
A Strategyproof Mechanism for Scheduling Divisible Loads in Linear Networks

Thomas E. Carroll and Daniel Grosu

Wayne State University
Dept. of Computer Science

Detroit, MI 48202, USA
{tec, dgrosu}@cs.wayne.edu

Abstract

In this paper we augment DLT (Divisible Load The-
ory) with incentives such that it is beneficial for proces-
sors to report their true processing capacity and compute
their assignments at full capacity. We propose a strate-
gyproof mechanism with verification for scheduling divis-
ible loads in linear networks with boundary load origina-
tion. The mechanism provides incentives to processors for
reporting deviants. The deviants are penalized which abates
their willingness to deviate in the first place. We prove that
the mechanism is strategyproof and satisfies the voluntary
participation condition.

1. Introduction

Scheduling is one of the most studied topics in dis-
tributed systems. This paper considers the problem of
scheduling divisible loads which is characterized by large
data sets where every element within the set requires an
identical type of processing. The set can be partitioned
into any number of fractions where each fraction requires
scheduling.

Divisible Load Theory (DLT) studies the scheduling of
divisible loads in distributed systems considering different
network architectures [6]. DLT assumes that the processors
are obedient, i.e., they do not “cheat” or perform any action
that is not explicitly prescribed by the algorithm. This as-
sumption is not valid in the real world systems where the
processors are owned and operated by autonomous, self-
interested organizations that have no a priori motivation for
cooperation and they are tempted to manipulate the algo-
rithms in hope of increased benefits. Considering this type
of environment, the processors should be properly modeled
as strategic agents. New protocols for DLT must account

1-4244-0910-1/07/$20.00 c©2007 IEEE.

for this self-interested behavior. Mechanism design the-
ory takes into account the selfishness of the participants and
provides a framework for designing such protocols. Mecha-
nism design theory is a field of economics that has recently
garnered interest in computer science. It addresses incentive
compatibility where rational agents, which are character-
ized as self-interested and utility-maximizing, are provided
incentives which induce a behavior that maximizes the so-
cial welfare. An agent is parametrized by private values.
A strategyproof mechanism results in a participant maxi-
mizing its utility if and only if it truthfully reports its pri-
vate parameters and follows the specified algorithm. Each
agent in a general mechanism has a valuation function that
quantifies the agent’s benefit. The mechanism awards pay-
ments to the participants in order to motivate them to report
their true valuation. An agent’s objective is to maximize its
utility which is the sum of the valuation and payment. In
the context of divisible load scheduling, we have several re-
source providers that offer processor time. We assume that
each resource is characterized by its job processing rate. A
load allocation mechanism assigns load to each resource.
The allocation mechanism is strategyproof if and only if a
resource owner maximizes her utility by reporting the true
processing rate to the mechanism. Furthermore, the utility
is independent of the values reported by the other partici-
pants.

In our previous work [9, 14], we showed how DLT can
be augmented with incentives. We designed strategyproof
mechanisms for scheduling divisible loads in bus and tree
networks comprising strategic processors. The mechanisms
provide incentives to the processors to participate and to re-
port their true processing rate. The agents maximize their
welfare by truthfully reporting their values to the mecha-
nism and executing their assignments at full capacity.

Our contributions. In this paper, we augment DLT with in-
centives for scheduling divisible loads in linear networks
comprising strategic processors. We propose a strate-

gyproof mechanism with verification for scheduling divis-
ible loads in linear networks. The mechanism solves the
scheduling problem in linear networks with boundary load
origination. The mechanism is an example of autonomous
node mechanism [17], where the agents (i.e., the proces-
sors) have control over both the inputs to the algorithm and
the algorithm itself. The self-interested processors will im-
plement an algorithm different from what is prescribed if it
is beneficial to do so. To cope with this scenario, processors
are provided incentives to report deviants. The mechanism
penalizes the deviants, which abates their willingness to de-
viate.

Related work. Recently, the divisible load scheduling prob-
lem was studied extensively resulting in a cohesive theory
called Divisible Load Theory (DLT) [2, 3, 6, 7, 19, 21].
New results and open research problems in DLT are pre-
sented in [3]. A wide range of applications used DLT al-
gorithms to schedule loads [4, 5, 8, 10, 16]. All these
works assumed that the participants in the load schedul-
ing algorithms are obedient. Recently, several researchers
considered the mechanism design theory to solve several
computational problems that involve self-interested partic-
ipants. These problems include task scheduling [20], rout-
ing [11] and multicast transmission [12]. In their semi-
nal paper, Nisan and Ronen [18] considered for the first
time the mechanism design problem in a computational set-
ting. They proposed and studied a VCG (Vickrey-Clarke-
Groves) type mechanism for the shortest path in graphs
where edges belong to self interested agents. They also
provided a mechanism for solving the problem of schedul-
ing tasks on unrelated machines. A general framework
for designing strategyproof mechanisms for one parameter
agent was proposed by Archer and Tardos [1]. They devel-
oped a general method to design strategyproof mechanisms
for optimization problems that have general objective func-
tions and restricted form for valuations. The results and
the challenges of designing distributed mechanisms are sur-
veyed in [13]. Mitchell and Teague [17] extended the dis-
tributed mechanism in [12] devising a new model where the
agents themselves implement the mechanism, thus allowing
them to deviate from the algorithm. Grosu and Chronopou-
los [15] proposed a strategyproof mechanism that solves the
static load balancing problem in distributed systems. Strate-
gyproof mechanisms with verification combining incentives
and DLT were proposed by Grosu and Carroll [9, 14].

