
ing the causality relationships between messages. Tracking
causality and recovery from faults are complex operations
in causal protocols. Manetho [13], MPICH-Vcausal [6] and
the protocol in [20] are examples of causal logging systems.

Virtualization: Object based virtualization [18] (also
referred to as processor virtualization) encourages a user
to view his computation as a large number of interacting
objects. These objects are also referred to as virtual pro-
cessors(VPs). The user decomposes his computation into
VPs without caring about the number of physical proces-
sors present. The runtime system is responsible for map-
ping VPs to physical processors and can change the map-
ping during the execution of a program. VPs interact with
each other by sending messages that are delivered by the
runtime system without the user needing to know about the
receiver’s physical location.

Processor virtualization is the primary idea behind
Charm++ [19] and Adaptive-MPI(AMPI) [16]. It renders
applications latency tolerant by letting them overlap com-
munication and computation. While one VP on a proces-
sor is waiting for a message, another VP can continue with
its computation. Processor virtualization also enables run-
time measurement based dynamic load balancing. The idea
has been useful in numerous applications from molecular
dynamics [21] to cosmology [14]. AMPI is an implemen-
tation of MPI on top of the Charm++ runtime system that
allows traditional MPI codes to reap the benefits of virtu-
alization such as latency tolerance and runtime load bal-
ancing. The Charm++ runtime system supports multiple
checkpoint-based fault tolerance protocols [26, 15] and a
basic message logging-based protocol [9].

3 Protocols

Our fault tolerance protocol is entirely software based
and does not depend on any specialized hardware. It how-
ever makes the following assumptions about the hardware.
i) The processors in the system are fail-stop [22]. This
means that when a processor crashes it remains halted. ii)
All communication between processes is through messages
over the network. iii) The PWD assumption should hold: It
is assumed that the only non-deterministic events affecting
a processor are message receives.

Our protocol uses sender-side pessimistic message log-



ging and object-based virtualization for fast fault recovery.
Virtualization in conjunction with our message logging pro-
tocol yields a number of benefits. First, it makes appli-
cations more latency tolerant. This helps us hide the in-
creased latency due to the message logging protocol. It is
also the primary idea behind faster restarts since it allows
us to spread the work of the failed processor among other
processors. We treat the VPs, and not the physical proces-
sors, as the communicating entities that send and receive
messages. Since a VP’s state is modified only by the mes-
sages it receives, we can apply the PWD assumption to VPs
instead of physical processors. After a crash, if a VP re-
executes messages in the same sequence as before, it can
recover its exact pre-crash state.

The first three subsections in this section describe the
message logging, checkpointing and restart protocols for
single faults. Next, we extend them to deal with multiple
faults. The last subsection describes the fast restart scheme.

3.1 Message Logging Protocol

We designed the message logging protocol such that,
after a crash, a Charm++ object (or AMPI process) pro-
cesses the same messages in the same order as before the
crash. The protocol requires that each message exchanged
between objects have four data fields: i) The sender id iden-
tifies the object that sent the message. ii) The receiver id
identifies the object that is to receive this message. iii) The
sequence number (SN) of a message is a count of the num-
ber of messages sent from the message’s sender to its re-
ceiver before this message was generated. iv) The ticket
number(TN) of the message. The receiver of a message as-
signs the TN and processes all the messages it receives in
increasing order of their TNs. TNs of all the messages re-
ceived by an object form a single contiguous sequence.

Each Charm++ object has a unique id. Every object
maintains a table called the SNTable that tracks the number
of messages sent to different objects. The SNTable is used
to assign SN to messages. Each message sent by an object
is stored in the object’s message log. An object stores the
sender’s id, SN and TN for each message received since the
last checkpoint in a table called the TNTable. An object
stores the highest TN processed by it as TNProcessed. An
object stores the highest TN assigned by it as TNCount.

3.1.1 Remote Mode

When the sender(α) and receiver(β) objects are on different
processors, the message logging protocol is said to operate
in the remote mode. Before sending a message, α looks up
β in its SNTable and finds the number of messages sent to
β previously. Object α increments that count and assigns it
as the SN of the message. Object α then stores the message
in its message log.

