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Abstract

In this paper, we propose the design of VoroNet, an object-
based peer to peer overlay network relying on Voronoi tessella-
tions, along with its theoretical analysis and experimental evalua-
tion. VoroNet differs from previous overlay networks in that peers
are application objects themselves and get identifiers reflecting the
semantics of the application instead of relying on hashing func-
tions. This enables a scalable support for efficient search in large
collections of data. In VoroNet, objects are organized in an at-
tribute space according to a Voronoi diagram. VoroNet is inspired
from the Kleinberg’s small-world model where each peer gets con-
nected to close neighbours and maintains an additional pointer to
a long-range neighbour. VoroNet improves upon the original pro-
posal as it deals with general object topologies and therefore copes
with skewed data distributions. We show that VoroNet can be built
and maintained in a fully decentralized way. The theoretical anal-
ysis of the system proves that routing in VoroNet can be achieved
in a poly-logarithmic number of hops in the size of the system.
The analysis is fully confirmed by our experimental evaluation by
simulation.

1 Introduction

Peer to peer has clearly been recognized as a key com-
munication paradigm to build robust and scalable dis-
tributed applications. Searching in large networks is one
of the core functionalities offered by peer to peer systems.
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ALPAGE project.
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Among the numerous peer to peer networks that have been
proposed in the past 5 years, structured peer to peer net-
works, such as Pastry [11] or Chord [13], have generated
a lot of interest. Most of these overlay networks organize
physical nodes in a logical network and provide a scal-
able support for fully decentralized Distributed Hash Ta-
bles (DHT). Such networks heavily rely on the use of hash-
ing functions to ensure load balancing. For example, nodes
use hashing functions to get an identifier, so that the iden-
tifier space is uniformly populated. Likewise, file iden-
tifiers are hashed to produce the key, used to locate ob-
jects later on in the DHT. Such networks offer an exact-
match interface which make them natural candidates for file
systems or archival systems in which requests target well-
identified files. While providing efficient key-based lookup,
the query mechanism of such systems is often restricted to
exact search. More specifically, they are not built to handle
range queries on either one or several attributes, mainly due
to the hashing mechanism. Either one attribute is associated
to a specific node leading to load unbalance for skewed dis-
tribution of the attributes, or a node is made responsible for
an (attribute, value) pair. This latter choice might require
flooding mechanisms or querying the entire set of possible
values for that range.

In this paper, we step away from this form of hash-
based peer to peer overlay networks and propose the de-
sign of VoroNet, an object-based overlay network based
on Voronoi tessellations. VoroNet differs from general-
purpose peer to peer structured overlays in that it links
application objects rather than physical nodes so that ob-
jects with similar characteristics are neighbours in the ob-
ject to object network, providing a natural support for range
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queries. In addition, VoroNet does not rely on hashing func-
tions to distribute the load or to evenly populate the identi-
fier space. Each object is managed by the physical node
hosting it, and each physical node is responsible only for
the objects it has published in the overlay. For the sake of
clarity, we will concentrate in this paper on the case where
each physical node is responsible for exactly one object.
Note that all the results presented here still hold true in the
more general case (actually, the performance would even be
better in practice, since holding several objects at the same
node would create extra shortcuts in the overlay). VoroNet
specifies a d-dimensional attribute space in which object’s
virtual coordinates (specifying its identifier) are the attribute
values associated to the objects themselves. The attribute
space is mapped on a d-dimensional torus. Attributes reflect
the application naming space: each object is represented by
its attributes values in this space. This may lead to skewed
data distribution in the space and yet VoroNet ensures an
efficient routing. In this paper, we focus on the special case
where d = 2, the object space being divided as a Voronoi
tessellation.

Inspired by the small-world model proposed by Klein-
berg [9], it goes beyond the original proposal by general-
izing the approach, initially proposed in the context of a
grid-based system. In the seminal paper of Kleinberg [9],
each node of a grid mesh knows its four neighbours in the
grid as well as an additional remote node carefully chosen
according to its distance in the grid. This paper provides
clear theoretical bounds on routing performance or node de-
gree distribution as long as the aforementioned assumptions
hold. This model is too restricted to be directly transposed
to any realistic distribution of objects among the attribute
space and any kind of graphs or overlay structure. Instead,
in VoroNet, we propose to use a similar design where each
object neighbour set, formed by its Voronoi neighbours, is
enhanced with a long range contact chosen according to
a precise distribution of long range link lengths. This pa-
per provides similar theoretical bounds on the routing per-
formance for any distribution of data among the attribute
space.

