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Abstract

At the core of contemporary high performance computer
systems is the communication infrastructure. For this rea-
son, there has been a lot of work on providing low-latency,
high-bandwidth communication subsystems for clusters. In
this paper, we introduce MultiEdge, a connection oriented
communication system designed for high-speed commodity
hardware. MultiEdge provides support for end-to-end flow-
control, ordering, and reliable transmission. It transpar-
ently supports multiple physical links within a single con-
nection.

We use MultiEdge to examine the behavior of edge-based
protocols using both micro-benchmarks and real-life shared
memory applications. Our results show that MultiEdge is
able to deliver about 88% of the nominal link throughput
with a single 10-GBit/s link and more than 95% with mul-
tiple 1-GBit/s links. Our application results show that per-
forming all of the communication protocol at the edge does
not seem to cause any degradation in performance.

1. Introduction

Communication infrastructure for scalable systems has
recently gone through a wave of commoditization. Most
scalable systems today, such as parallel systems for scien-
tific and commercial applications rely on interconnects that
plug in the I/O bus and are designed independently of the
system motherboard and CPU [1, 8, 23].

However, such communication subsystems require not
only the use of specialized network interface cards (NICs)
but switches as well. The result is that scalable systems
need to employ multiple interconnects for different pur-
poses. Typically, such systems are already interconnected
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with high-end Ethernet-based networks. In addition, they
require independent interconnects for different application
domains. This physical partitioning of systems based on
their connectivity, results in excessive system costs and
management complexity.

An important problem today is to examine whether it
is possible to build communication infrastructure that does
not require physical partitioning of nodes based on the in-
terconnect type. To achieve this we need to examine if dif-
ferent communication protocols may be provided on top of
the same physical interconnect and still satisfy different ap-
plication domains.

The main difference of communication subsystems tra-
ditionally used in scalable systems has been the degree of
support required from the network for the communication
protocol. Based on this, we can divide interconnects in two
categories: core-based and edge-based.

Most cluster interconnects are core-based, e.g. Myri-
net [8], Infiniband [1], and Quadrics [23]. These intercon-
nects rely on the network core, i.e., the switches for pro-
viding FIFO ordering, flow-control, and reliable communi-
cation. On the other hand, edge-based interconnects, such
as Ethernet, incorporate all “intelligence” at the networked
edge, i.e., NICs and hosts, and only simple forwarding func-
tions are required from the network core.

An emerging aspect of high-end communication subsys-
tems that may further blur differences is the use of spatial
parallelism. Spatial parallelism is a new dimension in the
design of high-end interconnects that uses multiple phys-
ical paths in a decoupled manner to carry the traffic of a
single, end-to-end communication channel. Multiple links
are already used today in high-end communication systems
for byte-level parallelism: A single data unit sliced in bytes,
is transmitted over multiple physical links that are tightly
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controlled by the sender and the receiver. However, as the
number of links increases, it becomes difficult to control the
links tightly and to achieve efficient byte-level parallelism.

Another approach to exploiting spatial parallelism is to
transparently send full frames on top of separate links.
We believe that, for technology reasons similar to multi-
core CPUs, the use of spatial parallelism in this decou-
pled manner will be a main factor in improving commu-
nication throughput. However, such systems may exhibit
increased congestion, out-of-order delivery, and impose in-
creased processing demands at the edge of the communica-
tion subsystem.

Given the lower cost and proliferation of edge-based net-
works, such as 1- and 10-Gigabit Ethernet, it becomes im-
portant to examine protocol layers that can support tradi-
tional end-to-end communication semantics and spatial par-
allelism for serving different application domains.

In this work, we study the network traffic in high
throughput, commodity edge-based networks. We also
study the impact of spatial parallelism on the network traffic
and system performance.