Figure 1. Remote mode of the message log-
ging protocol

As seen in Figure 1, the sender α then sends a request
for a ticket, consisting of α’s id and the message’s SN, to β.
On receiving the request, β looks up the tuple {α, SN} in
β’s TNTable. If there is no matching entry in the TNTable,
there are two possibilities: i) the common case that α is
sending a new message to β, ii) the rare case where the
sender α is recovering from a fault and is re-sending a mes-
sage that was processed by β before its last checkpoint. We
can distinguish between the two cases by comparing the SN
in the ticket request to the lowest SN from α in β’s TNTable
(say l). If the SN in the ticket request is higher than l, then
we are dealing with the common case that α is sending β
a new message. Object β increments TNCount and decides
on this value as the TN. β also adds an entry for the tuple
{α, SN, TN} to its TNTable. The TN is returned to the
sender α along with α’s id and the SN. If the SN in the
ticket request is lower than l then the sender α has sent a
ticket request for a message that was processed by β before
its last checkpoint. Since pessimistic message logging does
not suffer from cascading rollbacks, β can safely tell α to
discard this message. If β finds an entry corresponding to
the ticket request in its TNTable, it means that in the past
β has assigned a TN to this message from α and that α is
recovering from a fault. Object β will reply back with this
TN. If the value of this TN is lower than the TNProcessed
for β, β marks the TN as old. An old TN corresponds to a
message β has already processed since the last checkpoint.

When α receives a TN in reply, it assigns the TN to the
message stored in its log. If the received TN is not marked
as old, α sends the message to β. When β receives the
message, it checks if the message’s TN is less than or equal
to its TNProcessed. If it is, β discards the message as it
has already processed this message and should not do so
again. If the message’s TN is higher than TNProcessed+
1, β defers processing this message. If the message’s TN is
exactly equal to TNProcessed + 1, then β processes the
message and then increments β’s TNProcessed by 1.

The time between the sender starting to send a message
and the receiver sending a message of its own as a result
of processing the sender’s message is increased by the the



round trip time of a short message. This is the same as in the
sender side message logging protocols of [17, 5]. However,
as we shall in Section 4, virtualization allows us to mitigate
the penalty imposed by this increased latency.

3.1.2 Local Mode

If we were to use the above protocol for messages between
two objects on the same processor, the log of a message
would exist on the same processor as its receiver. If this pro-
cessor crashes, it would become impossible to re-execute
the messages in the correct sequence at the receiver. There-
fore, we define a local mode of the message logging pro-
tocol to deal with this case. Figure 2 shows the different
methods called and messages exchanged during the local
mode of the message logging protocol.

Each processor is assigned a buddy processor. A pro-
cessor has only one buddy and is the buddy of only one
processor. Let us say that object α on processor C wants
to send a message to object β on the same processor. As
the first step, α assigns the message a SN in the same way
as in the remote mode described in Section 3.1.1. Object
α then asks β for a ticket by invoking the ticket generation
routine with α’s id and the message’s SN as arguments. The
ticket generation routine uses the same algorithm described
in Section 3.1.1. We are able to use a method invocation
instead of a message because in this case, α and β are on
the same processor.

After β has returned a ticket number, α stores α’s id, β’s
id, SN and TN (referred to as the message meta data) in
the message meta data table (MDTable) maintained on C’s
buddy processor (D). Object α sends the message to β only
after receiving an acknowledgment from D that the meta-
data for the message has been stored in D’s MDTable. As a
result, the latency for a message to a local object becomes
the same as that of a message to a remote object. After β
has processed the message, it tells α to remove the message
from its message log. We can do this because, as described
later in Section 3.2, we checkpoint all the objects on a pro-
cessor at the same time. So any checkpoint in the future
will save the state of α as having sent the message and β
as having processed it. If processor C is ever restarted from
that checkpoint, α would not need to resend the message.
This allows α to remove the message from α’s log after β
has processed it.

3.2 Checkpoint Protocol

The checkpoint of a processor can be stored on the global
file system, in the memory, or on local disk of a remote
processor. The storage location does not affect the rest of
the protocol. In this paper, we chose to implement an in-
memory checkpoint. Storing a checkpoint in the memory

Figure 2. Messages in the local mode of the
message logging protocol

of a remote processor is much faster than storing it in a re-
mote storage server [26], as long as adequate memory is
available. As the message logging protocol already requires
that each processor have a buddy, storing the checkpoint on
this same buddy processor simplifies the implementation.