Contributions The contribution of this paper is twofold.
First we propose the design of a fully decentralized peer
to peer object-based overlay network, relying on Voronoi
tessellations, along with a theoretical analysis and evalua-
tion by simulation. VoroNet is innovative as it links objects
rather than peers, enabling the naming space to reflect the
application itself and therefore simplifying the range-based
search. In addition, VoroNet uses the properties of Voronoi
tessellations to handle skewed distribution of data. We pro-
pose fully distributed join and leave algorithms, requiring
only each object to have a (very) limited knowledge of the
system. These algorithms are fully distributed, resilient to

calculation degeneracy and evenly distribute the load be-
tween peers. In addition they are efficient with respect to
network traffic as well. Second, we provide a generalization
of Kleinberg algorithm and show that O(log2|O|) routing
performance bounds can be achieved, |O| being the number
of objects in the network. Simulation results confirm the
theoretical analysis. Note that the specification of associ-
ated query mechanisms is out of the scope of this paper.

Roadmap The rest of this paper is organized as follows,
in Section 2 we provide some background both on the
Kleinberg’s model on which our work is largely inspired as
well as Voronoi tessellations. Section 3 presents VoroNet
in a nutshell and its associated algorithms. The analysis of
VoroNet is presented in Section 4. Section 5 provides simu-
lation results of VoroNet. Before concluding and presenting
some perspectives of this work, we survey related works.

2 Background

In this section, we provide some background on the
Kleinberg’s model and the Voronoi diagrams, both on which
VoroNet is based.

2.1 Kleinberg’s model

Kleinberg proposed a small-world graph model [8, 9]
that provides both poly-logarithmic paths between any two
vertices (small-world property) and the navigability prop-
erty: greedy decentralized path discovery algorithms can
find poly-logarithmic paths in the graph between any cou-
ple of nodes. The model is a n × n grid where every ver-
tex has edges to its four direct neighbours and k (typically
one) long-range neighbour(s). This long-range neighbour
is chosen with a probability proportional to 1

ds , where d
is the link length, i.e. the Euclidean distance between the
vertex and its remote neighbour. Figure 1(a) depicts an ex-
ample of such a network. Only a subset of the long range
links are drawn, for the sake of clarity. In [9], the author
shows that s = 2 enables both small-world and navigability
properties for the 2-dimension grid. A generalization to d-
dimensional spaces [4] has shown that, for any d, choosing
s = d allows discovered paths of size in θ(log2 n

k ) using
greedy algorithms. VoroNet proposal in this paper extends
these results to more general topologies than grids.

2.2 Voronoi Diagrams

A Voronoi diagram [3, 6] is a partition of space V(P )
associated to a given finite set of points P = {p1, . . . , pn}
and a distance measure d. If d(p1, p2) denotes the Euclidean
distance between p1 and p2, each point pi is associated with
a Voronoi region R(pi) = {p|d(p, pi) < d(p, pj),∀j �=
i}. The partition of the space {R(p1), . . . , R(pn)} is the
Voronoi diagram of P . The boundary between two Voronoi



regions is a Voronoi edge, and a point where three or more
Voronoi regions meet is a Voronoi vertex.

The dual of the Voronoi diagram V(P ) is the Delau-
nay triangulation D(P ). Let C(∆p1p2p3) be the circum-
scribed circle of the triangle formed by points p1, p2 and p3.
The Delaunay triangulation is the set of triangles {∆pipjpk

}
such as ∆pipjpk

∈ D(P ) ⇔ ∀pl ∈ P − {pi, pj , pk} : pl �∈
C(∆pipjpk

).
The relation between V(P ) and D(P ) is straightforward:

there exists a Voronoi edge R(pi) ↔ R(pj) ∈ V(P ) if and
only if there is a link between pi and pj in D(P ). Fig-
ure 1(b) depicts an example of a Voronoi diagram for a set
of points (bold lines) and the associated Delaunay triangu-
lation (dashed lines).

3 VoroNet in a nutshell

We consider a set of objects O. As already noted, for
the sake of clarity, we consider a one-to-one mapping be-
tween an object and a physical node. The overlay design
space is a d-dimensional torus, each dimension represent-
ing one attribute. The coordinates of an object in this space
are uniquely specified by its values, one for each attribute.
In this paper, we focus on d = 2 on the unit torus (where
attribute values lie in [0 . . . 1]× [0 . . . 1]). We discuss higher
dimensions in the perspectives. In addition, a parameter
|O|target, known by all objects, indicates for which num-
ber of objects the system is optimized (that is, for which the
better possible routing is guaranteed).