To this end we first present the design and implemen-
tation of an edge-based communication subsystem, Multi-
Edge, which uses Ethernet and provides RDMA-type oper-
ations, FIFO ordering, reliable transmission, and supports
spatial parallelism. We also present a novel communication
API that allows users to send data out-of-order in a single
communication channel.

Then, we use MultiEdge to examine in detail the impact
of edge-based protocols on network traffic and system per-
formance. We present a detailed analysis of the extra traf-
fic induced due to reordering, congestion, and spatial par-
allelism, both with micro-benchmarks and real applications
on a a cluster of 16 dual-processor nodes. We present re-
sults over a single 1-GBit/s link, two 1-GBit/s links, and a
single 10-GBit/s link.

Our micro-benchmark results show that MultiEdge is
able to deliver about 88% of the nominal link throughput
with 10-GBit/s links and more than 95% with 1-GBit/s links
and that minimum latency is about 30µs. Our application
results show that performing all communication protocol at
the edge does not seem to impose any particular overheads
for the size of the systems we examine. Also, even for ap-
plications such as FFT and Radix that induce a lot of bursty
communication, there is only a small percentage of control
traffic and retransmitted data. Finally, MultiEdge does ex-
pose the full throughput of multiple 1-GBit/s links to appli-
cations, however, the applications we examine are not able
to benefit from this.

Overall, our work shows that edge-based protocols have
the potential for significantly reducing the cost of scalable
systems in the range of a few hundred nodes. The contribu-
tions in this paper: (i) The design of MultiEdge and its fea-

tures for achieving high-throughput at low CPU utilization.
(ii) The introduction of decoupled spatial parallelism in the
communication subsystem for a single end-to-end commu-
nication channel. (iii) The detailed analysis of edge-based
protocols, using MultiEdge on top of 1- and 10-GBit/s links
using both micro-benchmarks and real applications.

The rest of this paper is organized as follows. Sec-
tion 2 presents the design and implementation of MultiEdge.
Sections 3 and 4 present our experimental setup and a de-
tailed performance analysis of MultiEdge using both micro-
benchmarks and real applications. We discuss related work
in Section 5. Finally, we draw our conclusions in Section 6.

2. Design

In this section, we introduce the design of MultiEdge.
We start with an overview of the design and the program-
ming API and then continue with detailed description of the
end-to-end support for flow control, ordering, spatial paral-
lelism, and optimizations.

2.1. Overview

MultiEdge is organized in three layers: the hardware
drivers, the kernel level protocol layer, and a user-level li-
brary, see Figure 1. The Ethernet hardware drivers access
the Ethernet hardware directly and provide a hardware inde-
pendent interface to the protocol layer. The drivers perform
simple low-level access to hardware such as hardware ini-
tialization, Ethernet frame reception and transmission, and
low-level interrupt processing. The protocol layer is hard-
ware independent, implements the programming API and
adds higher level functionality such as end-to-end flow con-
trol, reliable data transfer, and high-level interrupt process-
ing.

In the current implementation of MultiEdge, the proto-
col layer is implemented as a Linux kernel character de-
vice driver and has support for Broadcom Tigon 3, Intel
PRO/1000 and Myricom 10 Gigabit Ethernet hardware.

2.2. Communication Primitives

MultiEdge provides a set of point-to-point, connection-
oriented communication primitives; Before any communi-
cation can occur between two nodes, a connection has to be
set up between the nodes. The programming API of Multi-
Edge has a set of primitives for this purpose.

Once a connection is set up, communication is based on
fully asynchronous remote memory operations. Currently,
two operations are defined: remote read and remote write.
Each operation can access all the virtual address space of a
process executing on a remote node. Operations are initi-
ated through a single communication primitive:



int RDMA_operation(connection,
remote_virtual_address,
local_virtual_address,
transfer_size, operation, flags);

The parameters are, in order: the connection on which
the operation is initiated; the virtual addresses for the op-
eration on the remote and local nodes respectively; the size
of the data in bytes; the type of operation; and a bit-field
of various options that modify the behavior of operations.
For example, the API provides a mechanism to deliver a
notification to the remote node when selected remote mem-
ory write operations have finished. This mechanism is con-
trolled through one of the option bits in the flags bit-field.