The state of a Charm++ object consists of user data, a
small amount of runtime system data, as well as TNCount,
TNProcessed, SNTable and the messages in the message log
that were sent to objects on the same processor (the reason
for this is explained in Section 3.3). It should be noted that
the only messages in the message log that were sent to ob-
jects on the same processor are those that have been sent but
not processed at the time of checkpoint. All the objects on
a processor checkpoint at the same time.

The checkpoint protocol also provides a mechanism to
perform garbage collection on the message logs. A pro-
cessor, say C, packs up the state of all the objects on it
and sends it to its buddy processor, say D. Each object
on C also stores its TNProcessed at the time of check-
point as TNCheckpointed. D stores the new copy of C’s
checkpoint, deletes the old copy and sends an acknowledg-
ment to C. On receiving the acknowledgment, the TNTable
of each object on C can garbage collect entries with TN
less than TNCheckpointed. Each object on C sends out
garbage collection messages containing TNCheckpointed
to all objects that had sent it messages since its previous
checkpoint. When an object γ receives a garbage collection
message from object α on processor C, it removes all mes-
sages to α in its message log that have a TN lower than the
TNCheckpointed. A similar garbage collection message is
sent to processor D, so D can remove old entries from the
MDTable. Garbage collection is done lazily so that it inter-
feres as little as possible with the application.

Storing the checkpoint in memory is not a problem for



applications with a small checkpoint state such as molecu-
lar dynamics. However, if the application is memory inten-
sive the checkpoint can be stored on the local disk of the
buddy processor. If there are no local disks in the system,
the checkpoint can be stored on the cluster’s file system.
Even message logs can be lazily moved to local disk or the
file system to keep the memory overhead low. Of course,
moving checkpoints and message logs to disks from mem-
ory will slow down restart.

3.3 Restart Protocol

We assume that a pool of spare processors is available to
the parallel job. When the crash detector finds out that a pro-
cessor, say C, has crashed, it restarts a Charm++ process on
a spare processor. Figure 3 shows the messages exchanged
after the new processor C has started up. C recreates all
the objects that used to exist on it from the checkpoint and
MDTable fetched from D. The entries in the MDTable are
separated by receiver and added to each receiver’s TNTable.
C then broadcasts a request to resend logged messages.

When a processor receives a request to resend logged
messages, each object resident on it looks in its message
log for messages sent to the objects recreated on C. If such
a message has a TN it is resent; otherwise a new ticket
request is issued for that message. If an object α on the
restarted processor C has a message to object β, also on C,
in its log, α needs to resend this message. Object α had sent
this message before C had checkpointed but β processed the
message after the checkpoint. Since α will not regenerate
this message during restart, the message needs to be resent
to allow β to make progress.

Object α on processor C also collects a list of the TNs
of all the messages resent to it. α then adds to this list the
TNs of messages in the MDTable obtained from C’s buddy
D. After sorting this list α might find that some TNs in the
middle are missing. These missing TNs correspond to mes-
sages that were given TNs but were not processed by α be-
fore the crash. We are sure they were not processed since α

Figure 3. Messages sent during the basic
restart protocol

would have processed a message only after its TN had been
saved in either the sender’s log or the MDTable. So when
α gives out new TNs it hands out these missing TNs before
continuing with TNs higher than TNCount. α should not
skip handing out any TN since α will not be able to process
any message with a TN higher than the skipped one.

3.4 Multiple Simultaneous Failures

The protocol discussed in the previous subsections
works for consecutive crashes only if a second processor
crashes after the system has recovered from the previous
crash. We now extend the protocol to allow it to deal with
most multiple failures. Let us say, a processor H crashes and
starts recovering. Now, another processor, say I, crashes and
rolls back to a state such that it needs messages from objects
on H that were sent before H’s last checkpoint. Rolling H
back further than I in order to recover I’s state is out of the
question since we want to avoid cascading rollbacks of any
sort. Therefore, we need the logs of messages that were sent
by objects on H to objects on processor I. However, these
logs are not available as the logs of messages sent to objects
on other processors are not part of an object’s checkpoint.
This problem can be solved by making the logs of messages
to objects on other processors and the TNTable part of the
checkpoint state of Charm++ objects.