Each object maintains its view of the system, i.e links
to a set of other objects. Each entry of the view is com-
posed of the IP address of the node hosting the object as
well as its coordinates in the unit torus. The size of this set
of neighbours is of order O(1) for any reasonable distribu-
tion of objects in the attribute space. Objects in VoroNet
are organized according to the Voronoi diagram V(O). The
set of neighbours is composed of: (i) Voronoi neighbours,
which are the objects whose regions share a Voronoi edge
with that object’s region ; (ii) Long range neighbour is
an additional remote neighbour providing to the network
its small-world characteristics (low diameter and navigabil-
ity). The way this latter neighbour is chosen in VoroNet is
inspired by the method described in [8]: the algorithm for
choosing this remote neighbour is depicted further in the
paper ; (iii) Close neighbours is a small set of neighbours
within a very short distance of the object, needed to ensure
routing properties, and depicted further in the paper. These
set of neighbours represents the view of the system on each
object.

Routing in VoroNet is used both for object insertion and
message forwarding. We use a simple greedy and fully de-
terministic algorithm to route a message from a source to
a destination. Note that this algorithm is not sensitive to
skewed distribution of objects in the space. We prove that

the theoretical number of hops between any two objects is in
O(log2|O|target), where |O|target denotes the target num-
ber of objects in the overlay.

Joining and leaving the overlay requires to recompute the
Voronoi tessellation for a set of objects. This modifies both
the Voronoi and long range neighbours. We provide fully
distributed algorithms to achieve this: the closest node to
the object (being added or deleted) is in charge of recom-
puting the new partial tessellation. Then, it sends the new
diagrams cells to its neighbourhood, so that they can also
update their view. The number of associated communica-
tions and computations are also of order O(1).

3.1 Object’s view management

As previously mentioned, each object in a VoroNet over-
lay maintains two main sets of neighbours as in Kleinberg’s
model. In addition, a small set of additional close neigh-
bours is required at each object to ensure routing efficient
termination.

The basic structure of VoroNet is a Voronoi diagram.
Each object o ∈ O has a set of Voronoi neighbours
{VN(o)}, which are the objects whose Voronoi region share
a Voronoi vertex with o’s Voronoi region. This set is main-
tained locally when inserting and deleting objects to the
overlay: each {VN(o)} is modified so that the structure
formed by {VN(o)} neighbourhood is exactly the Delau-
nay triangulation of O. Second, to ensure efficient routing,
each object o maintains one long range neighbour LRN(o).
The choice of long range range neighbours is drawn from
a generalization of Kleinberg’s model to Voronoi tessel-
lations in two dimensional spaces. Finally, each object o
needs to maintain a set of close neighbours {CN(o)}. These
neighbours are in a disk of radius dmin = 1

π×|O|target

centered at o: for each close neighbour o′ ∈ {CN(o)},
d(o, o′) ≤ dmin. The radius dmin is very small compared
to the attribute space size, but depends on the target num-
ber of objects in the overlay. We discuss in the perspectives
an approach to dynamically adapt this target number of ob-
jects. These neighbours are mandatory to ensure a polylog-
arithmic routing cost in spite of irregularities in the object
distribution, because long links lengths are chosen in the
range [dmin :

√
2

2 ].
These three types of neighbours are illustrated in Fig-

ure 2.
Links between Voronoi neighbours and close neighbours

are of symmetric nature. Long range neighbours are chosen
at a given node and are, by definition, asymmetric. This
may be a problem if t, the chosen long range neighbour
LRN(o) leaves the overlay: t will no more be able to contact
o to make it choose a new long range neighbour. To over-
come this difficulty, we record o as a specific neighbour of
t, and will mention it as the “Back Long Range” neighbour,
denoted by BLRN(o). This extra neighbour is nevertheless



(a) (b)

Figure 1. (a) Kleinberg network with some long range links ; (b) Voronoi Diagram in the unit cube.