Organization. The paper is structured as follows. In Sect. 2
we describe the divisible load scheduling problem in the
context of linear networks. In Sect. 3 we discuss the mech-
anism design foundations. In Sect. 4 we present our pro-
posed mechanism. In Sect. 5 we prove the properties of
our new mechanism. In Sect. 6 we draw conclusions and
present future directions.

2. Divisible Load Scheduling

We consider a distributed system comprising m + 1
processors connected in a linear network. Processor Pi

(i = 0, . . . ,m) is characterized by wi, which is the time
it takes to process a unit load. The processor is assigned αi

units of load and it takes time αiwi to compute its assign-
ment, which corresponds to a linear cost model. If the entire
load to be scheduled is one unit, then 0 ≤ αi ≤ 1. We as-
sume that the processors have front-ends that permit simul-
taneous communication and processing. Further, a sender
may communicate with only one recipient at any instant,
i.e., we assume the one-port model. A processor can begin
computing as soon as it has received its entire assignment.
The load originates at the root, which we designate to be
processor P0. Processor Pj−1 (j = 1, . . . ,m) transmits
Dj = 1 −

∑j−1
k=0 αk units of load to its successor Pj in

time Djzj , where zj is the time it takes to communicate
a unit load from Pj−1 to Pj over link �j . We denote by
α = (α0, . . . , αm) the vector of load allocations. Processor
Pi finishes its assignment in time Ti(α), which is the total
time to receive, transmit, and compute.

There are two types of linear networks differentiated by
the location of the root processor. The linear network with
boundary load origination has the root processor at one
of the network extremes, i.e., processor P0 is a terminal
processor. In the case of a linear network with interior
load origination the root is an interior processor with two
directly-connected neighbors. In this paper we consider a
linear network with boundary load origination.

We use the following assumptions in characterizing the
models: (i) The communication startup time is negligible;
(ii) The time for passing messages in the network is negli-
gible when compared to the time taken for communication
and processing of computational loads; (iii) The time taken
for returning the result of the load processing back to the
root is small.

Figure 1 illustrates a (m + 1)-processor linear network
with boundary load origination. In Figure 2, we present a
Gantt chart depicting the execution time of the system. The
communication time is represented above the time axis and
the computation time is represented below the time axis. We
denote by P = (P0, . . . , Pm) the processor set composing
the network. From the diagram, it is easily observed that

w0 w1
z1

. . . wm−1 wm
zm

Figure 1. An (m+1)-processor linear network
with boundary load origination.

P0

P1

P2

Pm

Pm−1

T2

T1

T0
α0w0

(1−α0)z1

Tm
αmwm

Tm−1

(1−α0−α1)z2

α1w1

(1−α0−α1−α2)z3

(1−α0−·· ·−αm−1)zm

αm−1wm−1

α2w2

.
.

.

Time

Figure 2. Execution on a (m + 1)-processor
linear network with the load originating at the
boundary.

the finishing time Ti(α) is

T0(α) = α0w0 (2.1)

and for j = 1, . . . ,m

Tj(α) =

(
0 if αj = 0,Pj

k=1

“
1 − Pk−1

�=0 α�

”
zk + αjwj if αj > 0.

(2.2)

We associate a scheduling problem with the sys-
tem described above. We call this problem LINEAR
BOUNDARY-LINEAR. The two words before the hyphen
identify the network type and the word following the hy-
phen identifies the cost model. The goal of this problem is
to solve for the optimal load allocation α which minimizes
the total execution time T (α) = max(T0(α), . . . , Tm(α)).
It is defined as minα T (α) subject to the constraints αi ≥
0, i = 0, . . . ,m and

∑m
i=0 αi = 1. The following theorem

proved in [6] characterizes the optimal solution.

Theorem 2.1 (Participation). In a given linear network, the
optimal solution is obtained when all processors participate
and they all finish executing their assigned load at the same
instant, i.e., T0(α) = · · · = Tm(α).

We introduce the concepts of reduction and equivalent
processors used to solve the above problem. Reduction is
the technique which collapses a set of connected proces-
sors and the associated internal links into a single equivalent
processor that replaces the collapsed processors. Figure 3

wi−1 wi
zi

wi+1
zi+1

⇐⇒ wi−1 w̄i

zi

Figure 3. The reduction of processors Pi and
Pi+1 to a single equivalent processor.

illustrates a reduction of processors Pi and Pi+1. We com-
pute the processing time for the equivalent processor that
replaces consecutive processors (Pi, . . . , Pi+s) by logically
disconnecting the segment from the network and computing
the load allocation vector α for it. The equivalent process-
ing time w̄i (i.e., the time to process a unit load by the equiv-
alent processor) is given by

w̄i = max(Ti(α), . . . , Ti+s(α)). (2.3)

If α is optimal (i.e., α minimizes T (α)), w̄i reduces to

w̄i = Tj(α), j = i, . . . , i + s (2.4)

Before continuing, we must introduce additional nota-
tion.

