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Abstract

In this paper, we describe how inverse space-filling curve
partitioning is used to increase the simulation rate of a
global ocean model. Space-filling curve partitioning al-
lows for the elimination of load imbalance in the computa-
tional grid due to land points. Improved load balance com-
bined with code modifications within the conjugate gradient
solver significantly increase the simulation rate of the Par-
allel Ocean Program at high resolution. The simulation rate
for a high resolution model nearly doubled from 4.0 to 7.9
simulated years per day on 28,972 IBM Blue Gene/L pro-
cessors. We also demonstrate that our techniques increase
the simulation rate on 7545 Cray XT3 processors from 6.3
to 8.1 simulated years per day. Our results demonstrate
how minor code modifications can have significant impact
on resulting performance for very large processor counts.
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1. Introduction and Motivation

The Parallel Ocean Program (POP) developed at Los
Alamos National Laboratory is an important multi-agency
ocean model code used for global ocean modeling. POP
uses a finite-difference formulation for the baroclinic com-
ponent of the timestep and a preconditioned conjugate gra-
dient solver in the barotropic component. Parallelism on
distributed-memory computers is supported through the
Message Passing Interface (MPI) standard. The resolution
of POP is typically limited to a rather coarse 1◦ resolution
for climatological studies to enable the simulation of long
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time-scale events which require a minimum of five simu-
lated years per wall-clock day. However, it has been demon-
strated [15] that a very high-resolution ocean simulation,
0.1◦ at the equator, improves the accuracy of a large num-
ber of climatologically important processes. We therefore
concentrate on improving the simulation rate of a 0.1◦ POP
benchmark on very large parallel systems.

In our earlier work [8], we demonstrated that it is pos-
sible to significantly increase the performance of POP by
rewriting the conjugate gradient solver. We used an alter-
native data structure to reduce the amount of data that must
be loaded from the memory hierarchy to the CPU or passed
between neighboring MPI processes. The new data struc-
ture eliminates the grid points in the computational mesh
that correspond to land points. Our changes only require
altering a small number of source files.

In this paper, we concentrate on eliminating the load im-
balance across processors that is also caused by the pres-
ence of land points within the computational mesh. We use
an inverse space-filling curve (SFC)-based partitioning al-
gorithm. Space-filling curve based partitioning is a simple
and effective partitioning technique that enables the gener-
ation of load-balanced partitions. We describe a new space-
filling curve, the Cinco curve, which when combined with
Hilbert and meandering-Peano curves, provides the flexibil-
ity to apply space-filling curve partitioning to a much larger
set of problem sizes.

Using several partitioning algorithms and the modified
conjugate gradient solver, we provide a comparison of sim-
ulation rates for the 0.1◦ POP benchmark. We discover that
our modifications enable a significant increase in simula-
tion rate for the 0.1◦ POP benchmark on O(10, 000) pro-
cessor systems. In Section 2, we provide the background
and review related work. In Section 3, we describe the Par-
allel Ocean Program in greater detail, which includes a de-
scription of data structures in Section 3.1. In Section 4, we
describe space-filling curve partitioning. In Section 5, we
provided execution times for the 0.1◦ POP benchmark on



several very large systems. In Section 6, we provide con-
clusions and directions for further investigation.

2 Background and Related Work

The Parallel Ocean Program is a global ocean model
based on a finite-difference formulation. It uses a struc-
tured grid that addresses complex boundary conditions by
masking out grid points. Masking out grid points is a com-
mon technique used by the HIROMB [19], MICOM [5],
and OCCAM [10] ocean models. The POP computational
mesh is decomposed into rectangular blocks that are par-
titioned across processors. One or more blocks may be
assigned per processor. POP currently supports two par-
titioning algorithms: a rake algorithm [16], and a cartesian
algorithm. The rake algorithm is only applicable if there
is more than one block per processor. The rake algorithm
initially starts with a cartesian partitioning and then moves
blocks to improve load balance. The existing rake algo-
rithm either does not generate a sufficiently load-balanced
partitioning or fails to generate a partitioning for large pro-
cessor counts. We do not consider the current implementa-
tion of the rake algorithm because it is not sufficiently ro-
bust. Because cartesian partitioning does not differentiate
between the land and ocean points, the cartesian algorithm
can generate large load-imbalances. Rantakokko [20] uses
variable-sized rectangular blocks to minimize inclusion of
land points. POP does not currently support variable-sized
blocks, but rather a fixed block size that is set at compile
time. Data structures whose size is know at compile time
enable the compiler to apply additional loop optimizations
that increase single processor performance.

