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Abstract

As service-oriented environments grow in size and com-
plexity, managing their performance becomes increasingly
difficult. To assist administrators, autonomic techniques
have been adopted to permit these environments to be self-
managing (problem localization, workload management,
etc.). These techniques need a sense of system state and the
ability to project a new state given some change within the
environment. Recent work addressing this issue frequently
used statistically learned models which were derived en-
tirely from data. However, many environments already
have management facilities in place that could provide
precise and useful insights (e.g. workflows) into the sys-
tem. This paper introduces a method of modeling service-
oriented system performance using Bayesian networks and
specifically addresses the benefits obtained by incorporat-
ing these insights into the model learning process. To fur-
ther minimize model building costs, we devise a decentral-
ized method to concurrently learn parts of the model where
knowledge inclusion is impossible. Simulations and appli-
cations in actual environments show significant reductions
in learning time, better accuracy and stronger tolerance to
small learning data sets.

1 Introduction

Service-oriented computing [15] facilitates distributed
application development across organizational and ge-
ographical boundaries through the promotion of self-
describing and open software components. In these en-
vironments, user requests traverse multiple heterogeneous
components drawn together on-the-fly, making it ever more

1-4244-0910-1/07/$20.00 c©2007 IEEE.

challenging to manage end-to-end quality of service (QoS)
(e.g. response time) and meet goals in service level agree-
ments. In order to do so, autonomous management [10]
software in service-oriented environments requires a model
to capture the complex system dynamics and link individual
component behaviors to end-to-end performance (typically
response time) states. This model must address two chal-
lenges: 1) it must provide accurate guidance to autonomic
activities such as resource provisioning, load balancing, and
performance problem localization and remediation, and 2)
due to the dynamic nature of autonomic environments, the
model must be reconstructed from time to time, removing
past and obsolete information to reflect most recent system
states. This process must be accomplished at little cost with
minimal human intervention.

Much work has been done in analytical modeling of
computer system performance. Classic theories such as
queuing networks, petri nets and control theory have been
applied to real world systems [20, 7, 11]. Although these
models are stable and mathematically sound, they may be
very difficult to derive manually from certain domains. The
modeling process can require substantial effort from human
experts and may be subject to inadvertent human mistakes
or unrealistic assumptions.

More recently, some groups have created techniques that
“learn” models from performance data collected through in-
strumentation/profiling [9, 1]. These statistical learning ap-
proaches do not assume human involvement and require lit-
tle domain analysis. While promising, such practices are
still at an early stage, and can be computationally very ex-
pensive and rather data-sensitive.

Motivated by the contrasting natures of analytical model-
ing and statistical learning approaches, this paper attempts
to harvest the strengths of both by encoding existing do-
main knowledge into the statistical learning framework. In
this manner, not only can the vulnerabilities of analytical



modeling be compensated by information extracted from
the data, but the cost and data-sensitivity of statistical learn-
ing can be reduced by informative domain knowledge guid-
ance. In particular, a knowledge-enhanced Bayesian net is
proposed to model the end-to-end response time of service-
oriented systems. The model leverages readily available
domain knowledge and decentralized learning to minimize
model construction cost while optimizing accuracy.

In addition, the locality of data required to learn indi-
vidual components of the BN has inspired us to seek a de-
centralized and concurrent way to derive these model parts
locally on machines where the data required is collected.

This work has lead to the following research contribu-
tions:

• We have used easily attainable domain knowledge to
establish an accurate Bayesian network response time
model while eliminating the need for structure learning
and easing the exercise of parameter learning.

• When no adequate domain knowledge can be utilized,
we have formulated a novel way to concurrently learn
model parameters from local data at distributed lo-
cations, thus further diminishing model construction
costs.

• An implementation of the approach has been deliv-
ered to operate under a flexible model (re)construction
schemes and can be integrated into autonomic solu-
tions with minimal effort.

• Comprehensive simulations have been presented
demonstrating the vastly reduced model construction
time and data-sensitivity. Furthermore, the model has
been further justified by its use in two real-world ap-
plications on a service-oriented Grid.

The remainder of the paper is structured as follows. The
sequel provides necessary background. Section 3 presents
the knowledge-enhanced Bayesian network for end-to-end
response time modeling. The approach is experimentally
evaluated using simulations in Section 4. Two real-world
applications of the model are detailed in Section 5. Section
6 reviews related work. Section 7 concludes and discusses
future research.

