
Architectural Support for Network Applications on Simultaneous
MultiThreading Processors

Kyueun Yi, Jean-Luc Gaudiot

University of California, Irvine
Department of Electrical Engineering and Computer Science

Irvine, CA 92697-2625 USA
{kyueuny, gaudiot}@uci.edu

Abstract

As network applications become increasingly sophisti-
cated and internet traffic is getting heavier, future network
processors must continue processing computation-intensive
network applications at line rates. Most programmable
network processors on the market today, such as the In-
tel IXP2800, target low performance (from 100 Mbps to 10
Gbps). However, low cost edge routers will find it hard to
cope with the forthcoming sophistication of network appli-
cations to be processed at those speeds. Hence, new archi-
tectures should be designed for the programmable network
processors of the future. The goal of this paper is to eval-
uate the applicability and efficiency of Simultaneous Multi-
Threaded (SMT) as a network processor. Indeed, the SMT
model inherently allows the multiple parallel threads which
must be dealt with in network processor applications. In
this paper, we investigate the architectural implications of
network applications on the SMT architecture. We demon-
strate that, when executed as independent threads, appli-
cations chosen from different network layers show an im-
proved IPC and cache behavior when compared with the
situation where the program executed comes from a single
network application. Finally, a new architectural solution
to cope with packet dependency is proposed and evaluated.

This work is partly supported by the National Science Foundation under
Grant No. CCF-0541403. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.
1-4244-0910-1/07/$20.00 c©2007 IEEE.

1. Introduction

As network applications are becoming increasingly sophis-
ticated and internet traffic is getting heavier, future network
processors must continue processing computation-intensive
network applications at line rates. One of the main prob-
lems is deep packet classification processing which is a
major performance-critical function and is required in net-
work applications such as QoS, URL matching, virus detec-
tion, intrusion detection, and load balancing [6]. Another
is security-related processing which has become quite es-
sential for Web switches and servers. In general, security-
related processing is CPU-intensive and requires more CPU
power than other network applications [9]. All network
applications which require deep packet classification and
security-related processing should be run at line rates, but
most programmable network processors on the market to-
day, such as the Intel IXP2800, aim at relatively low per-
formance (from 100 Mbps to 10 Gbps). This means that
such low cost edge routers will find it hard to cope with
the forthcoming sophistication of network applications to be
processed at line rates [7]. Hence, new architectures should
be designed for the programmable network processors of
the future.

Modern multiple-issue processors such as superscalar
and VLIW often have more functional units than a single
thread of program can effectively use. Therefore, multi-
ple threads can be introduced so that they can share the
functional units of a single processor. Simultaneous Mul-
tiThreading (SMT), a variation of multithreading, can is-
sue multiple instructions from threads which have no de-
pendencies among them in a single cycle and schedule
them dynamically so as to concurrently exploit Thread-
Level Parallelism (TLP) and Instruction-Level Parallelism
(ILP) [30, 27]. Major processor manufacturers have intro-
duced SMT in their newest architectures. These include

the Compaq Alpha 21464 [5], the Intel Pentium 4 Pro-
cessor with Hyperthreading Technology [14], and the IBM
Power5 [24].

The data streams presented to network processors and
those processed by general-purpose CPUs exhibit quite dif-
ferent behaviors. Indeed, the workload of network pro-
cessors is inherently parallel: network packets, which are
the basic unit of work for the applications, are often in-
dependent and may be processed concurrently. Network
applications have also some special features such as being
data-intensive, an irregularity caused by their being branch-
intensive [20, 29], a high level of packet parallelism [11],
and strong inter-packet dependency [19]. All these fea-
tures are potentially well matched to SMT network proces-
sors which can run higher layer network applications at line
rates.

Memik et al. [20] studied the architectural implications
of network applications with nine benchmarks; their results
showed the architectural implications of network applica-
tions on superscalar machines with SimpleScalar [2]. In-
deed, it has been observed by Crowley et al. [3] that SMT
could be a great candidate architecture for network appli-
cations which require high performance and parallel tech-
nology. However, the studies by Crowley et al. were com-
pleted with a limited number (3) of benchmarks. As dis-
cussed by Nemirovsky [1], since each network application
has different architectural requirements [29, 10, 13, 20] and
the throughput of network processors highly depends on the
characteristics of the application, we definitely need to ex-
amine the overall architectural implications of SMT proces-
sor with as many network applications as possible if we are
to design network processors with SMT as a baseline archi-
tecture.

The goal of this paper is to evaluate the applicability and
efficiency of the Simultaneous MultiThreaded model as a
network processor. Indeed, the model inherently allows the
execution of the multiple parallel threads which must be
dealt with in network processor applications. We investi-
gate the architectural implications of network applications
on SMT processors. We demonstrate that, when executed as
independent threads, applications chosen from different net-
work layers display improved IPC and cache behavior over
applications chosen from the same network layer. Also, we
propose and evaluate a new architectural solution to cope
with packet dependency. The proposed hardware packet
dependency solution has two functions. One of the func-
tions is to choose the packets which do not occur packet
dependency state in threads from packet buffer and to pro-
vide threads with the packets. The other is scheduling of the
issue of Load/Store instructions to avoid packet dependency
conditions in the issue stage.