Notation. Let Di be the fraction of the original load re-
ceived by Pi (i = 0, . . . ,m) and let α̂iDi (0 ≤ α̂i ≤ 1)
be the load retained for computing by Pi and (1 − α̂i)Di

be the load transmitted to its successor. We denote by
α̂ = (α̂0, . . . , α̂m) the vector of local load allocations as
fractions of the received workload. Processor Pm must
compute all the received load and thus, α̂m = 1. The re-
lationship between αi and α̂i is

α0 = α̂0 (2.5)

αj =

(
j−1∏
k=0

(1 − α̂k)

)
α̂j , j = 1, . . . ,m. (2.6)

For linear networks with a boundary root comprising
more than two processors, we recursively reduce the net-
work, collapsing the two farthest processors from the root
at a time until the entire network is represented by a sin-
gle processor. We derive the following equation for optimal
local load allocation for processors Pi and Pi+1:

α̂iwi = (1 − α̂i)(zi+1 + wi+1). (2.7)

The following algorithm solves the LINEAR BOUNDARY-
LINEAR scheduling problem.

Algorithm 1 (LINEAR BOUNDARY-LINEAR)

Input: Processing capacities w0, . . . , wm;
Link capacities z1, . . . , zm;

Output: Load allocations α0, . . . , αm;
1. α̂m ← 1
2. w̄m ← wm

3. for i = m − 1, . . . , 0; do
4. α̂i ← w̄i+1+zi+1

wi+w̄i+1+zi+1
by (2.7)

5. w̄i ← α̂iwi by (2.4)
6. Replace processors Pi and Pi+1 with

a single equivalent processor with
processing time w̄i

7. D ← 1
8. for i = 0, . . . , m; do
9. αi ← Dα̂i

10. D ← D(1 − α̂i)

In the above algorithm it is assumed that Pi reports its
true rate to the mechanism. When the processors are owned
and operated by disparate, autonomous organizations that
are self-interested and welfare-maximizing, they will misre-
port their processing capacity or deviate from the algorithm
in hope of generating increased profits. In the subsequent
sections, we present a mechanism that provides incentives
to the agents to report truthfully and that fine agents that
deviate from the algorithm.

3. Mechanism Design Framework

In this section, we introduce the main concepts of mech-
anism design theory. We limit our discussion to mecha-
nisms for one parameter agents. Each agent in this mech-
anism design problem is characterized by private data rep-
resented by a single real value [18]. A mechanism design
problem for one parameter agents is characterized by

(i) A finite set A of allowed outputs. The output is a
vector α(w) = (α1(w),. . . , αm(w))∈ A, computed ac-
cording to the agents’ bids, w = (w1, . . . , wm). Here, wi

is the bid of agent i.
(ii) Each agent i (i = 1, . . . ,m) has a privately known

value ti called the true value and a publicly known pa-
rameter w̃i called the actual value, where w̃i ≥ ti. The
preferences of agent i are given by a function called valua-
tion Vi(α, w̃).

(iii) Each agent goal is to maximize its utility. The utility
of agent i is Ui(w, w̃) = Qi(w, w̃) + Vi(α(w), w̃), where
Qi is the payment handed by the mechanism to agent i and
w̃ is the vector of actual values. The payments are handed
to the agents after the mechanism learns w̃.

(iv) The goal of the mechanism is to select an output α
that optimizes a given cost function g(w, α).

Definition 3.1 (Mechanism with Verification). A mecha-
nism with verification is characterized by two functions.

(i) The output function α(w) = (α1(w), . . . , αm(w)).
The input to this function is the vector of agents’ bids w =
(w1, . . . , wm) and α ∈ A.

(ii) The payment function Q(w, w̃) = (Q1(w, w̃),
. . . , Qm(w, w̃)), where Qi(w, w̃) is the payment handed
by the mechanism to agent i.

Notation. In the rest of the paper, we denote by w−i the
vector of bids excluding the bid of agent i. The vector w is
represented by (w−i, wi).

The following defines an important property in that an
agent will maximize its utility when w̃i = wi = ti indepen-
dent of the actions of the other agents.

Definition 3.2 (Strategyproof Mechanism). A mechanism
is called strategyproof if for every agent i of type ti and
for every bids w−i of the other agents, the agent’s utility is
maximized when it declares its real type ti (i.e., truth-telling
is a dominant strategy).

The next property guarantees non-negative utility for
truthful agents. This is important as agents willfully par-
ticipate in hope of profits.

Definition 3.3 (Voluntary Participation Mechanism). We
say that a mechanism satisfies the voluntary participation
condition if Ui((w−i, w̃i) ≥ 0 for every agent i, true
value ti, and other agents’ bids w−i (i.e., truthful agents
never incur a loss).

There are two models for characterizing distributed
mechanisms. They differ in the degree of control that the
agents have. A mechanism is a tamper-proof mechanism
if the agents control the inputs. In these types of mecha-
nism, an agent can only specify its inputs and thus, the only
method of cheating is altering its inputs. A more general
model is the autonomous node model. A mechanism is an
autonomous node mechanism if the agents control both the
inputs and the algorithm. An agent will implement an algo-
rithm different from what is specified if it is beneficial to do
so. In this paper we consider the autonomous node model.

