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Abstract

Babel is a high-performance, n-way language interop-
erability tool for the HPC community that now includes
support for distributed computing via Remote Method In-
vocation (RMI). We describe the design and implementa-
tion of Babel RMI, including its specification in our Scien-
tific Interface Definition Language (SIDL), modifications to
Babel’s code generators, and support for third-party wire
protocols. Babel RMI’s programming model consistency,
functional capabilities, and runtime performance are com-
pared in context with COM, CORBA, Grid/Web Services,
and Java RMI. Babel RMI’s current features and perfor-
mance uniquely recommend it for “short-haul” distributed
computing within a machine room or single cluster. We de-
scribe the experience of some early adopters who use Babel
RMI to couple and coordinate multiple MPI jobs on a single
cluster to perform multiscale material science calculations.

1. Introduction

This paper introduces a major new feature for Babel—
support for distributed computing via Remote Method In-
vocation (RMI). Previously, Babel was strictly a language
interoperability tool, allowing software written in vari-
ous languages (currently Fortran 77, Fortran 90/95, C,
C++, Python, and Java) to be simultaneously and arbitrar-
ily mixed in a single address space for maximal perfor-
mance [6, 14, 21]. Babel has been successfully used by ap-
plications [15,20,22,27], community standards groups [28,
34], and component frameworks [1,2]. The Common Com-
ponent Architecture’s impact on computational science [23]
is also relevant as it is built on Babel technology.

There is a great body of existing work on distributed

1-4244-0910-1/07/$20.00 c©2007 IEEE.

computing. Babel RMI is a newcomer and a niche player in
this field. Hence, we present our design and implementation
of Babel RMI in constant comparison with established dis-
tributed systems, such as DCOM, CORBA, Web Services,
and the Grid. Though Babel’s technical lineage is arguably
closest to CORBA, our HPC customer-driven design fre-
quently deviates from convention.

Babel’s support for true object-oriented semantics and
dynamic types is more akin to Java RMI [37] than either
DCOM or CORBA, the latter two being more accurately
characterized as more procedural than object-oriented [35].
Babel RMI does not prescribe a specific protocol between
caller and callee. Instead, we define a language neutral
messaging API using our own Scientific Interface Defini-
tion Language (SIDL). This lets users implement the wire
protocol of their choice in the language of their choice to
support the Babel RMI semantic. A simple TCP/IP-based
protocol is distributed as a reference implementation.

We start laying the foundation for our technical discus-
sion in Section 2, which contains a brief survey of com-
parable technologies. Section 3 starts introducing Babel-
specific details to keep the paper self-contained. Presen-
tation of the new RMI capability is provided in Section 4.
The results in Section 5 include a simple comparison of la-
tency and throughput for Babel RMI and comparable tech-
nologies. This section also reports some initial experiences
of our internal customer, the Petascale Simulation Initia-
tive (PSI) [31], which uses Babel RMI to communicate and
manage multiple MPI jobs on a single cluster. We conclude
in Section 6 with a brief summary and statement of future
research and development.

2. Related Work

Remote Procedure Call (RPC) was first proposed by Bir-
rel and Nelson in 1984 [8]. In the early 1990s, the Object
Management Group (OMG) specified a standard for remote
objects, the Object Management Architecture (OMA) [33],



of which CORBA is a fundamental part. CORBA’s com-
munication layer is known as the Internet Inter-Orb Pro-
tocol (IIOP). In 1996, Microsoft released DCOM, a dis-
tributed version of their Component Object Model (COM)
that employs the Open Group’s Distributed Computing En-
vironment (DCE) RPC architecture [32]. Both COM and
CORBA have Interface Definition Languages (IDLs) to
generically specify the component interfaces. Like Babel,
both employ source-code generators to create the client- and
server-side support in a variety of programming languages.

Sun introduced Java Remote Method Invocation (Java
RMI) in version 1.1 of their Java Developer’s Kit
(1997) [35]. Instead of IDLs and code generation, Java
RMI relies on Java’s rich introspection and virtual machine
capabilities to marshal bytecodes across a network and sup-
port remote execution. Two most common protocols for
Java RMI are the proprietary Java Remote Method Proto-
col (JRMP) and the CORBA-compatible RMI-IIOP. In re-
sponse, work was done on CORBA to add a pass-by-value
capability [29, §10.7.2].