Another problem is that there might be messages from
objects on H to objects on I that had been processed before
I’s crash, but their logs were lost when H crashed and rolled
back to its previous checkpoint. Without the logs from ob-
jects on H, the objects on I cannot give these messages the
same TNs after the crash as before. We modify the remote
mode such that, instead of sending a ticket request to the
receiver, the sender sends the message itself with sender id
and SN attached. The receiver assigns the message a TN
and sends the 〈sender id, receiver id, SN and TN〉 tuple to
its buddy processor to be logged in the MDTable. After the
buddy acknowledges the receipt of the data, the message is
processed in increasing order of TN at the receiver. We im-
plement these improvements, but let the users turn it off to
avoid the overhead of checkpointing message logs, if they
think that the chances of simultaneous failures are low.

The only case in which our solution might still fail is
when processor C crashes just after its buddy processor D
has crashed and restarted. As D no longer has C’s MDTable,
C cannot restart. The probability of such a pair of crashes
happening can be reduced by having a processor (C) check-
point as soon as it detects that its buddy (D) has restarted.
This shortens the length of the time window during which
a crash might cause an irrecoverable error. This situation
arises because unlike [4, 5] we do not use an idealized sta-
ble storage. We show in [9] that despite this, the protocol
reduces the probability of unrecoverable error by several or-



ders of magnitude.

3.5 Fast Restart

The initial part of the fast restart protocol is similar to
the basic restart protocol in Section 3.3. After processor
C crashes and is restarted, C fetches its checkpoint and
MDTable from its buddy processor D. As in the case of ba-
sic restart, processor C recreates its objects using the data
from D. However, at this point the fast restart protocol di-
verges from the basic one. Processor C distribute its objects
among different processors. Then C broadcasts the request
to resend logged messages. In the case of fast restart, the
resend request also contains the new location (physical pro-
cessor) of each object that used to exist on processor C. The
resent messages as well as the list of TNs is sent to the new
location of each object instead of processor C. This allows
us to distribute the work on the restarted processor among
other processors and speed up the restart.

However, it is possible that while an object α is being
moved from processor C to E either C or E crashes. Figure
4 shows a protocol that makes sure that even if C or E were
to crash while α is being moved, α would get recreated and
there would be only one copy of it in the whole system. At
the end of the protocol, α has migrated from processor C to
E. If E crashes after that, α will be recreated on E from its
checkpoint on F (E’s buddy). If E crashes before the proto-
col completes, α will be recreated on C. If C crashes again
before D has received the acknowledgments from E and F,
D asks if α and its checkpoint exist on E and F respectively.
E stops processing messages for α after being asked this
question. If both answer in the positive, D does not recreate
α on C and asks E to continue with the execution of mes-
sages for α. If not, D recreates α on C and asks E and F
to throw away α and its checkpoint. If E’s buddy processor
F, crashes before sending the acks the migration of object
α from C to E is aborted. Though the fast restart protocol

Figure 4. Messaging when processor C sends
object α to restart on processor E

involves more messaging than the basic one, the speed up in
recovery gained by dividing the work among multiple pro-
cessors more than makes up for the additional overhead. So,
fast restart can significantly shorten the recovery time.

We now present a rough analysis of our fast restart pro-
tocol. We compare the completion time of an applica-
tion running the fast restart protocol with the same appli-
cation using a traditional checkpoint /restart protocol. Let
the MTBF for the system be m time units. Let the sys-
tem checkpoint every c time units (not including the check-
point duration itself). Let duration of a checkpoint be d
time units. Let the runtime of the application without any
fault tolerance support be t0 time units. So time to com-
plete the application with checkpoints tc = t0 + t0

c d. If
there are n faults, the worst case runtime under the check-
point scheme will be t′c = tc + n(c + kc) where kc is the
constant overhead for restarting in the checkpoint scheme.
On an average, we expect n = t′c

m faults during a run, so

t′c = t0(1+
d
c )

1− c+kc
m

. t′c goes rapidly to infinity as m approaches

c + kc. For the message logging protocol, runtime without
faults is tml = α(t0 + t0

c d) where α is the ratio of increase
in runtime due to the message logging protocol. If the num-
ber of objects per processor is v and kml the overhead of fast
restart, then the runtime with faults can be calculated to be
t′ml = αt0(1+

d
c )

1−
c
v

+kml
m

. The runtime for the message logging pro-

tocol goes to infinity rapidly as m approaches c
v + kml. As

long as kml is not much larger than kc, this is smaller than
c + kc This shows that our fast recovery protocol can deal
with higher rates of failure than the checkpointing protocol.
Moreover the performance of the fast protocol is better than
the checkpoint protocol as long as α <

m−( c
v +kml)

m−(c+kc)
.