2 Performance Monitoring and Modeling for
Service-Oriented Systems

The eDiaMoND Grid [3], an OGSA-enabled federated
database of annotated mammograms, will be used as a
reference to service-oriented systems throughout this pa-
per. Figure 1 shows a common eDiaMoND scenario. In
it a radiologist retrieves some mammograms for analy-
sis. Six Grid services are involved. Having received a

request from the radiologist client, the image list ser-
vice calls the work list service, asking for information
about the images assigned to the radiologist. Suppose that
IDs and locations are returned of two images that need to
be compared. Since the two images are stored in a lo-
cal hospital L and a remote hospital R, respectively, the
image list service simultaneously issues two requests
to the image locator service on both sites. This leads
to the invocation of local and remote ogsa dai service (a
service-oriented database wrapper) on both sites, to obtain
the corresponding images from on-site databases. The re-
trieved images are returned as part of the service responses
to the radiologist for viewing and comparing.
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Figure 1. Performance data reporting in an
eDiaMoND scenario. Monitoring infrastruc-
ture components are not shown.

As is described in previous work [21], standard OGSA-
based middleware, are instrumented with monitoring
points, which measure the time elapsed at middleware com-
ponents. A monitoring agent resides on each machine, lis-
tening to the monitoring points for data, possibly batching
them before reporting them to the management server.

The collected data are used to periodically construct end-
to-end response time models on-the-fly, so as to reflect lat-
est dynamics in the service-oriented environment and assist
autonomic management. Although a strategy where models
are updated with the latest data may appear less extreme,
the disperse of old data is often not possible under current
statistical frameworks such as Bayesian network [19, 8].
The result is that these out-of-date information lingers in
the updated model and adversely impacts its accuracy, mak-
ing a scheme purely based on updates inadequate. A hybrid
scheme combining frequent updates in-between reconstruc-
tions may be more appropriate, but is beyond the scope of
this paper, which focuses on the more complex and costly



model (re)construction procedures.
In general, the model (re)construction should occur at

interval, TCON , using a sliding data window W , allowing
the model to use the data of the current interval as well as
(K − 1) previous intervals (see Equation 1).

W = K ∗ TCON (1)

In Equation 1, K is an Environmental Correlation Metric
based on the autonomic nature of the environment. It char-
acterizes how often autonomic actions may happen in the
environment, rendering the current environment states un-
related to their pasts. Environments where radical changes
(e.g. resource allocation, failure recovery actions etc.) hap-
pen more often will have a lower K value making the model
construction only use more recent data. If things change
less dramatically, a larger K value will allow the model to
consider a larger window of data .

TCON is be partly based on the interval of data collection
as shown in Equation 2.

TCON = αmodel ∗ TDATA (2)

where αmodel is the Model Construction Coefficient and
TDATA is the Data Collection Interval. Models that can
be built quickly will have a lower αmodel value indicating
that they could be applied in environments demanding more
frequent and accurate model recycling. TDATA is how of-
ten a data point is reported and dependent on the monitoring
infrastructure. K ∗ αmodel gives the number of data points
available for inferring the model.

3 A Knowledge-Enhanced Bayesian Network
Model for Response Time

This section presents a Bayesian network model to cap-
ture response time in service-oriented systems. It is shown
in the first three subsections how the model can be con-
structed using a combination of readily available domain
knowledge and performance data collected via instrumen-
tation (i.e. putting monitoring points into the system as is
described in the previous section). Where appropriate, the
model learning is decentralized as is described in Subsec-
tion 3.4.

3.1 Mathematical Framework

A Bayesian network is used to model the relationship
between time elapsed on services and end-to-end response

If only one autonomic management product is using the response time
model, then K can base this metric off its own interval of autonomic ac-
tions. If multiple autonomic managers are present in the environment, K
should be a statistical combination of autonomic change intervals of the
different products (e.g. taking the minimum of the autonomic change in-
tervals may be appropriate)

time, capitalizing on its support of automatic model infer-
ence from data. This formalism is also chosen because it re-
flects the stochastic nature of the problem while graphically
representing the causality among elapsed time on services
and end-to-end response time.

DEFINITION 1. A Knowledge Enhanced Re-
sponse Time Bayesian Network (KERT-BN), is a di-
rected graph (DAG) representing the joint distribution
P (D,X1, · · · ,Xn) of random variables Xi, i = 1 · · · , n,
the elapsed time of service i, and random variable D, the
end-to-end response time, such that

P (D,X1 · · ·Xn) = PD(D|Φ(D))
n∏

i=1

PXi
(Xi|Φ(Xi)).