Web Services (WS) is a technology stack of standards
and protocols to support machine-to-machine interaction
over a network. All data is exchanged in text using XML.
The messages typically conform to the SOAP standard [19],
though older XML-RPC [36] is not precluded. Transmis-
sion can occur via any number of Internet protocols includ-
ing FTP or SMTP, but HTTP is by far the norm. The in-
terfaces are typically encoded in Web Services Description
Language (WSDL) [11], which serves a similar function to
IDLs. Service providers publish their capabilities to bro-
kers according to the Universal Description, Discovery, and
Integration (UDDI) [12] specification. There are a wide va-
riety of third-party tools that will consume WSDL and gen-
erate the glue code (in the programming language of choice)
to produce and respond to the SOAP messages that are ex-
changed between services at runtime.

WS is no more powerful than other distributed object
systems, such as CORBA [18], but is often favored for its
transparency and reliance on abundant web technologies.
WS’s strength is in asynchronous, latency-tolerant applica-
tions such as job scheduling across a wide area network.
It emphasizes document exchange and a stateless service-
oriented architecture. The major downside of WS is poor
performance relative to other distributed systems. The trade
off is not unexpected since XML is known to be verbose
and inefficient for encoding/decoding scientific data [9].

The Global Grid Forum (GGF) is the community of re-
searchers and vendors that develop and promote grid com-
puting. Their Open Grid Services Architecture (OGSA)
specification [17] defines standards for security, execution
management, data management, monitoring, discovery and
many other details in support of a coordinated computa-
tional resource that broadly delivers nontrivial computa-

tional services and transcends centralized control.

3. Babel Background

Babel is predicated on two assessments of High-
Performance Computing software technology (HPC): (1)
that component technology promises to solve critical soft-
ware infrastructure problems, but (2) commercial offerings
don’t span the breadth of languages, platforms, simplicity,
and performance needed by the broad HPC market [5].

Babel development started internally in 1999 [13] and
has contributed to the Common Component Architecture
(CCA) Forum since its inception. We made 30 formal re-
leases of Babel in the runup to version 1.0 in 2006. The
same year, Babel won an R&D 100 award for its superior
in-process performance. We created our own “Scientific”
IDL (SIDL) with intrinsic support for complex numbers and
multidimensional arrays. Formally, SIDL is the language
and Babel is a tool implemented to support the language.
Since we maintain, amend, and extend the two in lockstep,
it is not uncommon to see the two used interchangeably in
literature or simply combined as “SIDL/Babel.”

There are six guiding design principles that have shaped
Babel and contributed to its quality and growing use.

1. High Performance
2. Consistent — A feature gets into SIDL if and only if

it can be supported in every language.
3. Portable — Babel must work with the customer’s set

of compilers, linkers, debuggers, etc. It can require
special flags (or demand certain flags be avoided).

4. Reliable — Babel needs to be as reliable as the com-
pilers it is built upon. Coupled with Principle 3, we are
confronted with an exceptional configuration and build
challenge [24].

5. Simple — Babel must be clear and simple to non-
computer scientists.

6. Idiomatic — Subject to Principles 1 & 2, each lan-
guage binding should appear as natural as possible to
seasoned programmers in that language.

For complete and definitive technical information about
SIDL or Babel, see the Babel Users’ Guide [14]. The rest
of this section provides only the necessary details to frame
the discussion of Babel RMI in Section 4.

3.1. Essential SIDL

SIDL is used to specify user-defined types and the inter-
actions between them in a language- and platform-neutral
manner. The entire SIDL type system is divided between
fundamental types, such as integers, floats, strings, complex
numbers, etc., user defined types, and multi-dimensional ar-
rays of any of the above. There are no arrays of arrays, also



known as “ragged arrays.” User-defined types can be sim-
ple enumerations or arbitrarily complex objects— a generic
term for classes and interfaces.

Objects have methods (a.k.a. member functions) asso-
ciated with them. For the purposes of the discussion that
follows, there are three important details about SIDL meth-
ods that need to be explained.