An inverse space-filling curve (SFC)-based algorithm is
an effective partitioning technique based on the mapping
of a two-dimensional space to a one-dimensional line. The
mapping maintains proximity of the partitioned computa-
tional mesh. The generation of a load-balanced partition
is simplified into the partitioning of a one-dimensional line
into equal-length segments. It has been successfully applied
to partitioning graphs [3] and in parallel adaptive mesh re-
finement [4, 9, 17]. It has also been applied with success
to static partitioning problems [2, 7]. We do not consider
a Metis [12] based partitioning because it was observed in
[14] that Metis generates load-imbalanced partitions when
the number of blocks per processor is O(1). We describe a
new space-filling curve, the Cinco curve, which when com-
bined with Hilbert and meandering-Peano curves [22], pro-
vides the flexibility to apply space-filling curve partitioning
to a much larger set of problem sizes.

The performance of POP and the implication of data
structure choice has been analyzed by several groups. Jones
[11] describes the addition of a more flexible data structure
that allows efficient execution of POP on both cache and

vector processors. Wang [24] describes code modifications
to POP that improve performance on a specific machine ar-
chitecture. Kerbyson [13] developed an analytical model
of expected parallel performance. Snavely [23] employs
a convolution-based framework that uses hardware perfor-
mance counts and MPI library traces to predict parallel per-
formance. Analytical and trace-based techniques depend
on a description of the current resource requirements of the
application. The amount of time to perform a fundamen-
tal unit of computation on a single processor or the amount
of data that must be passed between MPI processes is re-
quired input. These models assume that the computational
resource requirements are fixed. We instead look for code
changes that can reduce the resource requirements. While
we demonstrated in [8] the utility of automated memory
analysis to examine the impact of data structure changes
on the resource requirements, we do not use an analytical
or trace-based performance model to predict parallel per-
formance.

3 Parallel Ocean Program

We next describe the computational characteristics of the
POP model. The POP timestep is composed of a baroclinic
component that uses finite-difference and a barotropic com-
ponent. An update of all state variables occurs at the end
of the timestep. The baroclinic component consists of large
sections of embarissingly parallel calculations that involve
the streaming of data from the memory hierarchy to the
CPU. The execution rate of the baroclinic component is en-
tirely dependent on the quality of the compiler and the char-
acteristics of the memory hierarchy. The barotropic com-
ponent uses a preconditioned conjugate gradient solver to
update the two-dimensional surface pressure. POP uses the
single product conjugate gradient [6] to improve scalability
of the solver. While the baroclinic component of the solver
demonstrates excellent scaling, the conjugate gradient and
update of state variables limits POP scalability. Historically,
the performance of POP has been sensitive to message la-
tency and the cost of global reduction operations. We have
discovered that three separate modifications to the source
code enable significant increases in scalability at large pro-
cessor counts: an update of the boundary exchange rou-
tine, new data structures within the barotropic solver, and
an alternative partitioning algorithm. The updated boundary
exchange routine amounts to message aggregation for the
three-dimensional state variables. This trivial change sig-
nificantly reduces POP sensitivity to machine latency. We
mention a second code modification, which involves the ad-
dition of a new data structure within the barotropic solver,
to illustrate the impact that reducing resource requirements
has on code scalability. A more detailed description of the
data structure changes is provided in [8]. However, the fo-
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cus of this paper is to describe the impact of a new partition-
ing algorithm within POP. We first start with a description
of the POP data structures in detail.