4 Experiments

We evaluate the performance of the basic and fast recov-
ery protocols and characterize the applications most suit-
able to our scheme. We test our protocol on a cluster of 16
dual Opteron (Processor 244) machines with 1 GB of mem-
ory and 1 GB of swap, connected by switched Gigabit.

4.1 Restart Performance

We use a 7-point stencil with 3D domain decomposition
written in MPI to evaluate the perform-ance of the restart
protocols. In each iteration an MPI process gets data from
its neighbors on all 6 sides and performs some computation.
We ran the stencil code with two versions of AMPI, one
with the fault tolerance protocol (AMPI-FT) and the other
without (AMPI). In the case of AMPI-FT we checkpointed
every 30 seconds. We simulate a fault on a processor by
sending SIGKILL to a process running on it. After a proces-
sor crashes, the iteration time for objects on the surviving



processors increases as those objects wait for the objects on
the restarted processor to catch up. We use the maximum
increase in iteration runtime over all the surviving objects
as a measure of the restart time for both the basic and fast
restart protocols.

Table 1 shows the time taken for basic and fast restart for
different numbers of virtual processors (VPs) per processor.
We ran the stencil code on 16 processors and triggered a
fault 27 seconds after a checkpoint. We checkpointed ev-
ery 30 seconds. Higher numbers of objects per processor
allowed the fast restart to distribute work among more pro-
cessors and led to significantly shorter restart times. Table 1
demonstrates that even having just two objects per proces-
sor reduces the restart time significantly. Thus, the recovery
time for fast restart is much lower than the time between the
crash and the previous checkpoint.

To understand the factors limiting the speedup of our
restart protocol, Table 2 compares the time spent in differ-
ent phases of the basic and fast restart protocols. The basic
restart case was run with 16 objects on 16 processors and
the fast restart protocol was run with numbers of objects
per processor varying from 2 to 16. The time to launch a
new process is constant across the different runs. The over-
head for retrieving the checkpoint increases with increasing
number of objects, because retrieving the checkpoint also
includes retrieving the MDTable from the buddy, and as the
number of objects per processor increases, the number of
entries in the MDTable also increases. The cost of recreat-
ing the objects is low and more or less constant across the
different runs. The overhead of redistributing the objects
increases as the fast restart protocol sends out more mes-
sages to distribute more objects. However, the re-execution
time decreases sharply with increasing number of objects
per processor as the work of the restarted processor gets dis-
tributed among more processors. This decrease is far more
than the rise in restart overheads due to higher numbers of
objects. As a result, with larger numbers of objects per pro-
cessor the fast restart protocol can recover much faster than
the basic restart. We also found that the forward path over-
head for the stencil application was around 10% for the 16
processor run (a more detailed analysis of the forward path
cost is presented in Section 4.2). Thus, our protocol pro-
vides the stencil application with fast recovery without im-
posing a prohibitively high performance cost.

Virtual processors Basic Fast
per processor Restart Time(s) Restart Time(s)

2 28.45 18.31
4 28.21 13.45
8 28.17 09.57
16 29.37 07.58

Table 1. Restart time on 16 processors

Phase of Basic Fast Fast Fast Fast
Restart 1 VP 2VP 4VP 8VP 16VP
New Process 1.29 1.24 1.34 1.27 1.28
Get Checkpoint 0.44 0.76 1.05 1.31 1.55
Recreate VP 0.05 0.09 0.12 0.17 0.21
Distribute VP 0.00 0.65 0.71 0.81 0.91
Re-execute 25.18 15.57 10.23 6.01 3.64
Total 26.96 18.31 13.45 9.57 7.59