1. Method names (and all SIDL identifiers) must start
with an alphabetic character, not a number or under-
score (_). Babel will generate “built-in” methods with
a leading underscore since these are guaranteed to not
collide with user-defined code.

2. SIDL has an unusual feature (for IDLs) to support
method overloading. Method overloading is supported
natively in C++, Java, and Fortran90 where different
methods with the same name are disambiguated by
their distinct argument list. To support C, Python, and
Fortran 77, SIDL requires the user to provide a disam-
biguating suffix to the end of the overloaded method
name. It appears in SIDL in square brackets ([]) be-
fore the argument list.

3. Every argument in a method has at least three parts, a
mode, a type, and a name. The type and name are fa-
miliar to most programming languages, but the mode is
peculiar to IDLs. The mode indicates which way data
is flowing through the method invocation and must be
one of three values: in, out, or inout.

When the reader sees a method described as:

_create[Remote](in string url);

they can infer that (1) it is a built-in method (by virtue of
leading underscore), (2) it appears as “_create” in languages
that support overloaded methods and “_createRemote” in
languages that do not, and (3) it takes an input argument of
type string and name url. The return type is not specified
in the example above but would appear before the method
name. We will revisit this particular call later.

3.2. Object Model

The SIDL language supports the Java/Objective C model
of classes and interfaces, where a class has implementations
associated with at least some of its member functions and
an interface has no implementation. C++ has an equivalent
construct called “pure abstract base class.”. In this model,
interfaces can extend multiple interfaces, classes can imple-
ment multiple interfaces, but a class can extend at most one
other class. This model is often summarized as a “single
inheritance of implementation, multiple inheritance of in-
terfaces.”

Though Babel supports the same object model as Java,
there are some critical differences in the implicit base

classes and interfaces, besides naming. Like Java, a SIDL
package is simply a way of organizing and grouping types to
reduce the possibility of name collision. All interfaces will
implicitly inherit sidl.BaseInterface, and all classes
will implicitly inherit sidl.BaseClass, even if they are
not listed as ancestors in the SIDL file.

Unlike Java, Babel’s base exception type is an interface
instead of a class. This change was driven by SciDAC cus-
tomers that (quite correctly) wished to develop a specifi-
cation purely in SIDL interfaces. If we followed Java and
made the base exception type a class, then the standards
group would be put in the uncomfortable position of pro-
viding implementations to the exception classes in their in-
terface specification. Interfaces cannot inherit from classes,
only classes can do this.

Clearly, Java RMI supports an object model based on the
Java language. It is surprising, however, to see how other
IDL-based systems are not very object oriented.

DCOM’s IDL has classes and interfaces, but inheritance
is limited. An interface can extend at most one other inter-
face, but there is no class inheritance, and classes opaquely
contain a list of interfaces but do not inherit them. With
DCOM’s system, if a class contains three interfaces and
a user wishes to access the functionality of one of them,
the user must first call QueryInterface() to extract the
proper interface handle from its parent. The COM specifi-
cation assumes implementation details about the underlying
C++ compiler. Only a subset of expressible types (called
automation types) in COM IDL are actually guaranteed to
work outside of C++ [32, pg. 101].

CORBA’s IDL is far less vendor specific but forgoes
classes altogether specifying only interfaces and interface
inheritance in the IDL. The rationale is that implementation
inheritance is an implementation detail and does not belong
in the IDL. A kind of private inheritance could be employed
for the C++ or Java bindings, but this is a function of the un-
derlying implementation language and not part of the stan-
dard. Babel allows a class implemented in one language to
have a derived class implemented in another language, over-
riding some methods and inheriting the implementation of
others. This is not possible with CORBA.

3.3. Layers in Babel Callstack

Babel achieves its n-way interoperability by having a
true hub-and-spoke design, shown in Figure 1. The hub
that all invocations are routed through is Babel’s Interme-
diate Object Representation (IOR)1, which serves two main
functions. First, the IOR supports a universal object model
by implementing tables of virtual function pointers, casting,

1Caution: CORBA uses the acronym IOR to refer to an Interoperable
Object Reference, essentially a character string encoding information nec-
essary to connect to a service.
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Figure 1. Babel’s architecture and separation
of concerns for its in-process language inter-
operability.

polymorphism, etc. Second, the IOR serves as a common
target in ANSI C for all language bindings.