The rest of this paper is organized as follows. Section 2
describes previous work on the architectural implications of

network applications on single thread and multiple threads.
Section 2 also includes previous work on packet depen-
dency conditions and a quantitative analysis of packet de-
pendency. Our simulation methodology and simulation en-
vironment are presented in section 3. We present the archi-
tectural implications of network applications on SMT pro-
cessor in section 4. We then introduce and evaluate our new
packet dependency solution in section 5. Finally, we sum-
marize our observations in section 6.

2. Related work

In this section, we describe previous work on the architec-
tural requirements of network workloads, thread synchro-
nization and packet dependency.

The architectural demands of network workloads in sin-
gle thread have been investigated by several research teams.
For one, Wolf et al. [29] classified network workloads
into packet header processing and data stream process-
ing and presented CommBench which consists of 8 pro-
grams. The instruction frequencies, computational com-
plexity, and cache performance of CommBench are eval-
uated on the SUN UntraSparc II processors operating un-
der the SunOS5.7. Lee et al. [10] classified network work-
loads into traffic-management and quality of service group,
security and media processing group, and packet process-
ing group and presented NpBench which focused on control
plane workloads. The architectural demands of NpBench is
compared with those of CommBench and the computational
requirements of the benchmarks with control plane func-
tions are discussed in the paper. Memik et al. [20] classified
network workloads into Micro-level programs, IP-level pro-
grams, and Application-level programs and presented Net-
Bench. They investigated and compared Instruction-Level
Parallelism, branch prediction accuracy, instruction distri-
bution and cache behavior between NetBench and Media-
Bench with SimpleScalar. Luo et al. [13] presented NeP-
Sim which implements most of the functionalities of the
IXP1200 and an infrastructure for analyzing and optimizing
NP design and power dissipation at the architecture level.
Four benchmarks were ported to NePSim and the perfor-
mance was measured in terms of throughput and average
packet processing time. This showed a correlation between
performance variation and power variation.

Crowley et al. [3] showed that the performance of SMT
processors was the highest compared to a Fine-Grained
MultiThreaded processor (FGMT), a single chip multipro-
cessor (CMP), or even an aggressive, out-of-order, specu-
lative superscalar (SS) on the basis of equivalent proces-
sor resources. However, their study used only three kinds
of workloads (IP forward, MD5, and 3DES) and did not
exploit the characteristic features of network applications
to design their processors. Robatmili et al. proposed

a network processor simulator based on SMT with hard-
ware queues for scheduling process threads and some load-
balancing mechanisms at the level of process threads [23].
They presented an evaluation of the performance with their
own simulation environment called NPSMT, which simu-
lates a SMT network processor, a network controller, and a
packet generator. They used only two benchmark programs
(IP-lookup and MD5) and used mixed scenarios of these
two benchmarks.

CNP810SP is a network processor with SMT capabili-
ties [16]. The processor can execute up to eight threads si-
multaneously and zero to three instructions from each of the
threads at each cycle. However, it should be noted that this
processor never made it into the market place. S. Melvin et
al. proposed massively multithreaded packet processors for
those “stateful” networking applications (those which are
are required to support a large amount of state with little lo-
cality [18, 17]). The processor supports 256 simultaneous
threads in 8 processing engines. However, no evaluation of
the processor is available.

Multithreaded applications can use either coarse- or fine-
grained synchronization as required. Tullsen et al. intro-
duced the criteria for SMT synchronization and fine-grained
synchronization using hardware-based blocking locks [28].
Two instructions, Acquire(lock) and Release(lock), were
used as primitives. However, fine-grained synchronization
needs significantly more programming effort than coarse-
grained synchronization, even though fine-grained synchro-
nization gives more opportunities for higher concurrency.
Martı́nez et al. presented speculative locks which were
based on the concepts of speculative Thread-Level Paral-
lelism and allowed locks to be executed speculatively [15].
The speculative locks achieve fine-grained synchronization
without any additional programming effort.

Melvin et al. have defined the concept of packet de-
pendency condition and how it would require appropriate
synchronization to correctly process packets correctly [19].
When multiple packets are being processed simultaneously
in a multiprocessor or in a multithreaded environment,
packet dependencies between two packets may or may not
exist. When packets are processed with static rules such
as in the case of stateless firewalls and forwarding engines,
there are no packet dependencies because the code working
in each packet does not need to modify the rules. Therefore,
synchronization is not required since packets are processed
independently. If packets are from the same TCP connec-
tion and it is necessary to update the state in memory for the
purpose of encryption or TCP state maintenance between
the processing of two packets, a packet dependency exists.
Packet dependency also occurs when updating traffic man-
agement counters and routing or address translation tables.
If a packet dependency exists, some sort of synchronization
is required as mentioned above.

Packet dependency analysis [19] measures the probabil-
ity of packet dependency of the given packet to other pack-
ets when given a certain packet window size. It shows that,
with a workload considering only TCP flows, for 100 pack-
ets, there is a packet dependency probability of 14.7%. In
other words, if 100 packets are currently being processed,
the next packet to be received will have a dependency with
14.7 packets which are currently being processed. Packet
dependency is thus becoming a critical issue if we are to
achieve high performance on highly parallel network pro-
cessors.