(3)
Here, Φ(Xi) and Φ(D) are the set of parents of node
Xi, i = 1, . . . , n and D, respectively, and will be de-
termined by workflow and resource sharing knowledge in
the next subsection. PXi

(Xi|Φ(Xi)), i = 1, 2, . . . , n and
PD(D|Φ(D)) are the Conditional Probability Distributions
(CPDs) of Xi and D, respectively, and describe the depen-
dencies among service elapsed times and their effect on the
end-to-end response time (to be discussed further in Sec-
tion 3.3).

A KERT-BN can be either continuous or discrete, de-
pending on application needs. Since continuous CPDs (typ-
ically Gaussian CPDs) have relatively few parameters, a
continuous KERT-BN allows the model to converge more
quickly when data is lacking. This property is attractive
in fast changing environments where model reconstruction
must be performed very frequently before a lot of data can
be gathered. If the environments are relatively stable, a dis-
crete KERT-BN may be considered. Contrary to a contin-
uous model, a discrete one imposes no assumption on the
shape of the CPDs and is likely to achieve greater accuracy
when there is sufficient data.

3.2 Establishing the Structure with Work-
flow and Resource Sharing

A Bayesian network can be built in two steps. First de-
termine the structure (i.e. the DAG which captures the sta-
tistical/causal dependencies between the random variables)
and then obtain the parameters (CPDs). Whilst automated
methods for Bayesian net structure learning exist (i.e. meth-
ods for finding a DAG topology that best fits the data [14]),
they are typically computationally expensive. For instance,
a KERT-BN for a system of n services will have n+1 nodes
and exponential (in n+1) number of DAG structures. Such
complexity makes it intractable to exhaustively search for
the best DAG [5] in large environments. Even greedy algo-
rithms like K2 [6] needs to explore O((n+1)2) possibilities.



Intuitively, dependency is present between two random
variables if there is some connection between them such
that change in one variable can somehow be communicated
to the other variable where a corresponding variation may
be triggered. In the context of service-oriented systems,
it appears reasonable to assume that such connections be-
tween the performance (elapsed time in this paper) of two
services i and j can exist in two forms:

• While a number of relationships may be interpreted
from workflow information, this paper attempts to re-
duce the number of dependencies considered by only
accounting for direct and important relationships be-
tween services and their immediate upstream services.
If one service (say, i) is the immediate upstream ser-
vice of the other service (j) in the workflow graph,
classic performance modeling literature [16] suggests
that i’s elapsed time can be tied to its throughput. Thus
elapsed time of j is related to i through j’s input from
i (assuming that j’s input can determine its elapsed
time). A burst in i’s workload or an increase in its ser-
vice rate may prolong or shorten its elapsed time, and
may also be reflected by change in j’s elapsed time.
The latter phenomenon corresponds to an important
performance management issue known as “bottleneck
shift” [2], which can now be captured by the KERT-
BN model without gaining insights into the services as
would be needed in [2].

• The two services are sharing a common resource (e.g.
CPU, memory, network). Status of the common re-
source can be tied to the performance of both services,
resulting in dependency between them.

Both the workflow and resource sharing information can be
captured by existing monitoring infrastructures [21] or are
well documented at system design stage. This knowledge
can then used to determine the dependencies among KERT-
BN elapsed time nodes X1, . . . , Xn at little cost. In the
case of service i directly affecting service j downstream, the
KERT-BN must contain an edge between the random vari-
ables Xi and Xj . Note, that whilst service i and j may very
well affect service k, say, further downstream to j, our fo-
cus here is on the simplest DAG representing the workflow,
i.e. the Bayesian net structure should have as few loops as
possible. Similarly, resource sharing may be represented by
services forming the parents to a KERT-BN node embody-
ing the resource they share.

Given that the elapsed time on each service is collec-
tively forming the end-to-end response time, it is natural to
assume that response time node D is dependent upon all
elapsed time nodes X1, . . . , Xn. Thus, a KERT-BN should
capture this dependency by a conditional dependence of D
on the entire set X, i.e. PD(D|Φ(D)) ≡ PD(D|X).

The full DAG structure of the KERT-BN for the eDia-
MoND scenario in Figure 1 is depicted in Figure 2, where
the image locator services (and then the ogsa dai
services) on the two sites are invoked in parallel after the
image list and work list services are called.