We assume that each processor is characterized by a val-
uation function which in this case is equal to the cost of
processing a given load. A processor wants to maximize
its utility which is the sum of its valuation and the payment
given to it. A processor Pi is parametrized by its true pro-
cessing time ti. It bids its processing time wi to the mech-
anism, where wi may be different than the true processing
time ti. Pi may choose to process its assignment at a differ-
ent speed than either its true time ti or bid time wi. This is
its actual processing time w̄i, where w̄i ≥ ti.

4. The Proposed Mechanism

We propose the Divisible Load Scheduling-Linear Bus
Linear (DLS-LBL) mechanism for scheduling divisible
loads in boundary origination linear networks. The system
model comprises m + 1 processors, where P0 is the root.
The root processor is obedient as it performs tasks on be-
half of the mechanism. We model the remaining m proces-
sors as strategic nodes. We assume that the communication
links are obedient and that the communication protocols are
tamper-proof.
Notation. Let SKi be the private key of a public key
set possessed by processor Pi. The secure digital signa-
ture of message m under SKi is sigi(m). The message
dsmi(m) = (m, sigi(m)) is the digitally signed message
m under private key SKi.

The description of the DLS-LBL mechanism follow. In-
formally, we assume the existence of a payment infrastruc-
ture and a public key infrastructure (PKI). We assume that
all processors have a public cryptographic key set and that
the public key from the set is registered with the PKI. Fur-
thermore, we assume a processor Pi knows its predecessor
Pi−1; the predecessor of Pi−1, Pi−2; and successor Pi+1

and it is capable of verifying their signatures.
A processor Pi computes its assigned load in actual pro-

cessing time w̃i, where w̃i ≥ ti. We cope with this situation
by employing a strategyproof mechanism with verification.
The goal of a strategyproof mechanism with verification is
to give incentives to agents such that it is beneficial for them
to report their values and process the assignment using their
full capacity. In order to achieve this goal, we augment each
processor Pi with a tamper-proof meter that records w̃i. The
meter reports the value as dsm0(w̃i).

DLS-LBL Mechanism.

Phase I (Computing local load allocation vector α̂) This
phase corresponds to the computation of the vector α̂
(steps 1. – 5.) in Algorithm 2 (LINEAR BOUNDARY-
LINEAR). Processor Pi (i = 0, . . . ,m) computes its
bid w̄i, where w̄i is the equivalent processing time of
processor Pi and its successors. The equivalent pro-
cessing time w̄i is given by w̄i = α̂iwi (2.4), where
α̂m = 1 and α̂j = w̄j+1+zj+1

wj+w̄j+1+zj+1
for j = 0, . . . , m−1

(given by (2.7)). Processor Pi (i = 1, . . . ,m) trans-
mits its bid dsmi(w̄i) to its predecessor Pi−1. We de-
note by w̄ = (w̄0, . . . , w̄m) the vector of bids. Proces-
sor Pi−1 terminates the protocol if it does not receive a
message, receives malformed or inauthentic messages,
or receives contradictory messages. Messages are con-
tradictory when two or more authentic messages hav-
ing different contents are received from a sender. In
the event that processor Pi−1 receives contradictory
messages, the evidence is submitted to P0. Proces-

sor P0 penalizes Pi with a fine of F and rewards it
to Pi−1 if the claim is substantiated. The quantity F
must be larger than any potential profits attainable by
cheating. If P0 exculpates Pi, Pi−1 is fined F and Pi

is rewarded F .

Phase II (Computing load allocation vector α) We com-
pute the load allocation vector α from the local load
allocation vector α̂ computed in the previous phase.
This phase corresponds to steps 7. – 10. of Algo-
rithm 1. Processor P0 sends the message

G1 = (dsm0(D0),dsm0(D1),dsm0(w̄0),
dsm0(w0),dsm0(w̄1))

(4.1)

to P1 and processor Pi−1 (i = 2, . . . , m) transmits the
message

Gi = (dsmi−2(Di−1),dsmi−1(Di),
dsmi−2(w̄i−1),dsmi−1(wi−1),
dsmi−1(w̄i))

(4.2)

to successor Pi, where Dj (j = 0, . . . , m) is the
quantity of load received by processor Pj defined as
D0 = 1 (root must handle the entire initial load) and
Dj =

∏j−1
h=0(1 − α̂h) for j = 1, . . . ,m. Processor

Pi verifies the message authenticity and integrity and
it terminates the protocol if either check fails. It ver-
ifies that its bid dsmi−1(w̄i) is contained within the
message and that w̄i−1 = α̂i−1wi−1 and α̂i−1wi−1 =
(1− α̂i−1)(wi + zi), where α̂i−1 = Di−1−Di

Di−1
. Again,

it terminates the protocol if the checks fail. If the ter-
mination is due to the reception of contradictory mes-
sages or incorrect computations, Pi sends the evidence
to P0. The root fines Pi−1 a sum of F and rewards it
to Pi if the root can substantiate the claim. Otherwise,
processor Pi is penalized F which is rewarded to Pi−1.
In either case, processors not partaking in complaints
receive zero utility. Processor Pi computes its load al-
location αi = Diα̂i.