Stubs are the layer the callee uses and map from the
callee’s language to C in the IOR. Skels are the layer to
which the IOR dispatches, and it maps from C to the lan-
guage of the implementation2. Babel will also generate an
empty implementation layer called Impls, which is not ex-
plicitly labeled in Fig. 1, but is represented by the languages
that the Skels invoke. As implied by this figure, Impls in
one language can turn around and call stubs of dependent
types.

4. Approach

A few words about our technical goals and design con-
straints are in order before diving into the details. First and
foremost, we did not want to compromise the hard-fought
performance we achieved in the in-process case. Second,
we wanted the support for RMI to be transparent to the
user. This means that the same stubs used for language in-
teroperability would also be used as client proxies for RMI.
Schematically, the new layers of the Babel RMI are pre-
sented in Figure 2. Third, we wanted the messaging layer
of Babel RMI to be open to third-party implementations.
This last constraint requires special attention because some
protocols allow for streaming of data, and others (notably
SOAP) are free to reorder how arguments appear in the
transmission.

Adding RMI to Babel was a multi-year effort. Constant
communication with our customers and collaborators was
very important to our process. In addition to presenting
work in progress and submitting to ad hoc design reviews at

2Babel’s naming of Stubs and Skels is consistent with CORBA conven-
tion, but both are in conflict with COM nomenclature.
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Figure 2. Babel’s modified architecture and
separation of concerns to support RMI.

quarterly CCA meetings, we published our design in a tech-
nical report [25] and updated it periodically on our website
to serve as our technical road map. Separately, we have also
published a technical report on how to implement a new
protocol to our Babel RMI interface [26], but those details
are beyond the scope of this paper. Our focus here is on use
of the Babel RMI feature.

4.1. User Visible Changes

For normal function calls, arguments are passed by ini-
tializing registers and pushing things onto the system stack.
In RMI, function arguments and return values are passed
by a network protocol. From the caller’s point of view,
the only difference between local and remote invocations is
that remote ones have more failure modes. The most visible
change to users in adding RMI to Babel was the introduc-
tion of an implicit exception that every SIDL method could
throw. We added the sidl.RuntimeException interface
to our standard library to serve as the base object for all such
possible exceptions.

A few built-in methods were added to all Babel Stubs in
support of RMI.

static <T> _connect(in string url);
string _getURL();
bool _isRemote();
bool _isLocal();



Here, <T> is pseudo-code to represent that the return
type depends on the type of the object from which
the static method was invoked. To connect to an in-
stance of pkg_Cls in C, one would call the function
pkg_Cls__connect(...) (note the double underscore).
In C++, the type would be pkg::Cls and the call would
look like pkg::Cls::_connect(...). Whatever the
programming language, _connect() is used to create a
Stub and Remote IOR (RIOR) connected to a type else-
where on a server. The argument’s name (url) is a bit over
specific. The simple binary TCP/IP protocol that comes
with Babel does use a URL, but the encoding of the string
to refer to a remote Babel object depends on the protocol
implementation used at runtime. The method to request the
underlying URL may attempt to construct one under certain
conditions, but we will avoid the details for the time be-
ing. The last two methods simply test if the stub is hooked
into a local or remote object. This can be done without ac-
tual network traffic by simply testing if a IOR or an RIOR
is connected to the Stub. An RIOR is special initialization
of an IOR; its internal tables of function pointers are ini-
tialized for remote communication, and instead of pointing
to an opaque handle of in-process implementation data, it
points to the sidl.rmi.InstanceHandle interface.

Concrete classes will also have the built-in method

static <T>
_create[Remote]( in string url );

that will attempt to connect to a server and request the cre-
ation of a new instance of the type. As with _connect,
the <T> is pseudo-SIDL indicating that the return type de-
pends on the class to which the static method is bound, and
the contents of the url are specific to the protocol being em-
ployed.

4.2. Changes to Babel Runtime Library

To add RMI to Babel, we made minimal changes to the
sidl package and introduced the sidl.io and sidl.rmi

packages. Babel’s runtime library includes all of these
packages, arrays of basic types, and various odds-and-ends
to support a consistent SIDL object model when particular
languages need extra help (e.g. casting operators for For-
tran, a few wrapper classes for Python, etc.).