X1 X2 X6

D

X3 X4 X5
Variable Service
X1 image_list

X2 work_list

X3 image_locator_local

X4 ogsa_dai_local

X5 image_locator_remote

X6 ogsa_dai_remote

Figure 2. KERT-BN for the eDiaMoND sce-
nario.

3.3 Determining Parameters with Work-
flow

Having identified an appropriate DAG for the KERT-BN
(i.e. the parent sets for each node), the CPDs in Equation 3
can now be determined, typically from collected data [14].
However, parameter learning can be quite expensive when
nodes have many (discrete) parents (e.g. D in Figure 2) or
(discrete) parents have high cardinality. In particular, the
complexity of learning the CPD for a discrete node with n
discrete parents is O(nm), where m is the largest number
of states for nodes involved.

Special models (e.g. Naive Bayesian network and TAN)
have been proposed to reduce the complexity of parame-
ter learning, by focusing only on important parent-children
dependencies that mainly affect model accuracy. One goal
of this work is to minimize the cost of parameter learning
without this accuracy compromise by making use of domain
knowledge. Specific to a KERT-BN, the need for learning
the heavyweight CPD, PD(D|X1, . . . , Xn), can be largely
eliminated by exploiting precise workflow information in
the following manner:

PD(D = f(X)|X) = 1 − l

PD(D �= f(X)|X) = l (4)

where f is a deterministic function (see the example in the
next paragraph) that links elapsed times to response time; l
is the probability of a “leak” situation [18] where response
time D is not deterministically given by the workflow-
derived function f(X) due to noises (e.g. errors may be
introduced into the prediction of D using f(X), because the
placement of monitoring points through code instrumenta-
tion can be restricted and subsequent measurements taken
on X are not precise.

The deterministic function f can be easily derived from
any workflow formed by any combination of four key work-



flow constructs: sequence, parallel, choice and loop, us-
ing a method developed by Cardoso et. al. [4]. For
Figure 2, the deterministic function giving the CPD is:
D = X1 + X2 + max(X3 + X5,X4 + X6). The max-
imum operation is the result of parallel invocation of the
image locator services (and then the ogsa dai ser-
vices) on the two sites, whereas the sum operations are
products of sequential service invocations.

The CPD format given by Equation 4 and the workflow-
defined nature of deterministic function f also apply to
other transaction-oriented performance metrics such as
timeout request count (i.e. a counter of how many requests
timeout), only with a different mapping from the workflow
to f . In the case of timeout request count, D will stand
for the count for end-to-end transactions, X will hold per-
service sub transaction counts, and it appears that f should
take the form of D =

∑6
i=1 Xi for Figure 2. Equation

4 is unlikely to hold, if D and X are concerning different
metrics, for instance, if D encodes the response time and X

represents resource consumption level on the components.
The CPD has to be learned from data in this case.

3.4 Decentralized Parameter Learning

The rest of the KERT-BN CPDs, PXi
(Xi|Φ(Xi)), i =

1, 2, . . . , n can be acquired by collecting the number of data
instances Xi = xi ∧ Φ(Xi) = Φ(xi), where xi and Φ(xi)
are instances of elapsed times of Xi and Φ(Xi), and us-
ing any maximum likelihood (i.e. normalized counts) or
Bayesian method [14].

Interestingly, the computation only requires data about
Xi and all of its KERT-BN parents Φ(Xi). This data local-
ity suggests that the computation of each PXi

(Xi|Φ(Xi))
can actually be performed on service i. To this end, com-
munication is set up between the monitoring agent (see Sec-
tion 2) for service i and those agents for services corre-
sponding to Φ(Xi). For services where Φ(Xi) = ∅, no
communication is needed. Such communication takes place
periodically at a frequency that will not flood the network.
The communicated data are batched together with locally
collected data on each service i (services where Φ(Xi) = ∅
batch local data only). In doing so, the parameter computa-
tion is initiated concurrently on all services and the results
reported every TCON .

Decentralizing the parameter learning computations has
several attractions:

It is worth mentioning that a mistake was actually made in formulating
D = X1 + X2 + max(X3 + X5, X4 + X6) in the initial version
of the paper. The incident serves to reinforce the earlier argument that
analytical model is prone to human errors. The use of a hybrid model
in this paper has limited chances of such mistakes being made. However,
certain risks are still being taken in the knowledge-given parts of the model
in exchange for faster model construction time and superior accuracy. The
risks are minimum because, unlike during the edition of the paper, the CPD
is automatically generated by software.