Phase III (Load distribution and computation) The load is
distributed from processor to processor until all pro-
cessors receive their assignment. Beginning with the
root, processor Pi (i = 0, . . . ,m−1) distributes 1−α̂i

work units to its successor Pi+1; processor Pi retains
α̂i work units for itself to compute. In order to increase
its utility (we disclose the reasons shortly), a processor
Pi may deviate from αi by retaining α̃i work units,
where 0 ≤ α̃i < αi. Let ˆ̃αi be the actual local load
allocation which corresponds to α̃i. Pi will distribute
1− ˆ̃αi fractions of work to it successor Pi+1 and thus,
increasing the successors’ work load. To combat this
scenario, we assume that the data is embedded with a

device Λi that permits processor Pi to prove it received
no more than Λi work units1. When a processor Pi+1

receives too much work (i.e., Diα̂i > αi), it itself
computes the additional α̃i − αi units. When process-
ing is completed, processor Pi+1 notifies the root of
receiving additional load. It supports its claim by sub-
mitting Grievancei+1 = (Gi+1,Λi+1,dsm0(w̃i)). If
the claim is valid, offender Pi is penalized the sum
F + (α̃i+1 − αi−1)w̃i+1 and the victim Pi+1 is re-
warded F . In the next phase, the mechanism compen-
sates Pi+1 the amount (α̃i+1 − αi−1)w̃i+1 for the ad-
ditional work it performed.

Phase IV (Payment computation) Processor Pi (i =
0, . . . ,m) computes its own payment. Processor P0

behaves obediently and thus does not require a bonus
to obey the mechanism. The mechanism reimburses
processor P0 for the work it performed. The utility U0

of P0 is

U0(α0, w̃0) = V0(α0, w̃0) + C0(α0, w̃0), (4.3)

where V0(α0, w̃0) = −α0w̃0 and C0(α0, w̃0) =
α0w̃0. Therefore, U0 = 0. The goal of processor Pj

(j = 1, . . . , m) is to maximize its utility. The utility
Uj of processor Pj is

Uj = Vj(α̃j , w̃j) + Qj(αj , α̃j , wj−1, w̄j , wj , w̃j)
(4.4)

where

Vj(α̃j , w̃j) = −α̃jw̃j (4.5)

is the valuation function. The payment function Qj is

Qj(αj , α̃j , wj−1, w̄j , wj , w̃j) =(
0 if α̃j = 0,

Cj(αj , α̃j , w̃j) + Bj(αj , wj−1, w̄j , wj , w̃j) if α̃j > 0,

(4.6)

where

Cj(αj , α̃j , w̃j) = αjw̃j + Ej(αj , α̃jw̃j) (4.7)

is the compensation function and

Ej(αj , α̃j , w̃j) =

(
0 if α̃j < αj ,

(α̃j − αj)w̃j if α̃j ≥ αj ,
(4.8)

1Data preparation is an example of a simple Λi. We divide the data
into equal-sized blocks and then append to each a unique, random identi-
fier. The identifier space must be large enough so that the probability of
an agent successfully guessing a valid identifier is small. Submitting the
identifiers allows Pi to show the amount of data it received.

is the recompense function that reimburses overloaded
processors for performing additional work. The bonus
function is

Bj(αj , wj−1, w̄j , wj , w̃j) =

wj−1 − w̄j−1(α((wj−1, w̄j)), (wj−1, ŵj)).
(4.9)

The function w̄j−1(α((wj−1, w̄j)), (wj−1, ŵj)) is the
processing time of the equivalent processor comprising
Pj−1 and its successors adjusted for the actual process-
ing time of Pj , where

ŵm = w̃m (4.10)

and

ŵk =

{
α̂kw̃k if w̃k ≥ wk,

w̄k if w̃k < wk,
(4.11)

for k = 1, . . . ,m − 1. The processing time ŵj is the
bid time of the equivalent processor comprising Pj and
its successors adjusted for the actual performance of
Pj . The time ŵj is dominated by the performance of
processor Pj when it runs slower than bid (w̃j > wj);
if Pj runs faster (w̃i < wi), the equivalent processing
time remains unchanged. Processor Pi saves

Proofj =(Gj ,dsmj+1(w̄j−1),dsmj(wj),
dsm0(w̃j),Λj)

(4.12)

as evidence of correct payment computation. Proces-
sor Pj submits bill Qj to the payment infrastructure.
With probability q, where 0 < q ≤ 1, the root requests
Proofj from Pj . If Pj fails to provide a valid proof, it
is penalized F/q.