Caption:

an object and its Voronoi region

the object o  and its Voronoi region 

close neighbor of o

Voronoi neighbor of o

long link target of o

dmin

t

back long link of t

Figure 2. Example of neighbourhood in VoroNet

not used for routing convergence analysis. Obviously, the
size of data structures stored at each object o depends on
the distribution of objects in the unit torus. However, under
reasonable assumptions on the distribution of objects, the
size of the data structures stored at each node is of order
O(1). Due to lack of space, we refer the interested reader
to the companion report [5] for a detailed proof. Roughly,
since Voronoi tessellations are planar graphs of unit torus
of genus 1, the average number of Voronoi neighbours is
bounded by 6. Moreover, the distance dmin is chosen so
that for uniform distributions, the average number of nodes
in a circle of radius dmin, and therefore the number of close
neighbours, is 1. At last, each node has exactly 1 long
range neighbour, and therefore, for uniform distributions,
each node is the long range target of 1 other node. There-
fore, for uniform distributions of objects on the torus, the
expected number of neighbours is of order O(1).

3.2 Routing in VoroNet: small paths and
navigability

The key property of VoroNet is to achieve efficient rout-
ing (in terms of number of hops) using a very simple greedy
routing algorithm. It works as follows: when an object o
receives a message m aimed at a target point P , m is for-
warded to the neighbour n of o that minimizes the Euclidean
distance between n and P , among the neighbours {CN(o)},
{VN(o)} and LRN(o). If P corresponds to an object, the
object is found. If P does not correspond to an object, the
routing finished in the Voronoi region where P lies, and the
object responsible for this Voronoi region is found (nearest
neighbour query). The routing algorithm is formally de-
scribed in Section 4. In both cases, the number of hops re-
quired to route the message is poly-logarithmic in |O|, the
overall number of objects in the overlay.



3.2.1 Object insertion
We now introduce the mechanism for inserting a new object
in the overlay. Details, proofs of correctness and complex-
ity results are provided in companion report [5]. Suppose a
new object wants to join the overlay. Its attributes fully de-
termine the point o where it will be located in the attribute
space. We assume that it knows some object x. Starting
from this object x, the following operations are performed:

1. The simple greedy routing algorithm is applied to find
the object o′ satisfying o ∈ R(o′).

2. o′ is responsible for computing the new region associ-
ated to o and its neighbourhood. To add o to the current
local Voronoi diagram, given the Voronoi region that
contains this point in the non-updated diagram, the al-
gorithm proposed by Sugihara and Iri [14] is used. It
uses local exploration methods based on combinato-
rial decisions, and has the strong advantage that it per-
mits reconstruction of local Voronoi regions that are
topologically consistent, even if calculation degener-
acy takes place.

3. Then o′ determines {CN(o)}: each new neighbour y of
o in the updated Voronoi diagram sends to o′ the set
of its neighbours z (either in {CN(y)} or in {VN(y)})
whose distance to o satisfies d(o, z) ≤ dmin. o′ then
declares o as close neighbour to all nodes z such that
z ∈ {CN(o)}. Lemma 1 proves that with this method,
o gets all its close neighbours: no object located at a
distance lower than dmin is ignored.

4. In order to determine the objects in BLRN(o), each
neighbour y (in the updated Voronoi diagram) sends
(and removes them from its own list) the set of its
neighbours z (in BLRN(y)) such that d(o, LRT(z)) <
d(y, LRT(z)) (i.e. the object o is nearer to the long
range link destination point than the object y is).

5. Last, o has to choose a target, i.e. a point in the unit
torus and to determine LRN(o), the object that is at
that time the nearest from that target point.

Lemma 1. Suppose that a new object p has joined the over-
lay, and that it has just determined its Voronoi neighbours,
namely its neighbours in the Voronoi diagram. Then all the
close neighbours of p are either some of its Voronoi neigh-
bours, or some of the close neighbours of its Voronoi neigh-
bours.

Proof. For the sake of convenience, in this proof, we will
call cell(o) the Voronoi cell of object o in the current
Voronoi diagram (containing the object x).