Each operation can also, when initiated, return a han-
dle. The programmer can query the progress of each issued
operation using the operation handle and a set of API prim-
itives.

Finally, one important aspect of MultiEdge’s API is that
although the API includes primitives for registering mem-
ory regions, receive buffers need not be pre-registered. Data
is instead copied directly into the virtual address space of
the receiver.

2.3. Data Transfer Path

The data transfer path for a remote memory write is out-
lined in Figure 1. The flow on the initiator side is as fol-
lows: i) The application invokes the RDMA_operation in
the user level library; ii) The user-level library issues a sys-
tem call to pass control to the kernel level protocol layer;
iii) The protocol layer copies the data in the memory re-
gion to be written to remote memory from user level to a
kernel-level, DMA-capable buffer and constructs an Ether-
net header; iv) A transmit primitive is invoked on an Ether-
net hardware driver and DMA is used to transport data out
of memory and into the NIC.

When a frame is received, the Ethernet hardware uses
DMA to copy the frame data to kernel level DMA capable
buffers, marked as (1) in Figure 1. After the DMA trans-
fer is complete, an interrupt is issued and an interrupt han-
dler is invoked by the kernel (marker 2). The interrupt han-
dler performs a few low-overhead tasks, such as updating
hardware registers and then signals the protocol layer. All
high-overhead operations are performed by a kernel level
thread, which is waken up by the protocol layer (marker 3).
The thread copies data from the kernel-level DMA buffers
to user level (marker 4) before returning to sleep (marker 5).

2.4. Flow Control

MultiEdge uses end-to-end flow control to ensure reli-
able communication. All operations and transfers are guar-
anteed to complete in the presence of dropped Ethernet

frames due to transient problems, e.g. contention, bit er-
rors, or transient link failures. We use a sliding window
flow control algorithm with a fixed size window. The flow
control algorithm operates on an Ethernet frame basis. The
size of the window is set at compile time.

The receive path uses positive acknowledgments to no-
tify the sender of received frames and negative acknowledg-
ments to report back lost or damaged frames that need to
be retransmitted. MultiEdge uses piggy-backing to reduce
the number of explicit acknowledgments. All data frames
carry positive acknowledgement information. To further re-
duce the number of explicit acknowledgements, MultiEdge
uses delayed acknowledgements: it will defer transmission
of explicit positive or negative acknowledgements until af-
ter a number of frames have been received or dropped or a
time-out occurs.

Finally, to ensure data is delivered even in corner cases,
such as link failures and lost acknowledgments, the sender
will retransmit the last transmitted Ethernet frame if it
has not received a positive acknowledgment for that frame
within a coarse-grain timeout period.

2.5. Spatial Parallelism

MultiEdge can make use of multiple network interfaces
within a single communication channel. Whenever a frame
needs to be transmitted, MultiEdge will use one of the avail-
able network interfaces based on a load-balancing policy.
We currently use a round-robin policy. Thus, frames may
be delivered out of order.

Frames belonging to remote memory operations that
need not be ordered with respect to other operations, may be
processed at the receive path as soon as they arrive without
need for buffering. However, we believe that, to be mean-
ingful, out-of-order delivery can not be done indiscrimi-
nately. To support both in-order and out-of-order delivery
we extend the communication API to support the following
operation flags:

• Backward fence: This remote memory operation will
be performed on the destination node only after all pre-
vious operations issued by this source node to the same
destination have been performed.

• Forward fence: Any subsequent operation issued by
this source node to the same destination will be per-
formed only after this operation has been performed.