3.1 Data Structures within POP

POP uses a three-dimensional computational mesh. The
horizontal dimensions are decomposed into logically rect-
angular two-dimensional (2D) blocks [11]. The compu-
tational mesh is distributed across multiple processors by
placing one or more 2D blocks on each processor. There
are km vertical levels associated with each 2D horizontal
block. Blocks that do not contain any ocean points or land
blocks are eliminated. A 1◦ grid divided into 2D blocks of
20×24 grid points is illustrated in the top panel of Figure 1.
The white area represents land; ocean is indicated by gray.
Each 2D block contains bsx × bsy internal grid points and
a halo region of width nghost. The halo region is used to
store grid points that are located in neighboring 2D blocks.
The bottom panel of Figure 1 illustrates the 2D data struc-
ture within the source code for the block that contains the
Iberian peninsula. Note that the large white structure on the
upper right side of the image is the Iberian peninsula, while
the white structure in the lower right side is the northern
coast of Africa. For this particular block, only about 60%
of the grid points represent ocean. Table 1 contains the di-
mensions of the 1◦ and 0.1◦ grids. The variables nx and ny
are the global numbers of points in the x and y directions of
the grid respectively. Table 1 also contains the block sizes
bsx and bsy, the number of blocks nblocks, and the per-
centage of land blocks eliminated. Note that percentage of
land block elimination is significantly greater in the 0.1◦

grid versus the 1◦ grid.

grid land Nb = 2n3m5p

{nx,ny,km} {bsx,bsy} nblocks blocks Nb n m p
1◦ grid

{40,48} 64 0% 8 3
{320,384,40} {20,24} 246 4% 16 4

{10,12} 904 12% 32 5
0.1◦ grid

{144,96} 541 13% 25 2
{120,80} 764 15% 30 1 1 1
{90,60} 1312 18% 40 3 1
{72,48} 2009 20% 50 1 2
{60,40} 2822 22% 60 2 1 1
{48,32} 4324 23% 75 1 2

{3600,2400,40} {45,30} 4884 24% 80 4 1
{36,24} 7545 25% 100 2 2
{30,20} 10705 26% 120 3 1 1
{24,16} 16528 27% 150 1 1 2
{18,12} 28972 28% 200 3 2
{15,10} 41352 28% 240 4 1 1
{12,8} 64074 29% 300 2 1 2

Table 1. Description of sub-block configura-
tions for 1◦ and 0.1◦ grids.

The primary advantage of the 2D data structure is that

Figure 1. The 1◦ POP grid, where white
corresponds to land points, gray to ocean
points, and superimposed lines indicate 20×
24 blocks (left). The two-dimensional block
over the Iberian peninsula (right).

it provides regular stride-one access for the matrix-vector
multiply, which is composed of a 9-point stencil, within the
conjugate gradient solver. The disadvantage of the 2D data
structure is that it includes a large number of grid points that
represent land. While it is possible to reduce the number of
excessive land points by reducing the block size, smaller
blocks have a larger percentage of their total size dedicated
to halo points.

We implemented a 1D data structure in the barotropic
solver which enables the elimination of all land points
present in the 2D data structure. The 1D data structure con-
sists of a 1D array of extent n. The first nActive elements
in the 1D array correspond to active ocean points, while
the remaining n − nActive points correspond to the off-
processor halo needed by the 9-point stencil. In removing
the excessive land points, the 1D data structure changes the
form of the matrix-vector multiply. Indirect addressing is
now necessary to apply the operator matrix that is stored in
a compressed sparse-row format.
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4 Space-Filling Curve Partitioning

A space-filling curve is defined as a bijective function
that maps a line into a multi-dimensional domain. An in-
verse space-filling curve maps a multi-dimensional domain
into a line. There are a variety of space-filling curves [22].
A Hilbert curve can be used to partition a domain of size
Nb × Nb, where Nb = 2n and n is an integer refering to
the recursive level. A meandering-Peano (m-Peano) curve
and a Cinco curve support partitioning, where Nb = 3m or
Nb = 5p respectively, and where m and p are integers.
Figure 2 illustrates level-1 Hilbert, m-Peano, and Cinco
curves respectively. It is apparent from Figure 2 that the
start and endpoints of all three curves lie on a single axis
of the Nb × Nb domain. This feature allows the curves
to be nested, enabling the creation of a Hilbert-m-Peano-
Cinco curve that supports partitioning of domains of size
Nb = 2n3m5p. The added flexibility of the Cinco curve
allows inverse space-filling curve partitioning to be applied
to a much larger set of problem sizes.