The hierarchy of the new sidl.rmi package is illus-
trated in Fig. 3. All objects defined in this package fall into
three main categories: interfaces for protocol implemen-
tors to inherit, singleton classes to centralize discovery of
the runtime environment, and a litany of exceptions corre-
sponding to the many ways that a remote method invocation
could fail. NetworkException and its many subclasses
are straightforward with suitably descriptive names, so they
require no further exposition in this paper.
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Figure 3. Objects in new sidl.rmi package.

While the interfaces in sidl.rmi are designed for im-
plementors of Babel RMI network protocol “plug-ins,” a
functional description is warranted in preparation for up-
coming topics of object serialization and life cycle. The
InstanceHandle persists with the lifetime of the remote
stub and is responsible for connecting to its associated im-
plementation of BaseServer. Our documentation will
generically use the term Babel Object Server (BOS) for
any implementation of BaseServer. The Ticket and
TicketBook interfaces are for an experimental feature that
won’t be discussed in this paper, but are included in the fig-
ure for completeness. As one might surmise by comparing
Figs. 2 & 3, Invocation and Response are responsible
for serializing/deserializing arguments on the client side of
a remote invocation, Call and Return mainly deserialize
the in parameters and serialize the out parameters, respec-
tively.

As we review the singleton classes in the sidl.rmi

package, we start describing how the pieces of the Babel
RMI system work together. The ProtocolFactory as-
sociates the prefix of a URL to an implementation of the
InstanceHandle interface. For example, the simple pro-
tocol that we distribute with Babel is implemented in a class
called sidlx.SimHandle, and we’ve taken the convention
of associating it with the prefix “simhandle.” This associa-



tion is made at runtime on both the client and server side as
follows:

using namespace sidl::rmi;
...
ProtocolFactory::registerProtocol(

"simhandle", "sidlx.SimHandle");

Now to create a remote instance of any type, we sim-
ply use _create[Remote]() with a string argument that
starts with a matching prefix. Creating a remote instance of
sidl.BaseClass in C++ could look like this.

sidl::BaseClass bc =
sidl::BaseClass::_create(

"simhandle://server.com:8080");

The _create[Remote]()method will strip off the pre-
fix (everything up to the first non-alphanumeric charac-
ter), use the ProtocolFactory to instantiate the appropri-
ate implementation, and pass it the remainder of the URL
to interpret as it sees fit. Babel has long supported dy-
namic loading of Babel types by string name through our
sidl.Loader and sidl.DLL classes, so loading an im-
plementation of the InstanceHandle interface by string
name and passing it to the RIOR is not difficult.

The InstanceRegistry is a server-side singleton re-
sponsible for generating unique (to the process) identifiers
and maintaining a table to retrieve instances by this iden-
tifier. When a BaseServer receives an RMI from the
network, the identifier is included in the message. The
BaseServer uses this identifier to apply the RMI to the
correct instance.

4.3. Distributed Reference Counting

All Babel objects and arrays are reference counted. Ref-
erence counting is the only reliable way to deal with re-
source reclamation in a multilingual environment. In lan-
guages such as C++, Python, or Java, the programmer need
not worry about reference count at all; it is all tied into the
operator overloading, reference counting, or garbage col-
lection of the host language. C and Fortran programmers,
however, must explicitly add or delete references if they in-
tend for an object to persist beyond the scope of the single
subroutine. This requires some discipline for C and Fortran
programmers, but at least the correctness of each file can be
determined by visual inspection.

Babel does not reveal the underlying reference count to
users under any circumstances. Although this has a side
benefit of preventing users from circumventing good pro-
gramming practice, the truth is that Babel doesn’t store ref-
erence count in a central location. Instead, there are mul-
tiple partial counts. Only when a partial count decrements
from one to zero is it necessary to take action. Even in the
single process case, partial reference counts may be held

in Java stubs, Python stubs, and the sidl.BaseClass’s
Impl—which every class inherits. In the RMI case, there’s
also a partial reference count in the InstanceHandle.
Only when the dependent stubs decrement from one to
zero does the last stub notify the InstanceHandle, and
only when the InstanceHandle’s count goes from one to
zero does communication actually occur across the wire to
decrement the count on the instance itself. When the in-
stance’s reference count goes to zero, it removes itself from
the InstanceRegistry and goes through its destruction
sequence.