We call A the set of Voronoi neighbours of x, plus x. We
want to prove that ∀y,

such that d(x, y) ≤ dmin, there exists an z ∈
A with d(z, y) ≤ dmin

We consider two cases:• Case 1: y is a a Voronoi neighbour of x. Then z = x
satisfies the proposition.

z

y

M

min

x

d

Figure 3. Computing the close neighbours
• Case 2: y is not a Voronoi neighbour of x. We consider

the segment [x, y], as illustrated in Figure 3. The parts
of this segment belonging to the Voronoi cells of x and
y are not contiguous. We consider the object z respon-
sible for the part of the segment contiguous to the part
in cell(x), and a point M (which is not an object) in
this part of the segment. By triangular inequality, we
have: d(z, y) ≤ d(z,M) + d(M,y), but as M is in
cell(z), we get: d(z,M) ≤ d(x,M) together with the
previous inequality: d(z, y) ≤ d(x,M) + d(M,y) ≤
dmin. So y is a close neighbour of z, which is a Voronoi
neighbour of x.

3.2.2 Object removal
Let us now consider the operations involved when an object
o leaves the overlay. First, since the Voronoi region of o is
removed, o is responsible for computing new neighbouring
regions and for informing its neighbourhood. Second, if
the object o was in charge of a long range link with target
point P , belonging to object x, it determines which object o′

among its Voronoi neighbours is now in charge of the point
P , and delegates the responsibility of the link to o. Note
that object x can be reached thanks to the back-long-range
link.

4 VoroNet protocol analysis
In this section, we give some key points for the detailed

mechanism of insertion/deletion of objects and for the rout-
ing mechanism and their justifications. We will not detail all
the operations needed for this, but will focus on the choice
of a long range link target and the routing mechanism. All
details and proofs can be found in [5].

4.1 Choosing a long range target

When an object joins the overlay, it has to find
a long range target. This is achieved using function
CHOOSE-LRT, depicted in Algorithm 1. This function is
defined by analogy to Kleinberg’s work [8].

The following lemma describes the distribution of prob-
ability built by the function CHOOSE-LRT.



CHOOSE-LRT()
Choose a with uniform probability in
[ln(dmin), ln( 1√

2
)]

Choose θ with uniform probability in [0, 2π]
Set δ = (ea cos(θ), ea sin(θ))
Set LRT = CurrentObject.coordinates + δ (mod 1
for each attribute)
return

Algorithm 1: Algorithm for finding LRT(x)

Lemma 2. Using function CHOOSE-LRT, the probability
that LRT(x) belongs to a small surface dS at distance d
from x is given by dS

Kd2 , where K = 1

2π ln(
π|O|target√

2
)
.

An interesting result can be derived from Lemma 2,
which provides a lower bound on the probability to choose
LRT (x) in a given disk.

Lemma 3. The probability for LRT(x) to be chosen in a
disk of center y and radius fr, where r = d(x, y) is lower
bounded by πf2

K(1+f)2 .

This property is useful when proving the efficiency of the
greedy routing algorithm.

4.2 Routing complexity

In this section, we give an insight on the proof for
the general routing mechanism. We consider the ROUTE
function as the general framework for all routing functions
(see [5] for details): this general framework comes into sev-
eral flavors, for routing a message to an object, for find-
ing the region where a node has to be added or for find-
ing the object responsible for a new long range target. In
this function, Target stands for the target point (which
has a different meaning depending on the action to per-
form). DISTANCETOREGION(x) is a function used to com-
pute the distance between a given point x and the Voronoi
region of the current object (denoted by CurrentObject
in the algorithm): if this distance is achieved at
point z, then d(x,CurrentObject) = d(x, z) with z ∈
R(CurrentObject), and DISTANCETOREGION outputs z.
If x belongs to R(x), then DISTANCETOREGION outputs
x. Last, GREEDYNEIGHBOUR(x) is the closest neighbour
(using Euclidean norm) from x among the neighbours of
CurrentObject : {VN(x)}, {CN(x)} and LRN(x).

The algorithm is correct if it can be proven that once the
algorithm stops spawning processes it is possible to add z
to the overlay, since it is close enough from CurrentObject .
Then it is possible to prove that Target is close enough from
z and can be added to the overlay. This is summarized by
the following lemma, formally proved in [5].

ROUTE(x,Target)
z = DISTANCETOREGION(Target)
if d(z,Target) > 1

3
d(Target ,CurrentObject) and

d(Target ,CurrentObject) > dmin then
Spawn the process ROUTE(x,Target) on object returned
by GREEDYNEIGHBOUR(Target)

else
add a fictitious object to the overlay at point z
add an object to the overlay at point Target
perform some local computations local computation de-
pending on the operation at z
remove the fictitious object at z
(depending on the action, remove the object at Target)

return

Algorithm 2: Framework for routing algorithms starting at
x

Lemma 4. Let us assume that

d(DISTANCETOREGION(Target),Target) (1)
≤ d(Target ,CurrentObject)/3 (2)

or

d(Target ,CurrentObject) ≤ dmin (3)

Then z and Target can be successively added to the overlay.