Figure 2. Level-1 Hilbert (left), Meandering
Peano (middle), and Cinco (right) curves.

We create an initial space-filling curve using the algo-
rithm described in [7]. Because blocks that contain only
land points are eliminated from the ocean simulation, the
corresponding segments in the initial space-filling curve
must be eliminated. Our line partitioning algorithm sub-
sequently subdivides the resulting space-filling curve into
approximately equal length segments. Because our current
algorithm does not take into account cuts in the space-filling
curve due to land blocks, it has the potential to create a par-
tition such that multiple blocks are not contiguous in the
2D space. For example, two blocks may be separated by
a large land mass. Partitions with non-contiguous sets of
blocks are sub-optimal because they can increase the com-
munication cost. We examine the impact of non-contiguous
sets of blocks on our scaling study in Section 5.

The top panel of Figure 3 illustrates a partition of the
1◦ grid subdivided into blocks with 20 × 24 grid points
onto 8 processors using a level-4 Hilbert space-filling curve.
The bottom panel of Figure 3 corresponds to a single block
cartesian partition onto 8 processors.

Figure 3. The space-filling curve, which ex-
cludes land blocks, provides an ordering of
the ocean blocks. A 8 processor partitioning
is indicated by the various colors using SFC-
based (left) and single block cartesian (right)
algorithms.

5 Results

To test the impact of our SFC-based partitioning on the
scalability of the 0.1◦ POP benchmark, we acquired dedi-
cated time on the 40,960 processor IBM Blue Gene Wat-
son (BGW) [1] system at Thomas J. Watson Research and
the 10,000 processor Cray RedStorm system at Sandia Na-
tional Laboratory. Each BGW node consists of a dual-core
PPC440 processor that executes at 700 Mhz. The compute
nodes are connected by several networks, including high-
performance 3D torus for point-to-point messages and a
tree network for global reductions and barriers. The Cray
RedStorm system is the prototype of the Cray XT3 super-
computer [21]. RedStorm consists of 10,000 nodes con-
nected with a high-performance 3D torus network for mes-
sage passing. Each node consists of a single 2.0 Ghz AMD
Opteron processor. The configuration of each system is
summarized in Table 2. We first describe our results on
BGW.

We configured the 0.1◦ POP benchmark to use both
single-block cartesian partitioning and several SFC configu-
rations. We tested several block size configurations, which
are provided in Table 1. Table 1 provides block sizes in
the column bsx × bsy, number of ocean blocks nblocks,
and the corresponding SFC configuration. The percentage
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System
Name RedStorm BGW

Company Cray IBM
# of nodes 10,000 20,480

Processor
CPU Opteron PPC440
Mhz 2000 700

Peak Gflops 4.0 2.8
CPU/node 1 2

Memory Hierarchy
L1 data-cache 64 KB 32 KB

L2 cache 1 MB 2 KB
L3 cache – 4 MB

(shared)
Network

Network topology 3D torus 3D torus
# of Links/per node 6 6

Bandwidth/link 7600 MB/s 175 MB/s

Table 2. Description of the IBM Blue Gene
Watson and Cray RedStorm systems.

of land blocks eliminated is provide in the land blocks col-
umn. Note that as the block size decreases, land block elim-
ination removes a larger percentage of the total blocks. We
configure POP for the SFC tests such that there are approx-
imately equal numbers of blocks on each processor. For ex-
ample, consider running a job on ∼2400 processors. Table
1 indicates that several block size configurations may work,
including 45× 30, 36× 24, and 30× 20. The 45× 30 con-
figuration has 4884 blocks, so for a 2442 processor job, two
blocks would be placed on each processor. With the 36×24
and 30 × 20 block size configurations, jobs with 2515 and
2677 processors jobs would place three and four blocks per
processor respectively. We find that it is best to look for
block size configurations and processor counts that mini-
mize the number of blocks per processor. For the single-
block cartesian partitioning, we choose processor counts
such that the global domain is evenly divided into block
sizes whose x and y dimensions are approximately equal.