COM and CORBA have two variations on this theme of
managing references in a distributed setting. Remote han-
dles to COM objects are expected to ping their servers ev-
ery two minutes. After 10 minutes without even a ping,
the server is free to declare the handle stale and disconnect
it. If there are no outstanding handles, the instance is re-
claimed. CORBA takes a more service-oriented approach
where reference counting on the client side has no effect on
the server. The server is considered to be “always on” and
it is up to the user to invent infrastructure for time out or
deletion of services.

Babel’s approach has the shortcoming that if a client is
disconnected, the server may never receive the one-to-zero
transition from the InstanceHandle to properly decre-
ment its own reference count, and ends up leaking re-
sources. We anticipate that as more robust communica-
tion protocols are implemented in Babel RMI, more fault-
tolerant schemes can be incorporated.

4.4. Casting

Casting up and down the inheritance hierarchy is a fun-
damental capability of any object-oriented type system.
When performing a successful cast in the in-process case,
the new reference points to the same IOR instance as the
old reference. All Babel objects must have a concrete class
to be _create()’ed, so casting is simply a matter of check-
ing if the underlying type inherits the target type or not.

Implementation details to support casting in a distributed
context are more complex since the underlying concrete
type is not resident in the memory of the client. If the initial
remote reference is a _connect() to an interface or parent
class, a legitimate downcast may demand creation of an en-
tirely new stub. When doing a lot of casting and reference
count manipulations (in languages that require manual ref-
erence count tracking), care must be taken for each distinct
remote handle to delete its reference once. The operation is
intentionally delete reference, not decrement reference.



4.5. Passing by Reference and by Value

Default semantics for passing arguments locally are that
basic types and enums are “pass by value,” whereas arrays
and objects are “pass by reference.” When passing argu-
ments remotely, basic types, enums, and arrays are copied
across, whereas remote references are passed in lieu of ob-
jects. In Babel’s type system, arrays are lower-level enti-
ties than objects, and it is hard to envision when a user re-
ally would want to access a remote array elementwise. If a
user really intends to transmit a portion of an array across
the wire, we recommend creating the slice locally and then
passing the slice through the RMI.

There are two ways one can pass objects in Babel RMI—
by reference and by copy. The default method is pass
by reference. Any instance passed this way is automat-
ically registered to the BOS to recieve callbacks. Pass-
by-copy, or object serialization, is also possible when two
conditions are met. First, only objects that implement
the sidl.io.Serializable interface are eligible to be
passed by copy. Second, to trigger the copy, the copy key-
word must appear in the SIDL file as a modifier to the argu-
ment (or return value).

Appropriate error messages are generated if a copy key-
word appears on a non-serializable type. The entire inter-
face is simply

// in package sidl.io ...
interface Serializable {
void packObj(in Serializer ser);
void unpackObj(in Deserializer des);

}

If an implementor of any Babel class wishes their type to
be copyable, they need to inherit this interface and imple-
ment these methods. A lot of work has gone into distributed
systems providing automatic serialization. Babel takes the
other extreme. Its code generators have no idea what im-
plementation data is contained in the classes, so it leaves it
up to the implementor of the class to decide what data is
packed and unpacked. How that data is encoded on the wire
is not the discretion of the implementor of the type but by
the implementor of the Serializer and Deserializer

interfaces, which for the purposes of RMI is the implemen-
tor of the network protocol. When implementing a serializ-
able class, judicious use of calling the parent class’s imple-
mentation (using super()) is imperative.

An interesting case arises when copying types that are
more specialized than the argument list would suggest. A
method’s argument may indicate a pass-by-value argument
that is a SIDL interface. Clearly, the entire class would need
to be serialized, but the recipient could be compiled with-
out knowledge of the derived type. Java RMI supports this
case trivially because it can simply send the bytecodes of the
implementation in the invocation. Babel does the next best

Table 1. Average round trip latency of 10,000
remote no-ops on 3.06 GHz Intel Pentium
Xeons with Elan3 switch using Babel 1.0.1
and Intel 9.1 compilers.