3. Simulation methodology

In this section, we describe our experimental environment
which includes our SMT processor simulator and its config-
uration, the benchmarks and the packet traces used as input
to the network application benchmarks.

3.1. SMT processor simulator with Alpha
ISA

We designed an execution-driven SMT processor simu-
lator derived from the SimpleScalar tool set [2] for our
architectural investigation and our evaluation of our pro-
posed packet dependency solution for SMT processors. We
modified the sim-outorder simulator from the SimpleScalar
toolset to implement an SMT processor simulator which
supports out-of-order and speculative execution as shown
in Figure 1.

The architectural processor model contains six pipeline
stages: fetch, decode, issue, execute, writeback, and com-
mit. Several resources, such as PC, integer and floating-
point register files, and branch predictor, are replicated
to allow multiple thread contexts. The fetch policy is
ICOUNT [26] in which 8 instructions are fetched from up
to 2 threads at each cycle. gShare is used as a branch predic-
tion model. The packet scheduler and Load/Store instruc-
tion scheduler in Figure 1 are used only for the packet de-
pendency solution and are explained in detail in Section 5.
The overall configuration of the simulated SMT processor
is shown in Table 1.

Although the architectural parameters in the configura-
tion could be slightly different because of architectural vari-
ations between SimpleScalar and the Alpha processor, the
configuration is designed to have an amount of resources
roughly equivalent to those in Alpha EV8 [22]. The config-
uration for the functional units is shown in Table 2.

3.2. Benchmarks

NetBench is commonly used for the evaluation of network
processors [20]. We compiled all the benchmarks with cc -

Fetch Decode Issue Execute CommitWriteback

Load/Store
Instruction
Scheduler Packet

Scheduler

Figure 1. A Schematic diagram of our SMT processor with packet dependency solution

Parameter Value
Fetch Bandwidth 2 threads out of 4

(8 instruction total)
Fetch Policy ICOUNT
Decode, Issue, Commit Width 8
Branch Predictor gShare(1K)
Branch Target Buffer 1024 4-way
Branch Mispredict Penalty 7+ cycles
Return Address Stack 32
INT Units 8
FP Units 4
Latency L1(3 cycles), L2(13 cycles),

Memory(62 cycles)
L1 I-cache 64KB(256:64:4:L)
L1 D-cache 64KB (256:64:4:L)
L2 Unified Cache 2MB (4096:128:4:L
I-TLB 1MB (1:8192:128:L)
D-TLB 1MB (1:8192:128:L)
IFQ Size 8
RUU Size 128
LQ/SQ Size 32/32

Table 1. Configuration for the simulated SMT
processor

O3 -arch ev6 -non shared in Alpha/Tru64 and ran each with
the arguments shown in Table 3.

We implemented a minor modification of NetBench-
1.1.0 to compile it in Alpha/Tru64 since some network-
related header files of Alpha/Tru64 are slightly different
than those of gcc/Linux. To remedy the unaligned ac-
cess memory error which is caused by improper cast-
ing at run-time, we implemented a minor modification to
ROUTE, DRR, NAT, and URL. We also modified four
benchmarks, TL, ROUTE, DRR, and NAT, to use all four
bytes of IP address in the routing table instead of the first
byte of the IP address. The original NetBench uses the
traces from Columbia University available in the public do-
main [21]. However, destination and source IP addresses
of this trace are anonymized for privacy protection. We
used other real packet traces [4]. The DH benchmark,
Diffie-Hellman public-key encryption-decryption mecha-
nism, does not need a packet trace.

Function Repeat rate Latency
INT add/logical/shift 1 1

mult 1 7
div 9 12

FP add/comp 1 4
mult 1 4
div 9 12
sqrt 15 18

Table 2. Configuration of functional units

Category Application Arguments
Micro-Level CRC crc 5000

TL tl 32 5000
IP-Level ROUTE route 32 5000

DRR drr 32 5000
NAT nat 32 5000
IPCHAINS ipchains 10 5000

Application-Level URL url small inputs 5000
DH dh 5 64
MD5 md5 5000

Table 3. NetBench applications and their ar-
guments

4. Implications of network applications on the
design of SMT processors

In this section, we investigate the implications and per-
formance of NetBench on SMT processors. To demon-
strate how well SMT architectures fit network processors,
we compare the performance between the execution of one
thread and the execution of the same three threads chosen
from each benchmark of NetBench, and examine the per-
formance of the execution of three threads chosen from the
different levels shown in Table 3.

4.1. Architectural requirements of work-
loads consisting of the same applica-
tions

In this subsection, we examine what kind of performance
enhancement can be observed with the SMT processor. We

compare three performance parameters, IPC, the Level-
1(L1) data cache miss rate, and the Level-2 (L2) unified
cache miss rate between the execution of one-thread and the
execution of the same three-threads from NetBench. Ac-
cording to an earlier study [20, 10], even a 4KB L1 instruc-
tion cache shows a comparatively low 2.8% miss rate and
our experiments show virtually 0% miss rates with a 64KB
L1 instruction cache in both one-thread experiments and
three-threads experiments. Thus, we do not consider the
L1 instruction cache miss rate for performance comparison
since the miss rate of the L1 instruction cache does not de-
pend on any specific feature of network applications in Net-
Bench but mostly depends on a function of the cache size.
However, we need to investigate whether the L1 instruction
cache miss rate of the next generation network applications
such as deep packet processing and security related process-
ing depends on any specific feature of those next generation
network applications.