These flags are orthogonal and so a single operation can
specify both flags. The default behavior is to allow oper-
ations, and all their data frames, to be freely re-ordered.
To specify ordering constraints, the programmer uses the
flags bit-field of the RDMA_operation API call. Indi-
vidual frames originating from the same, or even different,
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Figure 1. Overview of MultiEdge layers (left) and data transfer path (right).

operations can be re-ordered with respect to each other if
only the semantics of the operation flags are upheld.

2.6. Reducing Overheads

A major concern at high network speeds is how to re-
duce software overheads so that the data rates can be used
efficiently. In particular, interrupts induce a significant over-
head in modern operating systems. The design of Multi-
Edge tries to minimize interrupts both in the send as well as
the receive path in the following way: When an interrupt
arrives, the interrupt handler disables subsequent interrupts
and notifies the protocol layer. When the receive or send
protocol path is invoked by an interrupt handler, it processes
all pending interrupt related events, e.g. send frame com-
pletions or newly received frames, by polling each network
interface. The protocol layer enables interrupts when there
are no more interrupt related events and no protocol kernel
thread is active.

3. Experimental Setup

We evaluate MultiEdge using a cluster of 16 nodes
equipped with dual Opteron 244 1.8 GHz processors. The
nodes are connected with D-Link DGS-1024T switches.
The switch firmware used does not support jumbo Ethernet
frames. Each node uses a Tyan S2892 motherboard with
1 GByte of main memory and two Broadcom Tigon 3, 1-
GBit/s Ethernet interfaces. We use Debian Etch as operat-
ing system with a Linux version 2.6.12.6 kernel compiled
with GCC 4.0.4.

We also use a smaller setup with four nodes equipped
with one Myricom 10G-PCIE-8A-C card each. These four
nodes are otherwise identical to the nodes in the aforemen-
tioned cluster. The four 10-GBit/s Ethernet cards are inter-
connected with a HP ProCurve 6400cl J8433A 10 Gigabit
Ethernet switch.

We use the following system setups in our experiments:

• 1L-1G: Single 1-GBit/s link, where 16 nodes are con-
nected via a single 1-GBit/s Ethernet switch and NICs.

• 1L-10G: Single 10-GBit/s link, where 4 nodes are con-
nected via a single 10-GBit/s Ethernet switch and NIC.

• 2L-1G: Two 1-GBit/s links, where 16 nodes are con-
nected via two 1-GBit/s Ethernet switches and NICs.
In this setup, all frames are always delivered in-order.

• 2Lu-1G: Similar to 2L-1G, only we allow MultiEdge
to deliver frames out of order, when there are no order-
ing restrictions.

We evaluate MultiEdge using both three micro-bench-
marks as well as a realistic cluster programming environ-
ment. The three micro-benchmarks all use two nodes. They
are as follows:

ping-pong transfers data using remote memory writes be-
tween two nodes in a request-reply fashion. Request
and replies carry the same amount of data.

one-way performs sends of data in one direction only. The
sending node performs remote memory writes back-
to-back.

two-way in which both nodes performs simultaneous one
way transfers and exercises the send and receive paths
at the same time. To accurately reflect the amount of
data transfered in this benchmark, the throughput pre-
sented for this benchmark is the sum of the throughputs
of both nodes’ transfers.

We also use GeNIMA [5], a software DSM system that
provides a shared address space abstraction on top of our
cluster to run real-life applications. GeNIMA is a page-
based system that has been optimized for system area net-
works that support remote DMA operations. Software DSM



Application Problem Size Seq. Exec. Footprint
Time (ms) (MBytes)

Barnes-Spatial 128K/64K particles 2877713 120/45
FFT 222 complex values 4752 200
LU 8Kx8K matrix 412096 500
Radix 32M integers 4179 120
Raytrace Balls scene 1Kx1K 376096 210
Water-Nsquared 128K molecules 11678974 90
Water-Spatial 128K molecules 231889 80
Water spatialFL 128K mols 229586 80

Table 1. Benchmark applications.

systems impose requirements that are different and usu-
ally more demanding than those of message passing sys-
tems [17] which may be closer to the behavior of micro-
benchmarks. On top of GeNIMA we run a set of applica-
tions from the SPLASH-2 benchmark suite [29]. The ap-
plications and problem sizes we use are listed in Table 1.
The table also holds the working data set used in the ex-
periments for each application and the execution time of a
purely sequential version of each application. All applica-
tions as well as GeNIMA have been compiled with GCC
4.0.4 at optimization level -O2.