Table 2. Time spent in different phases of the
Basic and Fast restart protocols

4.2 Application studies

We want to characterize the applications that are most
suitable to our message logging protocol and evaluate the
effect of processor virtualization in reducing the perfor-
mance penalty of the message logging protocol for differ-
ent applications. We do so by measuring the performance
penalty suffered by the NAS parallel benchmarks due to
the increased message latency of message logging. We run
NPB3.1 with versions of AMPI with and without the fault
tolerance protocol. Since we want to evaluate the perfor-
mance penalty of just the message logging protocol, we do
not take any checkpoints or simulate any faults. We show
performance data for only four benchmarks in Figure 5 due
to lack of space: CG, MG, SP and LU. during the execution
of the benchmarks. We run each benchmark with varying
numbers of VPs for both AMPI and AMPI-FT. We com-
pare the best performance of AMPI-FT with not only the
best performance of AMPI on a particular number of phys-
ical processors but also the performance of AMPI-FT with
1 VP per processor. This allows us to clearly see the bene-
fit of processor virtualization for different benchmarks and
compare our message logging protocol with existing ones.

We can see in Figure 5(a) that the MG benchmark ben-
efits tremendously from processor virtualization. Without
virtual-ization, MG would have experienced a much higher
performance penalty similar to that of the message logging
protocol in [5]. Even in the case of SP in Figure 5(b),
virtualization helps performance for higher number of pro-
cessors. Therefore, with multiple VPs per processor MG
and SP have low performance penalties. The performance
penalty for CG in Figure 5(c) is moderate, whereas that for
LU in Figure 5(d) is significant. Even in the case of CG
and LU , processor virtualization helps to greatly moderate
the performance penalty of message logging by adaptively
overlapping communication and computation. This allows
our message logging protocol to perform better than other
sender based message logging protocols.

The different performance penalties imposed by AMPI-
FT on each benchmark can be explained by considering the
number of instructions (of user computation) executed per



(a) MG class B (b) SP class B

(c) CG class B (d) LU class B

Figure 5. Fault-free performance of the MG, SP, CG and LU class B benchmarks

message by each benchmark. As shown in [11], both LU
and CG have less than 1

5

th the number of instructions per
message than MG and SP. This means that the increase in
message latency is a smaller fraction of the computation
time per message for MG and SP than for LU and CG. So
the overall performance penalty is lower for MG and SP.

In Table 3 the time spent by the cpu in different phases
of the protocol is expressed as a percentage of the runtime
while using AMPI on 8 processors. AMPI shows the best
performance when there is 1 VP per processor. For AMPI-
FT we look at the cases when each processor has 1 VP and
4 VPs (4 VPs gave the best performance for both bench-
marks). Both MG and LU show a drastic increase in idle
time (time spent waiting for communication) when AMPI-
FT is used with 1 VP per processor. This is because mes-
sage logging increases the message latency and a lot of time
is wasted waiting for messages. Although having multiple
VPs per processor increases the protocol overheads slightly,
it decreases the idle time sharply for both benchmarks by

allowing them to adaptively overlap computation and com-
munication of different VPs on a processor. Since MG has
a coarser computational granularity than LU it is better able
to overlap computation and the time spent waiting for com-
munication. As a result, with multiple VPs the performance
penalty for MG is much smaller than that of LU. For MG,
protocol overhead is the source of most of the performance
penalty. On the other hand for LU the increased message
latency is the primary source of performance penalty. Thus,
we see that processor virtualization helps improve the per-
formance of the message logging protocol and hide the per-
formance penalty in applications with coarse as well as fine
computational granularity.

4.3 Performance vs Granularity

We use a synthetic benchmark to take a closer look at the
relationship between performance and the granularity of an
application. The synthetic benchmark is a very simple it-



MG on 8 processors LU on 8 processors
AMPI AMPI-FT AMPI-FT AMPI AMPI-FT AMPI-FT

VP per processor 1 1 4 1 1 4
Computation Time 68.18% 68.22% 68.29% 86.56 % 86.83% 87.81%
Idle Time 25.56% 130.90% 22.75% 12.41 % 189.73% 48.28%
Message Send 4.34% 4.65% 5.01% 0.62 % 1.31% 2.30 %
Ticket Request Send 3.11% 4.54% 0.34% 0.63%
Ticket Send 1.12% 1.37% 0.86% 1.01%
Local Message Protocol 0.00% 2.10% 0.00% 0.00%
Total 98.08 % 208.00% 104.06% 99.59 % 279.07% 140.03 %