Figure 2 shows the IPC comparison between the exe-
cution of one-thread and the execution of the same three-
threads chosen from each benchmark program of NetBench.
The average IPCs of the execution of one-thread and the ex-
ecution of three-threads are 1.65 and 2.64, respectively. As
intuitively expected, the SMT processor brings a 60% per-
formance enhancement in network applications.

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

C
R

C T
L

R
O

U
T

E

D
R

R

IP
C

H
A

IN
S

N
A

T

D
H

M
D

5

U
R

L

A
V

G

Benchmark programs

IP
C

1 Thread 3 Threads

Figure 2. IPC comparison between 1 thread
and 3 threads

Figure 3 shows a comparison of the L1 data cache miss
rates between the execution of one-thread and the execution
of three-threads. The averages of L1 data cache miss rates
for the same cases are 1.8% and 3.2%, respectively. As the
number of threads is increased, the L1 data cache miss rates
are increased by 77%. The reason for this increase is inher-
ited from the SMT processor in which threads share the L1
data cache and inter-thread conflict misses occur. The L1
data cache miss rates are increased as the number of threads
increases, since the SMT processor shares the cache hierar-
chy among all the threads [12, 8]. More particularly, in the
network workloads such as TL, ROUTE, DRR, and NAT,

which are data-intensive and based on the routing table, the
L1 data cache miss rates are increased by 125%. This means
that data-intensive network applications have less locality
in the L1 data cache than any other network applications
which do not use routing tables in NetBench. URL, a par-
ticularly branch-intensive network application, shows much
higher L1 data cache miss rates than any other network ap-
plication.

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

C
R

C

T
L

R
O

U
T

E

D
R

R

IP
C

H
A

IN
S

N
A

T

D
H

M
D

5

U
R

L

A
V

G

Benchmark programs

C
a

c
h

e
 m

is
s
 r

a
te

(%
)

1 Thread 3 Threads

Figure 3. Comparison of L1 data cache miss
rates between 1 thread and 3 threads

Figure 4 shows a comparison of L2 unified cache miss
rates between the execution of one-thread and the execution
of three-threads. Usually, the L2 unified cache size is suf-
ficiently large to store the working set of multiple threads,
hence, L2 unified cache miss rates are slightly higher [12, 8]
as shown by the data-intensive network workloads such as
TL, ROUTE, DRR, and NAT of the Figure 4. However, the
averages of L2 unified cache miss rates of execution of the
same cases are 25.0% and 9.4%, respectively. The aver-
ages L2 unified cache miss rates are higher than the aver-
ages L1 data cache miss rates. The L2 unified cache miss
rates of computation-intensive network applications such as
CRC, IPCHAINS, DH, and MD5 are significantly higher
than the L2 unified cache miss rates of any other network
applications in the execution of one-thread. This means that
computation-intensive network applications have less local-
ity than any other network applications in the L2 unified
cache. This is the reason for the increase of the average of
L2 unified cache miss rates. When comparing the average
L2 unified cache miss rates between the execution of one
thread and the execution of three threads, the average L2
unified cache miss rates executing three threads is smaller.

4.2 Architectural demands of mixed-style
workloads

Network applications are spread across several layers and
network processors need to execute them concurrently in

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0
C

R
C

T
L

R
O

U
T

E

D
R

R

IP
C

H
A

IN
S

N
A

T

D
H

M
D

5

U
R

L

A
V

G

Benchmark programs

C
a

ch
e

 m
is

s
ra

te
(%

)

1 Thread 3 Threads

Figure 4. Comparison of L2 unified cache
miss rates between 1 thread and 3 threads

order to keep the processing at line rates. Network ap-
plications of NetBench as shown in Table 3 are classi-
fied into 3 categories: the micro-level, the ip-level, and
the application-level; we choose one application from each
level, form a total of 24 mixed-style workloads, and run
them on the SMT processor simulator. Hence, we observe
the execution of mixed-style workloads as shown in Table 4.

Name Benchmarks Name Benchmarks
Mix1 crc, route, url Mix13 tl, route, url
Mix2 crc, route, dh Mix14 tl, route, dh
Mix3 crc, route, md5 Mix15 tl, route, md5
Mix4 crc, drr, url Mix16 tl, drr, url
Mix5 crc, drr, dh Mix17 tl, drr, dh
Mix6 crc, drr, md5 Mix18 tl, drr, md5
Mix7 crc, ipchains, url Mix19 tl, ipchains, url
Mix8 crc, ipchains, dh Mix20 tl, ipchains, dh
Mix9 crc, ipchains, md5 Mix21 tl, ipchains, md5
Mix10 crc, nat, url Mix22 tl, nat, url
Mix11 crc, nat, dh Mix23 tl, nat, dh
Mix12 crc, nat, md5 Mix24 tl, nat, md5

Table 4. Mixed-style workloads

Figure 5 shows the IPC of these mixed-style workloads.
The average IPC is 3.18 which is an increase of 21% over
the execution of the same three threads and of 93% over the
execution of one thread. It is caused by the fact that mixed-
style workloads reduce resource conflicts in the pipeline
since different network applications have different instruc-
tion mixes [20, 10] and there is a strong likelihood that dif-
ferent resources would have been required.