We execute the POP 0.1◦ benchmark, which contains no
disk IO, for one wall-clock day or 226 timesteps. The to-
tal computational time of the 1-day run, which excludes the
startup costs, is used to calculate simulated years per wall-
clock day. Figure 4 contains scaling curves for three dif-
ferent configurations on BGW: sub-block with space-filling
curve partitioning and the 1D data structure (SFC+1D),
single-block cartesian partitioning with the 1D data struc-
ture (CART+1D), and single-block cartesian partitioning
with 2D data structure (CART+2D). It is clear from Fig-
ure 4 that the CART+2D configuration, which corresponds
to unmodified POP, has poor scalability above 10,000 pro-
cessors. The simulation rate increases significantly for
CART+1D, which uses the 1D data structure, versus the
CART+2D configuration. Interestingly, the increase in sim-

ulation rate is entirely due to the rewritten conjugate gra-
dient solver. This result emphasizes the importance of
code modifications that reduce the required computational
resources. The greatest simulation rate for all processor
counts is achieved with the SFC+1D configuration. Both
the data structure modifications and SFC partitioning nearly
double the simulation rate of the 0.1◦ POP benchmark on
30K Blue Gene processors from 4.0 to 7.9 years per wall-
clock day. On BGW, our modifications achieve the greatest
benefit at very large processor counts.

Figure 4. Simulation rate for 0.1◦ benchmark
on BGW with a 2D and 1D data structure
based solver and SFC-based partitioning.

A more detailed analysis of our modifications is possible
by examining the statistics from several runs on large pro-
cessor counts on BGW. Table 3 contains statistics from four
runs on the Watson system using approximately 29K to 32K
processors. The second and third columns in Table 3 con-
tain statistics for two runs that use the single-block cartesian
partitioning method, while the fourth and fifth columns con-
tain statistics from runs with SFC partitioning. The average
(AVG) and maximum (MAX) values for the number of active
ocean points (nActive) and the single processor communi-
cation volume (spcv) for a single update of a 2D variable is
provided for each configuration. Notice that the MAX(spcv)
for the 1D data structure solver is 560 bytes versus 1184
bytes for the 2D data structure solver on 32,000 proces-
sors. The reduction in communication volume is a result of
only passing the data between MPI processes that is actu-
ally necessary. In the baroclinic component of the timestep,
a halo width of two is necessary for the advection code.
However in the barotropic solver, the 9-point stencil only
requires a halo width of one. By only passing the necessary
data between MPI processes, the single processor data vol-
ume in the solver is reduced by a factor of two. The result
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of minimizing resource requirements within the barotropic
solver reduces the execution time of the barotropic solver
on 32,000 processors from 30.21 to 8.80 seconds.

The computational and communication load imbalance
is also provided in Table 3. The load balance (LB) for
a set S = {s1, s2, ..., sn} is calculated as LB(S) =
(MAX{S} − AV G{S})/AV G{S}. We expect our SFC-
based partitioning algorithm to reduce load imbalance.
Table 3 indicates that the computational load imbalance
LB(nActive) is, as expected, significantly reduced from 48%
to ∼5%, while communication load imbalance LB(spcv)
is similarly reduced from 49% to 8%. Interestingly, even
through SFC partitioning increased AVG(spcv) from 376 to
472 bytes, the MAX(spcv) dropped, decreasing from 560 to
512 bytes.

Configuration
nprocs 32,000 32,000 32,038 28,972

bsx× bsy 18× 15 18× 15 12× 8 18× 12
blocks/proc 1 1 2 1
partitioning CART CART SFC SFC

solver 2D 1D 1D 1D
Number of Grid points

AVG(nActive) 182 182 182 201
MAX(nActive) 270 270 192 216

LB(nActive) .48 .48 .05 .07
Message Volume in Solver

AVG(spcv) 376 480 472
MAX(spcv) 1184 560 576 512

LB(spcv) .49 .20 .08
Time

3D-update 6.34 6.42 5.78 5.59
baroclinic 22.82 22.89 22.64 19.35
barotropic 30.21 8.80 5.26 5.18

total 59.37 38.11 33.68 30.12
Simulation Rate

years/day 3.98 6.21 7.03 7.86
GFlops 1023 1593 1803 1967
% peak 1.1% 1.8% 2.0% 2.4%

Table 3. Description of different run configu-
rations on BGW.