This concludes the descriptions of the DLS-LBL mech-
anism. The mechanism as described is valid for selfish-but-
agreeable agents but not for selfish-and-annoying agents. A
selfish-but-agreeable agent will deviate from the algorithm
only if it strictly improves its welfare, while a selfish-and-
annoying agent will only follow the prescribed algorithm if
it is the only action that maximizes its welfare. The selfish-
and-annoying processors will subvert the mechanism by
performing undesirable actions (e.g., corrupting data, send-
ing the same data set to multiple children, etc.) where their
behavior is not constrained by incentives or penalties. If the
load is associated with a problem where the solution can be
verified (e.g., searches, factorizations), we can easily amend
the mechanism to tolerate selfish-and-annoying processors.
We begin by altering (4.6) to

Qj(αj , α̃j , wj−1, w̄j , wj , w̃j) =


0 if α̃j = 0,

Cj(αj , α̃j , w̃j)+
Bj(αj , wj−1, w̄j , wj , w̃j) + S if α̃j > 0,

(4.13)

where S is the solution bonus. S = 0 if a solution is not
found and S = s if a solution is found. The bonus s is
a small, positive quantity that rewards agents for following
the given algorithm. Selfish-and-annoying agents will not
risk the loss of s; hence, they will not deviate from the pre-
scribed algorithm.

5. DLS-LBL Properties

In this section we study the properties of DLS-LBL. We
first prove the strategyproofness of the mechanism.

Lemma 5.1. A selfish-but-agreeable processor will be fined
for deviating from the DLS-LBL mechanism.

Proof. Let Pi be a selfish-but-agreeable agent. A selfish-
but-agreeable agent will deviate from the algorithm if the
action is beneficial, i.e., U ′

i > Ui, where U ′
i is the utility of

a deviating Pi. Processor Pi may deviate from the algorithm
by: (i) sending contradictory messages in Phase I or II, (ii)
incorrectly computing w̄i in Phase I or Di+1 in Phase II,
(iii) decreasing its work load (α̃i < αi) and thus increas-
ing its successors’ work loads (Di(1 − α̃i) > Di(1 − αi)
in Phase III, (iv) overcharging in Phase IV, or (v) falsely
accusing another of cheating in Phase I, II, and III. Pro-
cessor Pi will not deviate in other fashions (e.g., corrupt-
ing data) because there is no benefits to do so. We com-
bat these situations by rewarding processors who report de-
viants. In any instance that a deviant is caught, it is penal-
ized a sum greater than any profits attainable by cheating.
We now show that for each case, the mechanism detects
cheating processors. In case (i), the recipient will report
Pi. In case (ii), the successor Pi+1 validates the values in
message Gi+1. If inconsistencies are discovered, Pi+1 re-
ports Pi. In case (iii), successor Pi+1 reports Pi for receiv-
ing the additional load. In case (iv), the fine F/q, where
0 < q ≤ 1 is the probability of challenge, is the deterrent
for overcharging. The complete proof for case (iv) can be
found in [17]. In case (v), processor Pi does not have the
evidence to substantiate its claim and thus it is fined.

Lemma 5.2. A processor receives a fine only if it has devi-
ated from DLS-LBL.

Proof. Processor Pi is fined for either deviating from the
protocol or another processor Pj (i �= j) produces contra-
dictory messages signed by Pi. In the first case, Pi clearly
deviates from the algorithm. In the second case, Pj signs
the messages either by successfully forging Pi’s signature
or by possessing private key SKi. We assume that the forg-
ing of signatures is impossible. Processor Pj obtains SKi

either by Pi sharing it or by stealing it from Pi. It is a vio-
lation of the mechanism for a second party to possess SKi.
Thus, Pi is fined for protocol deviation.

Theorem 5.1. (Selfish-but-Agreeable Agent Compliance) A
selfish-but-agreeable processor does not have incentives to
deviate from DLS-LBL.

Proof. Following from Lemma 5.1 and 5.2, a selfish-but-
agreeable processor Pi will be fined for and only for deviat-
ing. The fine is larger than any profits attainable by cheating
and thus will abate any willingness to cheat. Therefore, the
processor Pi will not deviate.

Theorem 5.2. (Selfish-and-Annoying Agent Compliance) A
selfish-and-annoying agent does not have incentives to de-
viate from DLS-LBL if the solution bonus function is em-
ployed.

Proof. Let processor Pi be a selfish-and-annoying agent.
Theorem 5.2 handles the cases in which deviation is ben-
eficial, i.e., U ′

i > Ui, where U ′
i is the utility of the devi-

ating Pi. Processor Pi will deviate as long as there is no
reduction in utility, i.e., U ′

i = Ui. Examples include Pi

corrupting data or sending the same data to different chil-
dren. These actions reduce the probability of obtaining a
solution and thus, reduce the probability of receiving the
solution bonus. Processor Pi is welfare maximizing; hence,
it will not choose to perform such actions. Therefore, pro-
cessor Pi does not have incentives to deviate from the mech-
anism.

Lemma 5.3. The mechanism is strategyproof if the proces-
sors do not deviate from the algorithm.

Proof. The utility Ui of processor Pi is

Ui = Vi + Qi = −α̃iw̃i + αiw̃i + (α̃i − αi)w̃i+
wi−1 − w̄i−1(α((wi−1, w̄i)), (wi−1, ŵi)).

(5.1)

We assume that the processors do not deviate from the algo-
rithm and thus, abide by the computed load allocation, i.e.,
α̃i = αi. The utility Ui is

Ui = wi−1 − w̄i−1(α((wi−1, w̄i)), (wi−1, ŵi)). (5.2)

We consider two cases:

(i) w̃i = ti, i.e., processor Pi computes the load at
full capacity. Assume Pi is a terminal processor. If Pi bids
its true value we

i = ti, then its utility Ue
i is

Ue
i = wi−1 − w̄i−1(α((wi−1, ti)), (wi−1, ti))

= wi−1 − w̄e
i−1.