Supporting Middleware time (µsec)
Babel: in process (C) 0.030

MPI: ping-pong on elan3 (C) 9.43

CORBA RPC: OmniOrb (C++) 251

Babel RMI: Simple TCP/IP (C++) 609

Globus 4.0 Core: no security (Java) 28, 000

thing, sending the name of the concrete type in the hope that
the server could get its sidl.Loader to create an empty
instance. If this succeeds, then the server need only hand
the stream to the new instance for it to unpack itself. If the
Loader cannot find an instance of the type locally, then an
exception is thrown back to the caller.

Babel exceptions always obey copy out seman-
tics. The recipient of an exception can always
rely on the caught instance being local. To sup-
port this, we made one major tweak to the sidl

package by changing the sidl.BaseException inter-
face to extend the new sidl.io.Serializable in-
terface. Recall that all SIDL methods can poten-
tially throw the sidl.RuntimeException interface.
The implementations of sidl.SIDLException and
sidl.rmi.NetworkException are good working exam-
ples of how users can serialize their own objects.

5. Results

5.1. Middleware Performance Comparison

We conducted two simple experiments to compare the
latency and throughput of Babel RMI with other middle-
ware technologies. The experiments were conducted on two
nodes of a 3.06 GHz Intel Pentium Xeon Linux cluster with
an Elan 3 switch using Babel 1.0.1 and Intel 9.1 compilers.
The CORBA implementation we chose is an established
open-source implementation called omniOrb [30] version
4.0.7. The Grid implemenation is the Java WS Core distri-
bution of the Globus Toolkit [16] version 4.0.1. Globus is
an open-source implementation of much of the OGSA and
is maintained by the Globus Alliance.

Latency data presented in Table 1 was generated by exer-
cising a subroutine that has no arguments, no return value,
and does nothing. The round trip latency, in this case, is the
lower bound for the overhead of the various technologies.
Any more useful information exchange between caller to
callee and back would only increase the latencies. To con-



struct a reasonably comparable workload for MPI, we chose
two point-to-point communications in a ping-pong arrange-
ment. For reference, we also timed Babel on a single node
when the invocation remains within a single process.

The in-process Babel call is getting into the tens of clock
cycles for our platform, which approaches the cost of a
C++ virtual function call. The low overhead for MPI is
expected since it bypasses the normal TCP/IP stack and
dives directly into libraries optimized for the switch. The
20,000-fold slowdown for Babel RMI over in-process Ba-
bel may seem like a concern, but taken in comparison to
omniORB’s performance, the performance is reasonable.
Globus’ placement in this study should not be a surprise
considering how its underlying communication is XML-
based. The Java/WS-based communication suffers 50–100
times more overhead than Babel RMI or omniORB for a
no-op.

Throughput data was generated by passing an array of
doubles back and forth. The log-log plot in Fig. 4, com-
pares the average elapsed time to the size of the array for
various technologies. Since Web Services is based on a
text-based protocol, the values in the array matter. There
is a surprising performance drop in converting more than
17 digits because IEEE standards specify rounding modes
that require extended precision calculations [10]. In all ex-
periments, we initialized the array with a simple sine curve
over 2π radians.

For the in-process case, Babel simply passes an array de-
scriptor, so the elapsed time is independent of array size. All
other technologies show the expected linear scaling once
the array is sufficiently large. To our surprize, omniORB
started throwing system errors after the array crossed a cer-
tain threshold. We speculate that there is some system set-
ting that preempts messages over a megabyte long but have
not investigated it further. At small message sizes, there are
dips in MPI and CORBA implementations that we presume
are the result of careful optimizations for special cases. The
reference implementation that we distribute with Babel has
no such performance tuning and shows a simple perfor-
mance curve. Though our reference implementation starts
off more expensive than CORBA, the curves cross at 128
doubles and Babel RMI asymptotes out at roughly 7 times
faster than CORBA and 4 times slower than MPI.

Globus scales quadratically in Fig. 4. We could not gen-
erate data beyond a 64Ki-long array because the underlying
Java sockets were timing out. We investigated this further
with appropriate technical leads from the Global Alliance,
but they did not contest our finding.