Blue Gene has profiling libraries that provide the number
and size of each MPI message and access to network hard-
ware performance counters. The network hardware perfor-
mance counters provides counts of the packets that traverse
each node of the torus network. We use the packet coun-
ters and message information to approximate the average
distance a message travels within the Blue Gene torus net-
work. The number of packets for each of the six networks
links for the CART+1D on 32,000 processor configuration
and SFC+1D on 28,972 processor configuration is provided
in Table 4. Both configurations execute on a 32 × 32 × 16
node torus, which has a network diameter of 20 links. Net-
work diameter is the maximum distance in network links
from one node to another. Note that the SFC+1D configu-

ration significantly reduces the average packet count on the
negative Y link (Y −) and positive Y link (Y +) versus the
CART+1D configuration. A smaller reduction in average
packet count is seen for the X and Z links. The average to-
tal packet count (Σ) for the SFC+1D configuration is 45%
less than for the CART+1D configuration. The reduction in
average total packet count is achieved despite the fact that
the SFC+1D configuration has a larger AVG(spcv) than the
CART+1D configuration.

One possible cause for the reduction in packets for the
SFC+1D versus the CART+1D configuration, is that the av-
erage distance between neighbors is reduced. We can ap-
proximate the average distance between neighbors, by ap-
proximating the average number of packets that are injected
into the network. Because the number of packets in the net-
work is conserved, it is possible to approximate the mean
distance between neighbors. For example if all neighbors
were separated by two network links, than the total num-
ber of packets in the system should be twice the number
injected. Therefore we calculate the average distance be-
tween neighbors (∆avg) by the equation:

∆avg = Σ/Iavg

where Σ is sum of the packet counts for all links, and Iavg

is the average number of packets injected into the network.
We approximate Iavg based on the MPI message statis-

tics. The Blue Gene torus network uses packets with 224
byte payload, and a rendezvous protocol for messages larger
than 1000 bytes. We assume two additional packets are
used, to account for the acknowledgment packets in the ren-
dezvous protocol. Our approximation for Iavg and ∆avg

is provided in Table 4. Surprisingly the average distance
between neighbors for the CART+1D configuration is 15.7
hops which is close to the network diameter of 20. It is
unclear the reason for the large separation between neigh-
bors and could be related to the routing algorithms. While
Blue Gene uses an adaptive routing algorithm for larger
messages, the majority of the messages in the POP 0.1◦

benchmark are smaller than the adaptive routing threshold.
The SFC+1D configuration significantly reduces the aver-
age distance between neighbors to 9.9 network hops. A re-
duction in the distance between neighbors reduces the prob-
ability of network contention. Unfortunately, due to lack of
profiling data, we are unable to approximate the maximum
distance between neighbors for each configuration.

While SFC-based partitioning reduces the total number
of packets in the system it does not always reduce the max-
imum number of packets for a particular link. The compre-
hensive packet statistics provides the opportunity for analy-
sis of the spatial distribution of network congestion within
the torus. We use Paraview [18] to visualize hotspots or
network links within the torus that have significantly higher
packet count. Figure 5 is a visualization of the Y + link traf-
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fic for both the CART+1D and SFC+1D configuration on
a 32 × 32 × 16 node torus. Note the cubes represent the
CART+1D configuration while the sphere to the SFC+1D
configuration. The color and size of the cubes and spheres
correspond to the number of packets on the links. We only
render those network nodes whose packet count is within
10% of the maximum packet count in the network. Interest-
ingly, in the case of the Y + link, the magnitude and num-
ber of hotspots in the network is significantly reduce for
SFC+1D configuration. For the CART+1D, a whole section
of the network is congested. Similar plots for the other torus
links indicates that the congestion in the SFC+1D configu-
ration is similarly isolated to small number of links, while
the CART+1D configuration generates large regions of con-
gestion. The impact of the spatial distribution of congestion
and whether it could be improved through processor map-
ping in an avenue for further investigation.