• The (potentially large) computational expense does not
fall on a central management node which may become
a bottleneck as the system scales. Even though the en-
tire KERT-BN structure is still maintained in the cen-
tral server, it will prove far more lightweight than stor-
ing and computing the CPDs and should not compro-
mise scalability to a large extent.

• The computation can be performed concurrently re-
ducing overall time taken.

It can be also noted from Figure 1 that user re-
quests are sent from immediate upstream services (e.g.
image locator local ) to a downstream service (e.g.
ogsa dai local). These communications can be lever-
aged to send elapsed time data from parents Φ(Xi) to Xi,
by attaching the data in an extra SOAP segment at the end
of the application request messages. The computation of
PXi

(Xi|Φ(Xi)) can then be conducted on service i when
needed. This possibility will be explored further in the fu-
ture.

4 Evaluation through Simulations

This section evaluates our approach through simulations
under a comprehensive set of settings that are difficult to
replicate in real-world systems. First, the performance
of KERT-BN is compared against Naive Response Time
Bayesian Network (NRT-BN) (i.e. learned purely from data
via both structure learning with K2 [6] and parameter learn-
ing) in a decentralized process. Then the extra benefit of
learning unknown (from domain knowledge) KERT-BN pa-
rameters in a decentralized manner is assessed.

4.1 Evaluation Settings and Metrics

Experiments in this section were conducted within a
service-oriented system simulated in Matlab[12]. The sim-
ulated services receive and send calls among other and ran-
domly generate a processing delay upon receiving calls.
They are assembled together by different workflows to con-
stitute simulated applications. The simulated delays (and
response times) are used to form training and testing data
sets. Continuous KERT-BN and NRT-BN models (where
l in Equation 4 is assumed to be 0) with Gaussian CPDs
were constructed using training data and then run against
the testing data, so as to gauge their performance in terms
of the following two metrics:

• Construction time - the time it takes to build the en-
tire Bayesian network (i.e. including the structure and
parameter values)

• Data-fitting accuracy - the log likelihood of test-
ing data given the Bayesian network model,



log10p(TestData|BN) [14]. The higher the
likelihood, the better the model fits (i.e. accurately
represents) the testing data.

The experiments were implemented using the Matlab
Bayesian network tool-box [13] and conducted on a Red-
hat Linux machine with two 3.0 GHZ dual core CPUs and
1GB memory. In all experiment runs, the environmental
metric (see Section 2) was set to K = 3 to emulate model
training in environments where data more than 2 construc-
tion intervals (see Section 2) old were deemed uncorrelated
with present environment status. The data collection inter-
val had the value of TDATA = 10 seconds, a high frequency
at which the reported data will not flood the network in a
heavily loaded environment. All data-fitting accuracy num-
bers were measured against a training set of 100 data points.

4.2 KERT-BN vs. NRT-BN

In the first experiment, the construction time and data-
fitting accuracy of both KERT-BN and NRT-BN built were
compared for 30 simulated services. The training sets con-
tained from 36 data points (i.e. K ∗ αModel = 3 ∗ 12 =
36 and model construction interval TCON = αModel ∗
TDATA = 2 minutes ) to 1080 data points (with K ∗
αModel = 3 ∗ 360 = 1080 and model construction interval
TCON = 60 minutes). For each training set size consid-
ered, the experiment was repeated 10 times (each with fresh
training and testing data) to obtain average model perfor-
mance.

The results of this experiment are shown in Figure 3.
As one would expect, the construction time of both NRT-
BN and KERT-BN grows linearly with the training set size.
KERT-BN consistently outperforms NRT-BN, and the ad-
vantage becomes increasingly evident, as the training set
grows. This observation can be explained by the fact that
KERT-BN only requires partial parameter learning with the
training data, whereas NRT-BN must go through both an ex-
pensive structural learning phase and a full parameter learn-
ing phase.