(5.3)

If Pi bids lower (wl
i < ti), then its utility U l

i is

U l
i = wi−1 − w̄i−1(α((wi−1, w

l
i)), (wi−1, ti))

= wi−1 − w̄l
i−1.

(5.4)

We want to show Ue
i ≥ U l

i , which reduces to showing
w̄e

i−1 ≤ w̄l
i−1. By the LINEAR BOUNDARY-LINEAR

algorithm, we know that α((wi−1, ti)) is optimal. By bid-
ding lower than the true vale, Pi is assigned more load and
the other processors are assigned less load. The greater
load will increase the execution time of Pi and increase the
equivalent processing rate such that w̄e

i−1 ≤ w̄l
i−1. There-

fore, Ue
i ≥ U l

i . The other possibility is that Pi bids higher
(wh

i > ti). Its utility Uh
i is

Uh
i = wi−1 − w̄i−1(α((wi−1, w

h
i)), (wi−1, ti))

= wi−1 − w̄h
i−1.

(5.5)

Similar to above, we want to show Ue
i ≥ Uh

i . Bidding
higher than the true value results in reduced load to Pi and
increased load to the other processors. Since α((wi−1, ti))
is optimal, w̄e

i−1 ≤ w̄h
i−1 and thus, Ue

i ≥ Uh
i .

We now assume Pi to be an interior processor. If Pi bids
its true value (we

i = ti), then its utility Ue
i is

Ue
i = wi−1 − w̄i−1(α((wi−1, w̄

e
i)), (wi−1, w̄

e
i))

= wi−1 − w̄i−1(α((wi−1, w̄
e
i)), (wi−1, α̂

e
i ti))

= wi−1 − w̄e
i−1

(5.6)

where w̄e
i is the processing rate of equivalent processor Pi.

If Pi bids lower (wl
i ≤ ti), then its utility U l

i is

U l
i = wi−1 − w̄i−1(α((wi−1, w̄

l
i)), (wi−1, α̂

l
iw

l
i))

= wi−1 − w̄l
i−1

(5.7)

where w̄l
i is the equivalent processing rate of Pi. We know

that α((wi−1, w̄
e
i)) is the optimal allocation by the LIN-

EAR BOUNDARY-LINEAR algorithm. By bidding lower,
Pi is assigned more load, i.e., αl

i ≥ αe
i . The performance

of the network is constrained by Pi. Thus, w̄e
i−1 ≤ w̄l

i−1

which proves Ue
i ≥ U l

i . Finally, if Pi bids higher (wh
i ≥

ti), then its utility Uh
i is

Uh
i = wi−1 − w̄i−1(α((wi−1, w̄

h
i)), (wi−1, w̄i))

= wi−1 − w̄h
i .

(5.8)

where w̄h
i = αh

i wh
i . We know that α((wi−1, w̄

e
i)) is the

optimal allocation. By bidding higher, less load is assigned
to Pi and more load is assigned to the other processors thus
reducing the performance. This results in w̄e

i ≤ w̄h
i ; hence,

Ue
i ≥ Uh

i .

(ii) w̃i > ti, i.e., processor Pi computes the load
slower than its full processing capacity. A similar argument
as in case (i) applies.

Theorem 5.3. (Strategyproofness) The DLS-LBL mecha-
nism is strategyproof.

Proof. Lemma 5.3 states that the mechanism is strate-
gyproof as long as the processors do not deviate. The pro-
cessors, by Theorem 5.1 and 5.2, do not have incentives to
deviate. Therefore, the mechanism is strategyproof.

We now show that the mechanism satisfies the voluntary
participation condition.

Lemma 5.4. If the processors do not deviate from the pro-
tocol, the DLS-LBL mechanism satisfies the voluntary par-
ticipation condition.

Proof. The utility Ui (i = 1, . . . ,m− 1) of an interior pro-
cessor Pi when it bids its true value is

Ui = wi−1 − w̄i−1(α((wi−1, w̄i)), (wi−1, α̂iti)). (5.9)

The utility Um of the terminal processor Pm when it bids
its true value is

Um = wm−1−
w̄m−1(α((wm−1, w̄m)), (wm−1, tm)).

(5.10)

The load allocation α((wj−1, w̄j)), for j = 1, . . . , m, is
optimal. We know that w̄j−1 = α̂j−1wj−1, where 0 <
α̂j−1 ≤ 1. Therefore, w̄j−1 ≤ wj−1 and Uj ≥ 0.

Theorem 5.4. (Voluntary Participation) The DLS-LBL
mechanism satisfies the voluntary participation condition.

Proof. Lemma 5.4 states that the mechanism satisfy the
voluntary participation condition as long as no deviation oc-
curs. We know by Theorem 5.1 and 5.2 that processors are
unwilling to deviate. Therefore, the mechanism satisfies the
voluntary participation condition.