Configuration
nprocs 32,000 28,972

torus dim. 32× 32× 16 32× 32× 16
torus dia. 20 20

partitioning CART SFC
solver 1D 1D
Packets per network node (average)
X− 3.3M 2.9M
X+ 3.3M 2.9M
Y − 2.5M 0.5M
Y + 2.5M 0.5M
Z− 0.08M 0.05M
Z+ 0.08M 0.05M

Σ 11.8M 4.1M
Iavg 0.73M 0.70M

Average distance in hops
∆avg 15.7 9.9

Table 4. Network statistics for two configura-
tions on BGW.

The simulation rate of the 0.1◦ POP benchmark on the
10,000 processor Cray RedStorm system is also improved
through the use of SFC partitioning. A plot of simula-
tion rate as a function of processor count for the 0.1◦ POP
benchmark is provided in Figure 6 using single-block carte-
sian partitioning with the 2D data structure (CART+2D) and
the SFC partitioning with the 1D data structure (SFC+1D)
configurations. Unlike on BGW, SFC partitioning provides
significant increases in simulation rate for all processor
counts. It is interesting to note that the best simulation rate
of 8.1 years per wall-clock day occurs on 7545 processors.

The reason for the decrease in simulation rate above
7545 processors is clear if we examine the statistics from
the 7545, 8264, and 9658 processor runs provided in Table
5. Table 5 indicates that the communication-intensive com-
ponents of POP, the 3D-update at the end of the timestep,
and the barotropic solver costs increase as processor counts

Figure 5. Congestion in the BGW network for
a 0.1◦ POP run on 32×32×16 node torus. The
spheres indicate location and magnitude of
packet counts for SFC-based run, while the
cubes correspond to CART-based run.

Figure 6. Simulation rate for 0.1◦ benchmark
on RedStorm with a 2D and 1D data structure
based solver and SFC-based partitioning.
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increase. Increases in the execution time are consistent with
increases in MAX(spcv), which increases from 992 to 1128
bytes. These results clearly demonstrate that the choice
of block size impacts the performance advantage that SFC
partitioning provides. Our experience and Table 5 con-
firm that the SFC configuration with the smallest number of
blocks minimizes communication and computational costs.
SFC configurations with a larger number of blocks increase
the possibility of partitions with non-contiguous blocks and
higher communication costs. It is possible to provide an es-
timate on the impact non-contiguous blocks have on perfor-
mance. Consider the 8264 processor configuration with two
blocks of size 24 × 16. In a partition with non-contiguous
blocks, the maximum possible single processor communi-
cation volume (spcv) would be twice the perimeter of each
block. The minimum spcv occurs when the two blocks share
the longest side of the block. We therefore calculate that for
two blocks of size 24× 16 the minimum spcv is 928 bytes,
and the maximum is 1344 bytes. For our current partition-
ing algorithm, we observed 1088 bytes. An optimal par-
titioning algorithm could therefore reduce MAX(spcv) by
15% for the 8264 processor configuration. Similar calcu-
lations for the 9658 processor configuration suggests a 20%
reduction.