Figure 6 shows the cache miss rates of the mixed-style
workloads. Compared to the execution of the same three
threads, the average L1 data cache miss rate is not changed
but the average L2 unified cache miss rate is reduced by
approximately 26%. Hence, mixed-style workloads can in-
crease the IPC by 21% and reduce the L2 unified cache miss

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

M
ix

 1

M
ix

 2

M
ix

 3

M
ix

 4

M
ix

 5

M
ix

 6

M
ix

 7

M
ix

 8

M
ix

 9

M
ix

 1
0

M
ix

 1
1

M
ix

 1
2

M
ix

 1
3

M
ix

 1
4

M
ix

 1
5

M
ix

 1
6

M
ix

 1
7

M
ix

 1
8

M
ix

 1
9

M
ix

 2
0

M
ix

 2
1

M
ix

 2
2

M
ix

 2
3

M
ix

 2
4

A
V

G

Mixed workloads

IP
C

Figure 5. IPC of mixed-style workloads

rate by 26% compared to the execution of the same work-
loads. However, it should be noted that the average L1 data
cache miss rate is not changed with mixed-style workloads.

0.0

10.0

20.0

30.0

40.0

50.0

60.0
M

ix
 1

M
ix

 2

M
ix

 3

M
ix

 4

M
ix

 5

M
ix

 6

M
ix

 7

M
ix

 8

M
ix

 9

M
ix

 1
0

M
ix

 1
1

M
ix

 1
2

M
ix

 1
3

M
ix

 1
4

M
ix

 1
5

M
ix

 1
6

M
ix

 1
7

M
ix

 1
8

M
ix

 1
9

M
ix

 2
0

M
ix

 2
1

M
ix

 2
2

M
ix

 2
3

M
ix

 2
4

A
V

G

Mixed workloads

C
a
c
h
e
 m

is
s
 r

a
te

s
(%

)
L1 Data L2 Unified

Figure 6. Cache miss rates of mixed-style
workloads

4.3 Architectural demands of network ap-
plications on the SMT Processor

As mentioned above, network workloads are spread across
several layers and network processors need to execute them
concurrently. Thus, mixed-style workloads are a good fit for
SMT processors. Indeed, mixed-style workloads showed
better performance in terms of IPC and L2 unified cache
miss rate. However, mixed-style workloads do not have any
influence on the L1 data cache miss rate of data-intensive
network applications. Thus, we must somehow reduce the
L1 data cache miss rates of data-intensive network applica-
tions and the L2 unified cache miss rates of computation-
intensive network applications.

5. Packet dependency solution

Several synchronization schemes for multi-
threaded/multiprocessor architectures have been introduced
in section 2. Packet dependency which occurs during
packet processing in the network applications and which
requires some form of synchronization has also been
introduced in section 2. In this section, we present previous
packet dependency solutions and propose and evaluate a
novel hardware-based packet dependency solution. It con-
sists of packet schedulers and of a Load/Store instruction
scheduler.

5.1 Previous packet dependency solutions
for multiprocessors and multithread-
ing

The problem of packet dependency can be approached in
hardware or in software [19]. In the software approach,
software locks are inserted in the code to hold the process-
ing of dependent packets until the dependent packet is fully
processed. However, inserting locking mechanisms in the
packet processing code may be difficult since the code is
usually large and the correct insertion of locking mecha-
nisms is hard to verify.

In the hardware approach, Figure 7 (a) shows the packet
classification hardware which enforces sequentiality to all
packets and groups the flow for multiple processing ele-
ments. In such environments with multiple processing ele-
ments, the hash function sends all packets of the same flow
to the same processing engine. However, the packet classi-
fication hardware can degrade the performance since it se-
quentially processes all packets, but even network applica-
tions do not require sequentiality. The packet classification
hardware also suffers from the need to balance work across
the multiple processing elements. As a solution to the prob-
lem of packet classification hardware, Melvin et al. [19]
proposed a conceptual hardware solution which consists of
a Read table, a Write table, and an Active packet list. The
hardware solution is located between the packet processing
engine and the memory system. When the hardware finds
the packet dependency status, it sends a stall signal to the
packet processing engine which should be stalled until the
dependent packet which is currently under processing by
another packet processing engine is completed.

5.2. Our proposed packet dependency solu-
tion for SMT processors

As described in section 2, a packet dependency occurs (i)
when packets being processed are from the same TCP con-
nection and (ii) when updating the shared traffic manage-
ment counters and routing or address translation tables. As

a solution to these problems of previous packet classifica-
tion hardware, we propose a novel packet dependency so-
lution which consists of a hardware packet scheduler and
a hardware Load/Store instruction scheduler as shown in
Figure 7 (b). The hardware packet scheduler prevents the
occurrence of condition (i) and the hardware Load/Store in-
struction scheduler prevents the occurrence of condition (ii).