Naturally, there are questions about how this initial data
plays out as increasingly complex arguments are passed
back and forth between caller and callee. Such a detailed
study is beyond the scope of this paper. The protocol that
we are currently shipping and reporting data from is in-
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Figure 4. Average elapsed time for 10,000
remote method invocations sending and re-
ceiving an array of doubles on 3.06 GHz Intel
Pentium Xeons with Elan3 switch using Ba-
bel 1.0.1 and Intel 9.1 compilers.

tended as a reference implementation and not production
code. More sophisticated implementations based in RMIX,
SOAP, IIOP, and RMA are in progress from CCA collabo-
rators. How well Babel RMI could perform using the same
switch-specific libraries as MPI—and if we could use those
libraries at all without interfering with MPI—are both open
questions.

5.2. Multiscale Material Science

The Petascale Simulation Initiative (PSI) [31] is an in-
ternally funded exploratory R&D project involving multi-
ple directorates at Lawrence Livermore National Labora-
tory (LLNL). At the computer science level, the goal is
to develop and demonstrate a programming model where
disparate parallel codes are composed and managed in an
MPMD style. Though originally conceived as a hedge
against possible SPMD scaling issues, when we get to the
hundreds of thousands of processors expected in petascale
systems, the emerging MPMD system is garnering more im-
mediate appeal as a means to achieve better utility of exist-
ing platforms for highly dynamic multiscale calculations.

PSI members from LLNL’s Engineering directorate are
employing this technology to couple their primary engineer-
ing code at macro scale with various subscale material mod-
els [3, 4]. The need for subscale calculations is highly dy-
namic, problem specific, and cannot be predicted a priori.
Under the right conditions, advancing a single finite ele-
ment one timestep could require launching a slip-surface or
multigrain crystal-plasticity calculation across tens to hun-
dreds of processors. The macroscale engineering code is



written primarily in C, the subscale models tend to be in
Fortran 90, and the PSI runtime system is mostly C++. In
addition, it has been scripted with Python for parametric
studies.

The PSI runtime system that coordinates these mul-
tiple MPI jobs is a collection of Babel-wrapped, MPI-
enabled objects that bootstrap themselves as a parallel dae-
mon process—one instance per node. The rank-zero pro-
cess removes itself from the node pool and assumes its
role as process scheduler and node manager, handing out
sub allocations of its current nodes for subscale mod-
els. Using SLURM-specific hooks [38], as well as POSIX
fork/join, the runtime system can launch new MPI jobs
on request, set up Babel remote stubs to establish parent-
child relationships between launcher and launchee, and deal
with child termination, either normal or abnormal. Prelimi-
nary timings on the same system as Table 1 show setup and
teardown of these spawned MPI subtasks at one half and
one fifth of a second, respectively. The PSI has exercised
Babel RMI on science runs requiring billions of RMI calls
for 340-node runs lasting up to 8.5 hours.

6. Conclusions and Future Work

We introduced Babel’s new Remote Method Invocation
(RMI) capabilities. The distinguishing characteristics of
this work are that it provides a simpler and more consistent
object-oriented programming model than CORBA or COM,
as well as a simple API for third-party plug-ins to customize
the communication layer underneath. Even with the simple
TCP/IP protocol that is shipped as a reference implementa-
tion, Babel RMI is much faster than Web Services and even
outperforms CORBA.

Given these characteristics, Babel RMI currently fills a
niche in “short-haul” distributed computing—within a ma-
chine room or even in a single machine with concurrent MPI
runs. Babel also provides a useful tool for our CCA collab-
orators to build and extend their CCA component frame-
works to new levels of capability. Distributed computing
across wide-area networks is beyond the scope of our work
and already well served by Grid/Web Services technology.

Future development for Babel is motivated by ongoing
collaborations in the CCA Forum and with our in-house
material scientists. We are particularly interested in devel-
oping support for Parallel RMI [7]. Nonblocking RMI is
also of interest, both for cases where machines may not
support threaded implementations (e.g. “micro kernel”-
based supercomputers) and for cases where co-processors
(e.g. GPUs or FPGAs) naturally interact in an asynchronous
manner.
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