Tables 3 and 5 also allow for comparison of the im-
pact of various architecture features on simulation rate of
the 0.1◦ benchmark. Consider the cost of each compo-
nent of the POP timestep on 9,658 processors of RedStorm
versus 28,972 processors of Blue Gene. The cost of the
communication-intensive 3D-update is nearly identical on
both systems: 5.68 on RedStorm versus 5.59 seconds on
BGW. Because the 3D variables are updated using the 2D
boundary exchange, we can accurately compare the cost
of the 3D-update to the cost of the 2D updates within the
barotropic solver. The cost of the floating-point intensive
baroclinic component is 11.78 seconds on RedStorm versus
19.35 seconds on BGW. Interestingly, the execution time
of the barotropic component is significantly higher on Red-
Storm; 13.25 seconds versus 5.18 seconds on BGW. The
execution time for the barotropic solver is composed of the
time to perform boundary exchanges, floating-point arith-
metic, and global reductions. The cost of the 3D-update
and the baroclinic component suggest that RedStorm should
have a slightly lower cost for the boundary exchange and
floating-point arithmetic cost. The difference in execution
time for the barotropic component is therefore a direct re-
sult of the high-performance dedicated reduction network
on BGW. These results suggest that the simulation rate of
the 0.1◦ POP benchmark could be significantly increased on
the Cray XT3 through the addition of a high-performance
dedicated reduction network. Alternatively, the BGW sys-
tem could benefit from a microprocessor with improved sus-
tained floating-point performance. The 28972 processor run

on BGW only sustains 1977 Gflops or 2.4% of peak per-
formance. Because the floating-point calculations in POP
are distributed across a large number of subroutines, it is
not feasible to resort to hand optimized assembly code. It
should be noted that for our timing runs, the executable did
not contain the SIMD instructions that enable the use of the
second FPU on the PPC 440 processor. While tests of POP
at 1◦ indicate that the use of SIMD instructions reduces ex-
ecution time by ∼5%, POP at 0.1◦ generates SEGV when
SIMD instructions are used. Compiler support for the sec-
ond FPU on the PPC 440 processor needs further improve-
ment.

Configuration
nprocs 7,545 8,264 9,658

bsx× bsy 36× 24 24× 16 18× 12
blocks/proc 1 2 3
partitioning SFC SFC SFC

solver 1D 1D 1D
Number of Grid points

AVG(nActive) 769 678 579
MAX(nActive) 864 768 648

LB(nActive) .12 .13 .12
Message Volume in Solver

AVG(spcv) 888 912 920
MAX(spcv) 992 1088 1128

LB(spcv) .12 .19 .22
Time

3D-update 3.81 5.05 5.68
baroclinic 13.14 12.27 11.78
barotropic 12.24 13.27 13.25

total 29.19 30.59 30.71
Simulation Rate

years/day 8.11 7.74 7.71
GFlops 2080 1985 1977
% Peak 6.9% 6.0% 5.1%

Table 5. Description of several run configura-
tions on the RedStorm system at Sandia.

6 Conclusion

We demonstrate how several code modifications to the
Parallel Ocean Program (POP) significantly impacts the
scalability of a high-resolution ocean model on very large
processor counts. Our modifications nearly double the sim-
ulation rate of the 0.1◦ POP benchmark on 30K Blue Gene
processors. Interestingly, these modifications are not depen-
dent on exotic parallel programing techniques but rather on
a basic fundamental principle of reducing resource require-
ments. Our performance gains are a direct result of reducing
the amount of data loaded from the memory hierarchy, re-
ducing the amount of data passed between MPI processes,
and evenly distributing the computational workload. De-
spite the significant gains observed, we still see opportuni-
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ties for further improvement. We discovered the need for
message aggregation in the 3D-update section of the code
after our performance runs were made. We therefore be-
lieve that the cost of the 3D-update could be cut at least in
half on for both the BGW and RedStorm systems. Addi-
tionally, the conjugate gradient solver within the barotropic
component uses a simple scaled diagonal preconditioner.
We believe that it is possible to construct a scalable precon-
ditioner that could cut the cost of the barotropic component
in half. It is interesting to note that the importance of an
improved scalable preconditioner on BGW is less critical
due to its dedicated reduction network. Cutting the execu-
tion time of the solver in half would only reduce execution
time by 8% on BGW versus 20% on RedStorm. While it
may also be possible to further reduce communication vol-
ume through improvements to our curve partitioning algo-
rithm, the possible savings of 15-20% of the communica-
tion costs on RedStorm is minimal. Interestingly the net-
work hardware performance counts on Blue Gene indicate
that the space-filling curve based partitions tend to generate
isolated spots of congestion within the torus network while
the cartesian based partitioning generates large regions of
network congestion. The impact of network congestion and
whether it can be reduced using alternate processor map-
pings are additional avenues for further investigation.
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