Despite skipping structural learning completely and pa-
rameter learning partly, KERT-BN still achieves a slightly
superior accuracy as is illustrated in the right half of Fig-
ure 3. In addition, NRT-BN appears to be quite sensitive
to training data size and require a relatively large number
of data points (about 600 in Figure 3 with αModel = 180
and model construction interval TCON = 1800 seconds =
30 minutes) to reach a stable accuracy level. As a result, if
data collection is not sufficiently frequent, short model con-
struction intervals (thus small αmodel) might not be used
with NRT-BN so as to avoid data accuracy loss. In contrary,
KERT-BN is not liable to such restrictions, as its accuracy
converges much more quickly.
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Figure 3. KERT-BN performance vs. NRT-BN
performance with different training set sizes.

In the second experiment, the performance of KERT-BN
and NRT-BN when applied to up to 100 simulated services
(embodying small to medium data centers) was plotted. The
models were trained with training sets of size 36 data points
(again αModel = 12 and TCON = 2 minutes) to study how
practical it is to learn the models in fast changing environ-
ments of different sizes. This experiment was also repeated
10 times.

Figure 4 illustrates the outcome of the second experi-
ment. An undesired non-linear correlation (discussed in
Subsection 3.2) between NRT-BN construction time and
the number of nodes in the model can clearly be seen in
the left half of the figure. This correlation DE deteriorate
even faster in bigger environments not illustrated in the fig-
ure, taking over 2 hours for 200 services, over 10 hours for
300, and more than 2 days for 500 services. Consequently,
for large environments, NRT-BN may simply be impossible
to build at short model construction intervals, its learning
time eclipsing how often it is supposed to be renewed. In
this experiment for example, NRT-BN being constructed at
the designated interval of TCON = 2 minutes will not be
feasible for any environment with more than 60 services.
In contrast, the construction time of KERT-BN remains flat
across different environment sizes, as only relatively cheap
parameter learning among service nodes is required. The
right half of the figure once more confirms that KERT-BN
achieves greater accuracy than NRT-BN under various set-
tings (number of services in this experiment).

We also considered the possible use of a learning-free
NRT-BN - one that simply settles for an arbitrary structure
(e.g. the classic Naive Bayesian Network [14]) - in an at-
tempt to offset its performance deficit against KERT-BN as
manifested in the experiments in this section. The idea was
nevertheless quickly dismissed, as not only is a learning-
free NRT-BN even less accurate (than a NRT-BN) by con-
struction, but its use will result in complete loss of model
interpretability (i.e. the casual relationships among service
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performance with different environment sizes
(i.e. service numbers).

elapsed time and response time that a KERT-BN or the orig-
inal NRT-BN will encode) which is a fundamental strength
of BN models.

4.3 Decentralized Parameter Learning vs.
Centralized Parameter Learning

Having shown that KERT-BN outperforms NRT-BN in
various centralized learning situations, it is the aim of this
subsection to show that this advantage is indeed further ex-
tended by learning the unknown KERT-BN parameters in a
decentralized manner, as is proposed in Subsection 3.4. To
this end, the time taken to learn each CPD in KERT-BNs is
measured. Since these CPDs will be computed in parallel
on monitoring agents in practice, the decentralized learning
time is the maximum of individual learning times across all
CPDs, and is compared against the learning time for regular
centralized KERT-BN parameter learning in Figure 5. The
accuracy of these two KERT-BN parameter learning meth-
ods is not plotted on the grounds that they produce princi-
pally the same parameters.

For each KERT-BN size, the parameters of 20 randomly
generated KERT-BNs were learned, with the average decen-
tralized learning time and average centralized learning time
plotted in the Figure. It can be observed that the decen-
tralized learning time is constantly superior to the central-
ized learning time. The figure also reveals an obvious trend
of this superiority becoming more and more considerable
as the number of services (thus the number of KERT-BN
CPDs) increases.

5 Applications

This section demonstrates the use of KERT-BN in
tackling real-world performance management problems on
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the eDiaMoND test-bed, and further justifies the approach
presented in this paper. The eDiaMoND services shown in
Figure 1, ogsa dai local, image locator local,
ogsa dai remote, and image locator remote
were hosted by four AIX machines with two 3.0 GHZ
dual core CPUs and 2GB memory. The image list and
work list services were run on two separate 3.0 GHZ
dual core CPUs of a Redhat Linux server with 1GB mem-
ory. Since the entire test-bed is within the same sub-net,
extra routing was imposed between image list and
image locator remote through request forwarding to
simulate a connection to a remote site.