Previous versions of GeNIMA have only supported 32-
bit architectures. We port GeNIMA to MultiEdge and we
also extend its internal data structures to take advantage of
the 64-bit address space in our experimental platform. Sim-
ilarly, we port the applications to a 64-bit address space.
Our modifications do not alter application behavior in any
way.

For each application and system configuration we
present statistics at two levels. First, we use speedup curves
and execution time breakdowns to examine overheads in-
curred by MultiEdge. Then, we present network-level statis-
tics to examine how MultiEdge and edge-based protocols
behave with real-life workloads.

Although our nodes are equipped with two CPUs each,
in our experiments we use only one CPU for the application.
The second CPU is used for executing the communication
protocol. We choose to perform our analysis with using a
single CPU for the application because we believe that fu-
ture multicore CPUs will have enough cores available to
dedicate to protocol processing and thus, this setup is more
representative of future trends. However, we have also per-
formed experiments with using both CPUs for application
threads, but we do not include them here for space reasons
and because they do not offer any further insight with re-
spect to the results we are presenting.

4. Performance Evaluation

Figures 2(a,b) show latency and throughput for each
micro-benchmark. Latency in ping-pong reflects one-way
memory to memory time for each operation. We see that
minimum latency is about 30µs for 1L-10G. For one-way
and two-way this measurement reflects host overhead to ini-
tiate an operation. In both cases, minimum host overhead is
about 2µs and it is not affected by bi-directional traffic.

In terms of throughput, MultiEdge can fully utilize link
throughput in the 1L-1G and 2L-1G configurations deliver-
ing a maximum throughput of about 120 MBytes/s and 240
MBytes/s with one and two links respectively in all tests.

In 1L-10G the maximum throughput is about 1100
MBytes/s of the peek 1250 MBytes/s, or about 88%. This
is achieved with one-way. The reason for not reaching the
maximum of 1250 MBytes/s appears to be a higher-than-
expected overhead on the sender side. One part of the over-
head comes from the fact that the NIC does not allow us
to disable the interrupts on the send path that are used for
freeing send buffers, even when our polling technique is ef-
fective. We have verified that the flow-control scheme we
use does not limit the maximum throughput.

In ping-pong the maximum throughput is about 710
MBytes/s. This is partly due to the round-trip time of a
single operation and partly due to additional interrupt over-
head incurred with the specific NICs. In two-way, maxi-
mum throughput is about 1500 MBytes/s out of the 2500
MBytes/s combined peak throughput of the send and re-
ceive paths in each node.

Figure 2(c) shows the CPU utilization for the communi-
cation protocol. Maximum CPU utilization is plotted out of
200%, reflecting the existence of two CPUs in each node.
The values are indicative as we somewhat underestimate
CPU utilization as we cannot accurately measure context
switch overheads.

For one and two 1-Gbit/s link configurations we see that
in ping-pong CPU utilization is at most about 35% and for
operations less than 16 KBytes it is always less than 20%.
For one-way, CPU utilization is at most 30%. On the other
hand, two-way exhibits up to 140% for small operations.
However, even in this case, CPU utilization is at most 43%
for transfer sizes greater than 1K.