6. Conclusion

In this paper we proposed a strategyproof mechanism,
DLS-LBL, for scheduling divisible loads in linear networks.
Load origination in a linear network occurs at the root pro-
cessor. It is either a terminal processor or an interior pro-
cessor. The DLS-LBL mechanism schedules loads when
the root is a terminal processor. Through the use of incen-
tives, processors report their true parameters and process
their assignments at full capacity. Additional incentives are
provided for reporting processors that deviate from the algo-
rithm. A processor will readily report a deviant in order to
receive a reward. The deviants are penalized a sum greater
than any profits attainable by cheating, which dissuades
them from attempting it. Besides being strategyproof, the
mechanism also satisfies the voluntary participation condi-
tion. All truthful processors will obtain non-negative utility
and thus will participate in hope of profits.

Our plan for future work is to propose and study mecha-
nisms for different network architectures under various as-
sumptions. The goal is to achieve a cohesive theory com-
bining DLT with incentives.

References

[1] A. Archer and E. Tardos. Truthful mechanism for one-
parameter agents. In Proc. of the 42nd IEEE Symp. on Foun-
dations of Computer Science, pages 482–491, Oct. 2001.

[2] O. Beamount, L. Marchal, V. Rehn, and Y. Robert. FIFO
scheduling of divisible loads with return messages under the
one-port model. In Proc. of the 20th IEEE International
Parallel and Distributed Processing Symp., Apr. 2006.

[3] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and
Y. Yang. Scheduling divisible loads on star and tree net-
works: Results and open problems. IEEE Trans. Parallel
and Distributed Syst., 16(3):207–218, Mar. 2005.

[4] W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau. Using
high-speed WANs and network data caches to enable remote
and distributed visualization. In SC2000: High Performance
Networking and Computing, Nov. 2000.

[5] V. Bharadwaj and G. Barlas. Access time minimization for
distributed multimedia applications. Multimedia Tools and
Applications, 12(2-3):235–256, Nov. 2000.

[6] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi.
Scheduling Divisible Loads in Parallel and Distributed Sys-
tems. IEEE Computer Society Press, Los Alamitos, CA,
USA, 1996.

[7] V. Bharadwaj, D. Ghose, and T. G. Robertazzi. Divisible
load theory: A new paradigm for load scheduling in dis-
tributed systems. Cluster Computing, 6(1):7–17, Jan. 2003.

[8] J. Blazewicz, M. Drozdowski, and M. Markiewicz. Divisible
task scheduling - concept and verification. Parallel Comput-
ing, 25(1):87–98, Jan. 1999.

[9] T. E. Carroll and D. Grosu. A strategyproof mechanism for
scheduling divisible loads in tree networks. In Proc. of the
20th IEEE International Parallel and Distributed Process-
ing Symp., Apr. 2006.

[10] S. Chan, V. Bharadwaj, and D. Ghose. Large matrix-vector
products on distributed bus networks with communication
delays using the divisible load paradigm: Performance and
simulation. Mathematics and Computers in Simulation,
58:71–92, 2001.

[11] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker.
A BGP-based mechanism for lowest-cost routing. In Proc.
of the 21st ACM Symp. on Principles of Distributed Com-
puting, pages 173–182, July 2002.

[12] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Shar-
ing the cost of multicast transmissions. Journal of Computer
and System Sciences, 63(1):21–41, Aug. 2001.

[13] J. Feigenbaum and S. Shenker. Distributed algorithmic
mechanism design: Recent results and future directions. In
Proc. of the 6th ACM Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, pages
1–13, Sept. 2002.

[14] D. Grosu and T. E. Carroll. A strategyproof mechanism for
scheduling divisible loads in distributed systems. In Proc.
of the 4th International Symp. on Parallel and Distributed
Computing, pages 83–90. IEEE Computer Society Press,
July 2005.

[15] D. Grosu and A. T. Chronopoulos. Algorithmic mecha-
nism design for load balancing in distributed systems. IEEE

Trans. Systems, Man and Cybernetics - Part B: Cybernetics,
34(1):77–84, Feb. 2004.

[16] X. Li, V. Bharadwaj, and C. Ko. Distributed image process-
ing on a network of workstations. Intl. Journal of Computers
and Their Applications, 25(2):1–10, 2003.

[17] J. C. Mitchell and V. Teague. Autonomous nodes and dis-
tributed mechanisms. In Proc. of the Mext-NSF-JSPS Inter-
national Symp. on Software Security - Theories and Systems,
pages 58–83, Nov. 2003.

[18] N. Nisan and A. Ronen. Algorithmic mechanism design.
Games and Economic Behaviour, 35(1/2):166–196, Apr.
2001.

[19] T. G. Robertazzi. Ten reasons to use divisble load theory.
IEEE Computer, 36(5):63–68, May 2003.

[20] W. E. Walsh, M. P. Wellman, P. R. Wurman, and J. K.
MacKie-Mason. Some economics of market-based dis-
tributed scheduling. In Proc. of the 18th IEEE International
Conference on Distributed Computing Systems, pages 612–
621, May 1998.

[21] Y. Yang, K. van der Raadt, and H. Casanova. Multiround
algorithms for scheduling divisible loads. IEEE Trans. Par-
allel and Distributed Syst., 16(11):1092–1102, Nov. 2005.