Given that eDiaMoND fosters a relatively dedicated and
stable system where TDATA = 20 seconds, a bigger cor-
relation metric K = 10 and a longer construction interval
TCON = 20 minutes (αModel = 120) were chosen. Dis-
crete rather than continuous (as in Section 4) models are
built for two reasons: 1) there are comparatively many data
points to work with; 2) MATLAB BNT does not support
non-linear deterministic CPDs that contain maximum rela-
tionships.

5.1 dComp: Compensating for Missing
Data

In large distributed systems like the Grid, performance
data from some system components may go missing due
to 1) lack of instrumentation, 2) failure in the act of data
reporting, or 3) the need to reduce monitoring overhead. To
cope with the consequences, mechanisms must be provided
to support estimation of performance states of unobservable
components using data from the observable ones.

Typically, the only knowledge possibly available about



elapsed time on unobservable components (whose latest
performance data go missing) is from historical measure-
ments or component providers. Such prior knowledge is
likely to be obsolete or imprecise. dComp is developed as a
technique that applies KERT-BN to update this prior knowl-
edge with current elapsed time measurements from observ-
able components as well as response time measurements.
dComp computes a Posterior (Probability) Distribution by
p(Y |O = E(o)) using standard BN-based inference [14]
based on Equation 3 for each Y where no elapsed time data
was available (O is the observable set of services and E(o)
is the current measurement mean). In the absence of using
full blown fill-in methods (like Expectation Maximization),
it suffices to just use the summary of observation statistics
(the mean, E(o)) to assess Y .

To illustrate dComp, the KERT-BN in Figure 2 is consid-
ered. It is assumed that no service is observable. In Figure
6, dComp is employed to infer the posterior distribution for
X4 using observations on the rest of the variables. The fig-
ure compares the inferred posterior distribution of X4 with
the prior distribution of X4, and demonstrates how the pos-
terior distribution has updated our knowledge about X4.
The posterior distribution has shifted (from the prior dis-
tribution) toward the actual elapsed time and become more
deterministic and precise with a narrower shape.
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Figure 6. dComp example: posterior distribu-
tion of X4 vs. prior distribution of X4.

5.2 pAccel: Accelerating Key Service
Performance

Due to the complexity of service-oriented environments,
a significant performance boost for a particular service may
not lead to system -wide benefits. For instance, if service A
is being invoked in parallel with another service B that has a
significantly longer elapsed time, reducing A’s elapsed time

can do little to improve the overall performance. A method
to assess the end-to-end impact of local actions is essential
to avoiding spending a lot of effort in accelerating those ser-
vices that will bring little response time improvement.

pAccel is a means to achieve this goal through the use
of KERT-BN. Based on Equation 3, pAccel computes the
posterior response time distribution p(D|Z = E(z)) given
the mean of a prediction about, Z, the elapsed time of any
service. The observation mean is sufficient for the same
reason as was argued in the previous subsection.
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Figure 7. pAccel example: projected re-
sponse time vs. observed response time, af-
ter accelerating X4.

Recall the example in the previous subsection. A poste-
rior response time distribution can now be computed with
X4 reduced to about 90% of what it was (e.g. after local
resource allocation actions). Figure 7 shows that the pos-
terior response time provides a good approximation of the
actual improved response time mean. The difference be-
tween the posterior response time distribution and the prior
response time distribution can be used to gauge the benefit
of resource actions and guide autonomic decision making.

5.3 Justification

The efficacy of KERT-BN during model re-constructions
in the eDiaMoND scenario in Figure 1 is examined by con-
trasting the response time distribution projected using pAc-
cel with both KERT-BN and NRT-BN against real response
time measurements.

Considering that both human users and autonomic soft-
ware are likely to be interested in assessments like “What
is the probability that response time will exceed the thresh-
old(s)?”, we draw the comparison using Relative Threshold



Violation Probability Error defined as follows:

ε =
|Pbn(D > h) − Preal(D > h)|

Preal(D > h)
(5)

where Preal(D > h) is the real probability that response
time D will exceed threshold h, whereas Pbn(D > h) is the
threshold violation probability estimated with either KERT-
BN or NRT-BN.

Figure 8 depicts the violation errors for KERT-BN and
NRT-BN, when employed to make the violation probability
projection for six different thresholds. Training sets of size
1200 (K ∗ αModel = 10 ∗ 120 = 1200) are used for model
training purpose. Since there are few services and not many
data points, the construction of both NRT-BN and KERT-
BN can be finished quickly (relative to TCON ). Hence we
can afford to repeatedly run K2 with different random or-
derings [6] until the next model construction is due, in order
to optimize the accuracy of the learned NRT-BNs. Despite
this optimization, nevertheless, the inferred NRT-BN is still
inferior to KERT-BN as far as ε is concerned.
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Figure 8. Relative threshold violation error
(KERT-BN vs. NRT-BN) for the projected re-
sponse time after accelerating X4 in the eDi-
aMoND scenario in Figure 1.