For 1L-10G, we see that the maximum CPU utilization in
ping-pong is about 75%, which corresponds to a maximum
throughput of about 710 MBytes/s. In one-way, maximum
CPU utilization is about 95%, corresponding to a maximum
throughput of about 1100 MBytes/s. Finally, two-way has a
maximum CPU utilization of about 170% as both the send
and receive path are operating concurrently. This corre-
sponds to about 750 MBytes/s in each path for a total of
about 1500 MBytes/s.

We have also studied in more detail what happens at



4 8 16 32 64 128 256 512 1K

ping-pong                 Transfer Size (bytes)

0

10

20

30

40

50

60

70

80

90

100

L
at

en
cy

 (
us

)

1L-10G-1T

1L-1G-1T

2L-1G-1T 

2Lu-1G-1T

4 8 16 32 64 128 256 512 1K

one-way                   Transfer Size (bytes)

0

2

4

6

8

10

4 8 16 32 64 128 256 512 1K

two-way                   Transfer Size (bytes)

0

2

4

6

8

10

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

ping-pong                 Transfer Size (bytes)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

T
hr

ou
gh

pu
t 

(M
B

/s
)

1L-10G-1T

1L-1G-1T

2L-1G-1T 

2Lu-1G-1T

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

one-way                   Transfer Size (bytes)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

two-way                   Transfer Size (bytes)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

ping-pong                 Transfer Size (bytes)

0

20

40

60

80

100

120

140

160

180

200

C
P

U
 U

ti
liz

at
io

n 
(%

)

1L-10G-1T

1L-1G-1T

2L-1G-1T

2Lu-1G-1T

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

one-way                   Transfer Size (bytes)

0

20

40

60

80

100

120

140

160

180

200

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

two-way                   Transfer Size (bytes)

0

20

40

60

80

100

120

140

160

180

200

Figure 2. MultiEdge latency (µs), throughput (MBytes/s) and CPU utilization for each micro-benchmark.

the network itself. All variants of the benchmarks run-
ning on single link incur almost no out-of-order delivery
at all. In multi-link configurations, the fraction is at most
45-50%, due to the round-robin scheduling of frames to
links. Our results indicate that frames arrive out-of-order
but closely spaced and thus, only a few frames may need
to be buffered on average. We measure the number of ex-
tra frames in the network generated by explicit, positive or
negative, acknowledgements and data retransmissions. We
see that in all cases the percentage of extra frames is at most
5.5%. Moreover, our experiments show that the number of
dropped frames is low and about 20% of the extra traffic.

4.1. Application Results

Figure 3 shows our results for the single 1-GBit/s link
setup. We can divide applications in three categories:

Barnes, Raytrace, and Water-Nsquared that scale well
with speedups in the range of 13-14 and exhibit low com-
munication and synchronization overheads.

Lu, Water-Spatial, and Water-SpatialFL that exhibit
medium speedups in the range of 6-8. Although larger
problem sizes may allow these applications to improve their
speedups, we do not examine this here, as absolute applica-
tion performance is not our main focus.

FFT and Radix exhibit poor scalability. They are both
known to cause very high processor-memory traffic, which
is translated to inter-node traffic. Radix has poor spatial lo-
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Figure 3. Application statistics over a single 1-GBit/s link (1L-1G).
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Figure 4. Application statistics over a single 10-GBit/s link (1L-10G).

cality generating a high amount of traffic and false sharing.
In FFT, the dominant part of the parallel overhead is remote
memory fetches which account for, on the average, roughly
77% of the overhead.

Looking at the network statistics in Figures 3(c,d,e) we
see that the CPU time spent in the MultiEdge protocol does
not exceed 11% even for the most communication and syn-
chronization intensive applications. For most applications
the time spent in MultiEdge is up to 4%. Also, between
10-40% of the frames cause interrupts at the send and re-
ceive paths. The additional traffic induced by MultiEdge is
at most 15% of the application traffic. Almost all of the ad-
ditional traffic is due to explicit acknowledgements rather
than retransmissions. Similar to the micro-benchmarks for
the 1L setups, the amount of out-of-order data delivery is
almost always close to zero (not shown).