Table 3. Overheads expressed as a % of the runtime of AMPI for MG and LU on 8 processors

erative MPI program. The MPI processors are logically ar-
ranged in a ring. In every iteration, each MPI process sends
a short message to its neighbors on the left and right. Each
MPI process also receives a message from its two neigh-
bors. After that, every MPI process performs some calcula-
tions for a specified amount of time. The time spent in the
calculation in each iteration is the granularity of the appli-
cation.

We test the synthetic benchmark on the Tungsten clus-
ter using the myrinet interconnect. We vary the granular-
ity from 100 µs to 100 ms and measure the average iter-
ation time 10000 iterations. We evaluate the performance
of AMPI and AMPI-FT on 8 processors with both 1 and
4 VPs per processor. Table 4 measures the relative perfor-
mance penalty by showing the ratio of the average iteration
time to granularity for AMPI and AMPI-FT (the closer the
ratio is to 1, the lower the performance penalty). We can
see that the relative performance penalty for AMPI-FT is
low for granularities equal to and coarser than 10ms. For
finer granularities, particularly the 100 µs case, there is sig-
nificant performance penalty. However, in all cases the per-
formance penalty is lower when each processor has 4 VPs
rather than 1. This is broadly in line with the conclusions
drawn in the previous section that performance penalty of
AMPI-FT is lower for coarser granularity and that virtual-
ization helps reduce the penalty in almost all cases.

In spite of virtualization, the performance of AMPI-FT
in the 100µs granularity case is unsatisfactory. One ma-
jor difference between AMPI and AMPI-FT was that with
4 VPs per processor, AMPI sent out only 2 messages on
the network per processor per iteration compared to 18 for
AMPI-FT. This happens because messages between VPs on
the same physical processor result in messages to the buddy
processor in the case of AMPI-FT but not in the case of
AMPI. This meant that in the 100µs case, AMPI-FT was
trying to send out a massive 180000 messages per second.
We found that the round trip time for the myrinet network
degraded sharply when there were more than 60000 mes-
sages/second between two processors.

This led us to try and reduce the number of messages

Granularities
Protocol VP 100 µs 1 ms 10 ms 100 ms

AMPI 1 1.58 1.042 1.0045 1.0008
AMPI 4 1.42 1.079 1.0135 1.0019
AMPI-FT 1 4.36 1.289 1.0309 1.0041
AMPI-FT 4 3.71 1.191 1.0167 1.0025
AMPI-FT

4 2.50 1.103 1.0151 1.0020message
combining

Table 4. The ratio of average iteration time to
granularity of the synthetic benchmark on 8
processors

exchanged by a processor and its buddy. We merged mul-
tiple message-meta-data sent to a buddy into one message.
We also merged multiple acknowledgements sent from the
buddy into one message. The last column in Table 4 shows
that message combining reduces the performance penalty
sharply for the 100µs case. Message combining also re-
duces the performance penatly of coarser granularities.

5 Conclusions and Future Work

We presented a protocol for fault tolerant computation
that combines sender side message logging with virtualiza-
tion to provide fast restarts. We evaluated it and showed
that the fast restarts took much less time than the time
interval between the crash and the previous checkpoint.
This allows an application to make much faster progress
in the face of failures than traditional fault tolerance proto-
cols. We plan to study different strategies for distributing
the objects among the remaining processors to get the
fastest possible restart. We also found that our protocol is
very well suited to applications with large computational
granularity per message. The latency tolerance provided by
virtualization lets us scale in cases where other pessimistic
message logging protocols have difficulty doing so. We
improved the performance of fine granularity applications
by combining some protocol messages. In the future, we



plan to investigate methods to further reduce the number
of protocol messages. We also intend to evaluate the per-
formance penalty of our protocol for real applications. We
expect that many large real applications will have a lower
penalty than the small NAS benchmarks. We also plan to
extend our protocol so that it can deal with the migration of
virtual processors in the middle of a computation for load
balancing. This will allow us to fully leverage all benefits
of virtualization such as dynamic measurement based load
balancing.
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