Packet scheduler: The hardware packet scheduler is lo-
cated between a thread (considered a processing element)
and a packet buffer. Each thread in an SMT processor
has its own hardware packet scheduler with its own packet
buffer. The number of packet schedulers is the same as the
maximum number of threads in an SMT processor. When
each packet reaches the network processor, packets are dis-
tributed to each packet buffer evenly. For example, if there
are three threads, packets are stored in the packet buffer
as shown in (b) of Figure 7. Rectangles with the same
color in the packet buffer of (a) and (b) in Figure 7 mean
that they belong to the same TCP connection. We consider
only the TCP protocol in this paper since the protocol of
the traces we used for this experiment is TCP. When each
thread asks for its own packet scheduler to read a packet,
the packet scheduler takes one candidate packet from its
own packet buffer. Then, the packet scheduler determines
whether the candidate packet has the same TCP connec-
tions as the packet being processed by other threads. If
the candidate packet has the same source/destination ad-
dress and source/destination port as the packet being pro-
cessed by other threads, the packet scheduler makes a de-
cision that the candidate packet has a packet dependency.
Thus, the candidate packet is skipped and the packet sched-
uler examines the next packet in its own packet buffer. If the
next packet does not have a packet dependency with other
packets being currently processed by other threads, the next
packet is sent to the thread. The packet so skipped is ex-
amined again when the thread reads a packet in the next
time. The proposed packet dependency solution does not
suffer from the problem of having to balance work across
the multiple threads since packets are distributed to each
packet buffer evenly. Since the proposed packet dependency
solution does not require packet sequentiality, the proposed
packet dependency solution does not suffer from perfor-
mance degradation which is caused by packet sequentiality.

Load/Store instruction scheduler: In our baseline SMT
processor, Load/Store instructions are issued to functional
units with register renaming property such as Register Up-
date Units (RUU) [25] when their operands are ready. The
Load/Store instructions which access the shared memory
such as routing or address translation tables should be
scheduled carefully: this should be done so as to access
the shared memory sequentially in order to prevent differ-

(a) Packet classification hardware

(b) The proposed packet dependency solution

Processing
Element

Processing
Element

Processing
Element

Hash Function
Incoming
Packets

Packet Buffer

Packet
Buffer

0x01000000

0x04000000

Shared

Stack

Text

Data

0x1FF97000

0x20000000

0x40000000

Stack Stack

Text Text

Data Data

Thread 1

Thread 3

Thread 2

Packet
Buffer

Packet
Buffer

(c) Memory address map when each thread
shares the routing table

Packet
Scheduler

Thread 3

Packet
Scheduler

Packet
Scheduler

Thread 2

Thread 1

Load/Store
Instruction
Scheduler

Packet Buffer

Shared Memory
(Routing Table)

0x01000000

0x04000000

Stack

Text

Data

0x1FF97000

0x20000000

0x40000000

Stack Stack

Text Text

Data Data

Thread 1

Thread 3

Thread 2

(d) Memory address map when each thread
has its own routing table

Packet
Buffer

Packet
Buffer

Packet
Buffer

Own Own Own

Figure 7. The packet classification hardware, proposed packet dependency solution, and memory
address map

ent threads from accessing the same location at the same
time. The proposed Load/Store instruction scheduler is lo-
cated between a thread and a shared memory. The pro-
posed Load/Store instruction scheduler has a circular queue
and works with 3 stages out of the 6 pipeline stages in our
SMT processor: issue, writeback, and commit. In the is-
sue stage, whenever Load/Store instructions are issued, the
Load/Store instruction scheduler examines the address to
which the Load/Store instruction refers. If the Load/Store
instruction attempts to access the shared memory, it first ex-
amines the circular queue. If the circular queue is empty,
this Load/Store instruction is placed in the front location of
the circular queue and continues to access the shared mem-
ory. If another one is in the front location, it means that
the other instruction accesses the shared memory, the in-
struction is placed in the rear location of circular queue and
waits in issue stage. The instruction which is located in
the right after front location of the circular queue will lo-
cate in the front location of the circular queue as the pre-
vious instruction in the front location of circular queue is
removed from the circular queue. Thus, the instructions
can access the shared memory when they are placed in the
front location of the circular queue. In the commit stage,
when the Load/Store instruction is completed to access the
shared memory, the Load/Store instruction in the front loca-
tion of circular queue is removed, which enables Load/Store
instruction in the right after front location of the circular

queue to locate in the front location and access the shared
memory. In the writeback stage, Load/Store instructions
which must be removed in the issue stage because of branch
misprediction are removed from the circular queue. The
proposed SMT processor has the memory address map as
shown in (c) of Figure 7.

5.3. Evaluation of the proposed packet de-
pendency solution

To evaluate our proposed packet dependency solution, we
compare the performance of two experiments: in the first
one, each thread shares one routing table with the proposed
packet dependency solution. In the other, each thread has
its own routing table. With this comparison, we investigate
how much the hardware of the proposed packet dependency
solution influences the performance.

For the experiments, the TL benchmark of NetBench is
used and each experiment runs three threads. The exper-
iment with the packet dependency solution starts with the
routing table which is stored in the shared memory as shown
in (c) of Figure 7. The experiment without packet depen-
dency solution starts with the routing table which is stored
in its own memory as shown in Figure 7 (d).