In the single, 10-GBit/s link setup (Figure 4) we see
that most applications, except FFT and Radix, achieve good

speedups in the range of 3 to 4. This is mainly due to the
small number of nodes in our setup. Compared to the 1L-
1G setup (Figure 3), synchronization and data wait time im-
prove across applications by about a factor of two on most
applications. Radix and FFT still spend a significant por-
tion of execution time in communication and barrier syn-
chronization.

Figure 5 shows our results when using two links and all
network operations are strictly ordered. We note that appli-
cation speedups and execution times are similar to 1L-1G
(we show only execution time breakdowns). Data wait and
synchronization time improve only for Radix, which how-
ever, still exhibits, poor scalability.

Figures 5(b,c,d,e) present network-level statistics for this
setup. Similar to the 1L-1G setup, we see that CPU time
spent in the send and receive paths of MultiEdge is at most
12% for the applications that exhibit the highest commu-
nication to computation ratio, FFT and Radix, and which
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Figure 5. Application statistics over two 1-GBit/s links (2L-1G).

exhibit the poorest scalability. This indicates that communi-
cation protocol overhead is not a significant factor for most
applications.

The number of frames received out of order are signifi-
cantly higher than the 1L setup, which agrees with micro-
benchmark results. Between 10-50% of the frames are
not received in order, resulting in a re-ordering every 2-10
frames. However, the additional traffic induced by Multi-
Edge in the form of explicit acknowledgements and data
retransmissions is at most 10% of the transmitted frames in
Raytrace and Water-Nsquared and at most 4% in all other
applications, indicating that the additional traffic due to con-
gestion and transient errors is very low. Finally, between
10-35% of frames in the send and receive path generate in-
terrupts, resulting effectively in a total coalescing factor of
about 3-10.

Figure 6 shows our results for two 1-GBit/s links when
data is allowed to be delivered out-of-order. For these ex-
periments, we modify the GeNIMA protocol using the com-
munication API extensions and we enforce ordering only
between necessary operations, rather than all operations be-
tween each pair of nodes. We see that this does not have
a significant impact on application performance. However,
we are interested more in the possible impact of reordering
at the network protocol level. Our measurements show that
the network level statistics are very close to those for or-
dered operations. Thus, overall, reducing the amount of or-
dering applications, or GeNIMA, impose on operations does
not alter communication protocol behavior in any signifi-
cant manner.

5. Related Work

There has been extensive previous work in improving
base communication performance by enabling user-level
communication, eliminating copies of data, and reducing
host overheads and context switches [4, 11, 14, 22, 24, 27].
Also, there has been work on network interface architec-
tures and support for high-performance cluster communi-
cation [1, 6, 7, 8, 15, 16, 23]. Finally, previous work has
evaluated low-latency, high-speed interconnects in various
contexts [2, 18, 19]. Our work differs from these efforts
and builds on previous work in two important ways: (a)
We advocate kernel-level, edge-based communication sub-
systems that provide high level semantics and transparency,
important for commercial applications and (b) we introduce
spatial parallelism and examine the impact on edge-based
protocols using both micro-benchmarks and real applica-
tions.

Previous efforts that are related to our work in terms
of the underlying platform include [25, 28]. The authors
in [28] provide a communication protocol, UNet, on top of
Fast Ethernet and ATM interconnects. Their goal is to pro-
vide high-bandwidth, low-latency communication on top
of commodity interconnects. They focus on data transfers
and describe how they can be performed directly from user
space when the NIC provides a programmable CPU and
what support is required at the kernel-level for less aggres-
sive NICs. The authors in [25] present a user-level, zero-
copy protocol design and implementation on top of 1 GBit/s
Ethernet. They achieve a minimum latency of 23 µs and a
maximum bandwidth of 880 MBits/s, close to our kernel-
level protocol over a single 1 GBit/s link. In our work we
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Figure 6. Application statistics over two 1-GBit/s links allowing out-of-order data delivery (2Lu-1G).

examine 1- and 10-GBits/s links, multiple links, and we
present detailed network statistics on the impact of edge-
based protocols on network traffic.