6 Related Work

There are principally two schools of works in the lit-
erature concerning end-to-end response time modeling for
multi-component distributed systems. The first school con-
sists of analytical models based on queuing networks [20],
petri nets [7] or control theory [11], that are constructed
by human experts using domain analysis. Urgaonkar et. al.
[20] regard a three-tier commercial environments as a queu-
ing network and perform dynamic server allocations based

on this model. Dingle et. al. [7] derives response time dis-
tributions given a Petri-net describing any distributed pro-
cess, while Lu et. al [11] uses feedback control loop to
guide server resource provisioning decisions. Although ma-
ture and mathematically sound, these models suffer from a
number of shortcomings: 1) the models may be difficult to
build, for instance, due to lack of information from some
black-box components. 2) model construction can be prone
to human errors; 3) models built are a priori and may not
adapt well to workload or system changes; 4) assumptions
that deviate significantly from real system conditions (e.g.
the system being in stable state [20]) may have to be made.

The second school is embodied by emerging research
rooted in statistical learning techniques using performance
data collected through instrumentation. For example, tree-
augmented naive Bayesian networks are learned from data
to correlate system component resource state (CPU usage,
memory usage etc.) with service level agreement viola-
tion/compliance states [9]. Unlike those in the first school,
statistically learned models mostly assume very little or
no domain knowledge and can be programmatically up-
dated/reconstructed in response to system changes. Not
only are these models often learned entirely from scratch at
potentially substantial computational cost, but they can be
rather sensitive to noisy or missing data. Moreover, statis-
tical learning methods for response time modeling are still
immature, with relatively little effort invested thus far. For
example, to our best knowledge, there is yet any model of
this type that describes end-to-end response time to a preci-
sion of more than two states.

The approach described in this paper overcomes these
weaknesses, by incorporating domain knowledge in the sta-
tistical learning framework and decentralizing the learning
procedure. Rish et. al [17] has also adopted a knowledge-
enhanced strategy to construct a fault determination model.
However, applying Rish’s strategy here would be difficult
given its dependency on binary state variables, binary do-
main relationships and strong independence assumptions.

7 Conclusions and Future Work

This paper presents an automated and cost-effective so-
lution to end-to-end performance modeling for service-
oriented systems, an essential issue towards providing au-
tonomic capabilities in these environments. We leverage a
combination of easily attainable domain knowledge (mainly
the workflow in this paper) and performance data collected
system-wide, to efficiently induce a knowledge-enhanced
response time Bayesian network (KERT-BN) that accu-
rately correlates system component performance to end-to-
end QoS goals. For model elements that can not be de-
termined in this way, a decentralized learning mechanism
is proposed to reduce learning overhead incurred. Experi-



ments in both simulation and real-world contexts show that
the utilization of domain knowledge 1) largely reduces the
model building cost without sacrificing model accuracy;
and 2) rapidly guides model training towards an accurate
product with few data. These features are particularly valu-
able in highly dynamic and complex environments where
the current model quickly expires and must be rebuilt.

The approach is automated through employing an
instrumentation-based technique to the automatic extraction
of workflow and resource sharing information [21], pro-
grammatically feeding this knowledge together with perfor-
mance data into the Bayesian network framework, and sub-
sequently inducing the model under a periodical scheme.
The automated model construction can serve to further min-
imize the need for human engagements in model-driven
management procedures and steer them closer to complete
autonomic solutions.

The KERT-BN approach can be effortlessly generalized
and applied to any instrumented distributed system fea-
turing user transactions that traverse system components.
With minor adjustments, it may also be used to model the
relationship between component-level metrics other than
elapsed time (e.g. CPU or memory usage) and end-to-end
performance goals.

Another important extension of our work is employing
domain knowledge and decentralization techniques to re-
duce the cost of probability assessment after the model is
constructed. Crucial autonomic routines such as resource
provisioning and problem localization will profit greatly on
rapid response time assessment. Adding this value to the
present work will lead to accurate performance models that
are inexpensive to build and use, and largely facilitate effi-
cient, scalable autonomic system management.
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