As shown in Figure 8 (a), the IPCs of the experiments
without the packet dependency solution and those with the
packet dependency solution are 2.99 and 2.94, respectively.

2.91

2.92

2.93

2.94

2.95

2.96

2.97

2.98

2.99

3

w/o Packet dependency solution w/ Packet dependency solution

IP
C

(a) IPC

0

0.05

0.1

0.15

0.2

0.25

w/o Packet dependency solution w Packet dependency solution

C
a
c
h
e
 m

is
s
 r

a
te

(%
)

(b) L1 data cache miss rate

0

0.5

1

1.5

2

2.5

3

3.5

w/o Packet dependency solution w/ Packet dependency solution

C
a
c
h
e
 m

is
s
 r

a
te

(%
)

(c) L2 unified cache miss rate

Figure 8. Performance comparison between without packet dependency solution and with packet
dependency solution

The hardware which works as a packet dependency solution
and is added to a normal SMT processor degrades the per-
formance by only 1.7%. The Figure 8 (b) shows the L1
data cache miss rates. The L1 data cache miss rates of
experiments without packet dependency solution and with
packet dependency solution are 0.18% and 0.23%, respec-
tively. The hardware of the packet dependency solution in-
creases the L1 data cache miss rate by 28%. Figure 8 (c)
shows the L2 unified cache miss rate. The L2 unified cache
miss rates of experiments without packet dependency solu-
tion and with packet dependency solution are 1.32% and
3.06%, respectively. The hardware of the packet depen-
dency solution increases the L2 unified cache miss rate by
132%.

Since the Load/Store instruction scheduler influences the
behavior of the caches, as we expected, the performances of
the L1 data cache and L2 unified cache are degraded. How-
ever, the performance of our proposed packet dependency
is competitive since the IPC is only slightly decreased.
Since our SMT processor simulator is derived from the Sim-
pleScalar toolset which does not support a synchronization
function, we cannot easily compare the performance be-
tween the proposed packet dependency solution and the pre-
vious software packet dependency solution at this moment.

6. Conclusions

While work on architectural implications of network ap-
plications on single thread [29, 10, 20, 13] and on archi-
tectural implications of network applications on multiple
threads [3, 23] can be found, past work on architectural im-
plications of network applications on multiple threads used
only a few applications as benchmarks from many network
applications. As mentioned in the introduction, each net-
work application shows significantly different architectural
implications. We definitely need to examine the overall ar-

chitectural implications with as many network applications
as possible in order to design network processors with SMT
as the baseline architecture.

In this paper, we have investigated the architectural im-
plications with all 9 benchmarks of NetBench in SMT pro-
cessors. More specifically, we have found that mixed-style
workloads in which network workloads were chosen from
different network levels showed better performance than the
same workloads chosen from the same application. The
mixed-style workloads increase the IPC by 21% and reduce
the L2 unified cache miss rates by 26% compared to the
same workloads.

We have proposed and evaluated a packet dependency
solution for SMT processors. The proposed strategy con-
sists of packet schedulers and of a Load/Store instruction
scheduler. Since it does not require packet sequentiality
and grouping of the flows, it does not exhibit any perfor-
mance degradation which would be caused by packet se-
quentiality. Besides, since packets are distributed to each
packet buffer evenly, the proposed packet dependency so-
lution does not suffer from the need to balance work across
the multiple threads. The hardware which works as a packet
dependency solution and is added to a normal SMT proces-
sor decreases the IPC by only 1.7%. The performance of the
proposed packet dependency is competitive since the IPC is
only slightly decreased. The proposed packet dependency
solution can be used in multiprocessors or CMPs with only
slight modifications.

As future research, we will compare the performance be-
tween our proposed packet dependency solution and tradi-
tional synchronization used in multithreaded environments.
We will develop benchmarks which represent next gener-
ation network applications such as deep packet processing
and security-related processing and evaluate them in order
to investigate the architectural implications in SMT proces-
sors.

References

[1] A. Nemirovsky. Towards Characterizing Network Proces-
sors: Needs and Challenges. XSTREAM LOGIC Inc.,
White Paper, November 2000.

[2] D. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. http://www.simplescalar.com.

[3] P. Crowley, M. E. Fiuczynski, J.-L. Baer, and B. N. Bershad.
Characterization Processor Architectures for Programmable
Network Interfaces. In Proceedings of the 2000 Interna-
tional Conference on Supercomputing, 2000.

[4] D. E. Comer. Computer Networks and Internets with Inter-
net Applications, 4th edition. Prentice Hall, 2004.

[5] K. Diefendroff. Compaq chooses SMT for Alpha. Micro-
processor Report, 13(16):1–7, 1999.

[6] F. Gebali and A. N. M. E. Rafiq. Processor Array Archi-
tectures for Deep Packet Classification. IEEE Transactions
on Parallel and Distributed Systems, 17(3):241–251, March
2006.

[7] Intel. Intel IXP2800 Network Processor.
[8] J. L. Hennessy and D. A. Patterson. Computer Architecture

A Quantitative Approach, 3rd edition. Morgan Kaufmann,
2003.