M-VIA is an implementation of the Virtual Interface Ar-
chitecture (VIA) [13] over Gigabit Ethernet networks. It
only supports single network interfaces. Moreover, previ-
ous work with M-VIA has only examined performance is-
sues on 1 GBit/s Ethernet networks. The authors in [3] ex-
amine the base send/receive performance of VIA on native
and Ethernet implementations. They find that 1 GBit/s Eth-
ernet implementations of VIA have the potential of deliver-
ing higher throughput than TCP/IP-based protocols. How-
ever, native VIA implementations provide about 30-60%
better throughput. The authors in [21] compare various
MPI implementations in a cluster interconnected with Gi-
gabit Ethernet. The MPI implementations rely either on
TCP/IP or a VIA-type substrate for basic communication
capabilities. They find that using TCP/IP imposes signifi-
cant overheads and that VIA-type base communication on
top of Gigabit Ethernet has significant potential for improv-
ing MPI performance.

Our multi-link approach bears similarity with inverse
multiplexing [9, 12] that has been proposed to improve
the end-to-end throughput of wide range connections. Al-
though the concept is similar, the tradeoffs and required
mechanisms in our setup, i.e., scalable systems, are very
different.

Previous work has examined issues in building multirail
network configurations. The authors in [10] use simulation
to examine rail allocation methods in multi-stage, cluster-
based networks. They find that certain allocation methods
can result in significant improvements in latency and band-
width. In contrast, we aim to examine in a real system the
overheads and benefits of using multiple rails on edge-based
communication subsystems. The authors in [20] examine
how multiple rails can be used in Infiniband interconnects
under MPI. Our work on one hand uses Ethernet as the in-
terconnect and on the other hand is more transparent in that
all higher system layers are able to take advantage of multi-

ple rails.
Finally, the authors in [26] design and build a multi-

dimensional hyper crossbar network using multiple Giga-
bit Ethernet interfaces. They find that their system delivers
more than 90% of the peak throughput for different micro-
benchmarks. To the best of our knowledge, the system they
designed supports spatial parallelism but, and in contrast to
our work, does not support remote memory operations.

6. Conclusions

In this paper, we examine the viability of edge-based
communication protocols for building scalable servers. We
examine both the level of performance they may offer, how
they may take advantage of spatial parallelism in the inter-
connect, and the the impact they may have on network traf-
fic and behavior.

We design and implement MultiEdge, a communication
subsystem that support remote read and write memory oper-
ations over ordinary 1- and 10-Gigabit Ethernet interfaces,
using raw Ethernet frames.

We evaluate MultiEdge using both micro-benchmarks
and real-life shared memory applications running on top of
a software distributed shared memory system. Our micro-
benchmark results show that MultiEdge is able to deliver
about 88% of the nominal link throughput with 10-GBit/s
links and more than 95% with 1-GBit/s links. The minimum
latency is about 30µs. Our application results show that per-
forming all communication protocol at the edge does not
seem to impose any particular overheads for the size of the
systems we examine. Under bursty applications, such as
FFT and Radix that induce a lot of communication, there is
only a small percentage of control traffic and retransmitted
data. Finally, MultiEdge does expose the full throughput of
multiple 1-GBit/s links to applications.

Finally, we believe that future work should examine (a)
larger system configurations with more nodes and commu-
nication paths that consist of multiple switches and (b) hy-
brid approaches that include support from the core of the



network for certain operations or require extensions of the
network interfaces for offloading edge-protocol overheads.
MultiEdge and the underlying infrastructure can help in ex-
ploring these directions in great detail.
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