[9] K. Kant, R. Iyer, and P. Mohapatra. Architectural Impacet
of Secure Socket Layer on Internet Servers. In The Proceed-
ings of the 2000 IEEE International Conference on Com-
puter Design: VLSI in Computers and Processors, pages 7–
14, Austin, Texas, USA, September 2000.

[10] B. K. Lee and L. K. John. NpBench: A Benchmark Suite
for Control plane and Data plane Applications for Network
Processors. In Proceesings of 21st International Conference
on Computer Design(ICCD’03), pages 226–233, 2003.

[11] H. Liu. A Trace Driven Study of Packet Level Parallelism.
In Proceedings of International Conference on Communica-
tions, 2002.

[12] J. L. Lo, S. J. Eggers, , J. S. Emer, H. M. Levy, R. L. Stamm,
and D. M. Tullsen. Converting Thread-Level Parallelism to
Instruction-Level Parallelism via Simultaneous Multithread-
ing. ACM Transactions on Computer Systems, August 1997.

[13] Y. Luo, J. Yang, L. N. Bhuyan, and L. Zhao. NeP-
Sim: A Network Processor Simulator with Power Evalu-
ation Framework. IEEE Micro Special Issue on Network
Processors for Future High-End Systems and Applications,
pages 34–44, Sept/Oct 2004.

[14] D. T. Marr, F. Binns, D. L. Hill, G. Hilton, D. A. Koufaty,
J. A. Miller, and M. Upton. Hyper-Threading Technology
Architecture and Microarchitecture. Intel Technology Jour-
nal, 6(1):4–15, 2002.

[15] J. F. Martı́nez and J. Torrellas. Speculative Locks for Con-
current Execution of Critical Sections in Shared-Memory
Multiprocessors. In Workshop on Memory Performance Is-
sues (WMPI), at International Symposium on Computer Ar-
chitecture (ISCA), Gothenburg, Sweden, Jun 2001.

[16] S. Melvin. Clearwater Networks CNP810SP
Simultaneous Multithreading (SMT) core.
http://www.zytek.com/ melvin/clearwater.html, 2000.

[17] S. Melvin. Flowstorm prothos massive
multithreading (MMT) packet processor.
http://www.zytek.com/ melvin/flowstorm.html, 2003.

[18] S. Melvin, M. Nemirovsky, E. Musoll, J. Huynh, R. Mil-
ito, H. Urdaneta, and K. Saraf. A Massively Multithreaded
Packet Processor. In NP2: Workshop on Network Proces-
sors, held in conjunction with The 9th International Sym-
posium on High-Performance Computer Architecture, Ana-
heim, California, February 2003.

[19] S. Melvin and Y. Patt. Handling of Packet Depenencies: A
Critical Issue for Highly Parallel Network Processors. In
Proceedings of International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems, 2002.

[20] G. Memik, B. Mangione-Smith, and W. Hu. NetBench: A
Benchmarking Suite for Network Processors. CARES Tech-
nical Report No. 2001-2-01, 2001.

[21] Passive Measurement and Analysis project, Na-
tional Laboratory for Applied Network Research.
http://moat.nlanr.net/Traces.

[22] R. P. Preston et al. Design of an 8-wide Superscalar RISC
Microprocessor with Simultaneous Multithreading. In Inter-
national Solid-State Circuits Conference (ISSCC), page 334,
San Francisco, CA, February 2002.

[23] B. Robatmili, N. Yazdani, and M. Nourani. Optimized SMT
processors for IP-packet processing. Microprocessors and
Microsystems, 29:337–349, 2005.

[24] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer,
and J. B. Joyner. POWER5 system microarchitecture. IBM
Journal of Research and Development, 49(4/5):505–521,
2005.

[25] G. S. Sohi. Instruction Issue Logic for High-Performance,
Interruptable, Multiple Functional Unit, Pipelined Com-
puters. IEEE Transactions on Computers, 39(3):349–359,
March 1990.

[26] D. M. Tullsen, S. J. Eggers, J. S. Emer, and H. M. Levy.
Exploiting Choice: Instruction Fetch and Issue on an Imple-
mentable Simulataneous Multithreading Processor. In Pro-
ceedings of 23rd Annual International Symposium on Com-
puter Architecture, 1996.

[27] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In Pro-
ceedings of 22nd Annual International Symposium on Com-
puter Architecture, pages 392–403, 1995.

[28] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy.
Supporting Fine-Grained Synchronization on a Simultane-
ous Multithreading Processor. In Proceedings of the 5th In-
ternational Symposium on High Performance Computer Ar-
chitecture, 1999.

[29] T. Wolf and M. Franklin. COMMBENCH - A Telecom-
munications Benchmark for Network Processors. In Pro-
ceedings of IEEE International Symposium on Performance
Analysis of Systems and Software, pages 154–162, Austin,
TX, Aprial 2000.

[30] W. Yamamoto, M. J. Serrano, A. R. Talcott, R. C. Wood, and
M. Nemirovsky. Performance Estimation of Multithread-
ing, Superscalar Processors. In Proceesings of the 27th
Annual Hawaii Internation Conference on System Sciecces,
volume 1, pages 195–204, 1994.