We now analyze the maximal number of steps (i.e. of
calls to GREEDYNEIGHBOUR) of the algorithm. Lemma 5
asserts that the number of steps is poly-logarithmic in
|O|target.

Lemma 5. The number of calls to GREEDYNEIGHBOUR in
Algorithm 2 is of order O(ln2 |O|target).

Proof. The proof is directly adapted from the proof pro-
posed by Kleinberg [9] in the case of 2D grids. The main
difficulty when analyzing the number of steps needed by Al-
gorithm 2 is that Target is not a priori an existing object, so
that we cannot converge toward Target . Nevertheless, we
can prove that the number of steps needed to meet the con-
dition d(z = DISTANCETOREGION(Target),Target) ≤
d(Target ,CurrentObject)/3 is of order O(ln2 |O|target),
and previous lemma asserts that once this condition is satis-
fied, it is actually possible to add the object Target .

Let us consider a step of the algorithm, exe-
cuted at object CurrentObject . Let us denote d =
d(CurrentObject ,Target).

The probability that the long-link target
LRT(CurrentObject) belongs to the disk of center
Target and radius d

6 is lower bounded (Lemma 3) by

1

98 ln(π|O|target√
2

)
.



Let X denote the total number of calls to
GREEDYNEIGHBOUR before reaching an object s such that
LRT(s) belongs to the disk of center Target and radius d

6 .
The expectation E(X) of X is given by

E(X) =
+∞∑
i=1

Pr[X ≥ i] (4)

≤
+∞∑
i=1

⎛
⎝1 − 1

98 ln(π|O|target√
2

)

⎞
⎠

i−1

(5)

= 98 ln(
π|O|target√

2
) (6)

Let us assume now that we have reached an object
CurrentObject such that LRT(CurrentObject) belongs to
the disk of center Target and radius d

6 . We can prove (see
details in [5]) that

• either GREEDYNEIGHBOUR(CurrentObject) satisfies
d(GREEDYNEIGHBOUR(CurrentObject),Target)
≤ 5

6d(CurrentObject ,Target)

• or the following condition is fulfilled
d(z = DISTANCETOREGION(Target),Target)
≤ 1

3d(Target ,CurrentObject).

Then, continuing routing from CurrentObject , after an
expected number of 98 ln(π|O|target√

2
) calls to

GREEDYNEIGHBOUR, either Algorithm 2 stops because
d(z = DISTANCETOREGION(Target),Target)
≤ 1

3d(Target ,CurrentObject) is satisfied or the distance
between CurrentObject and Target is divided by 6

5 .
Let us call a super-step such a sequence of calls to
GREEDYNEIGHBOUR.

Since after each super-step, either the algorithm stops or
the distance between CurrentObject and Target has been
divided by 6

5 , the number of super-steps is upper bounded
by

ln(π|O|target√
2

)

ln( 6
5 )

.

Indeed, the initial distance is smaller than 1√
2

and the algo-
rithm stops as soon as the distance is smaller than dmin.

Therefore, by linearity of expectations, the expected
number of steps N of the algorithm is given by

E(N) ≤
ln(π|O|target√

2
)

ln( 6
5 )

× 98 ln(
π|O|target√

2
) (7)

≤ α ln2(|O|target) (8)

for a suitable choice of α, which achieves the proof.

(a) Uniform (b) Sparse

Figure 4. Subset of the two distributions, uni-
form and sparse with 5 hotspots.

5 Experimental results

In this section, we present the results of experimental
studies of VoroNet, obtained through extensive simulations.
All simulations were run using |O|target = 300.000. To de-
termine the impact of object distributions in VoroNet, we
used two distributions of object values in the unit torus:
uniform (equal probability of any point in the square) or
sparse. The latter is obtained by picking uniformly at ran-
dom a point around five random ”hot-spots” that represents
popular regions of values. Distances of points to the cen-
ter of a hot-spot follow a powerlaw distribution, where the
frequency of the i th most popular value is proportional to
1
iα , with α = 5. Figure 5 presents a 2000 point sample of
the two distributions. VoroNet was evaluated with two met-
rics, (i) the distribution of neighbourhood size and (ii) the
routing performance in terms of logical hops.

Distribution of neighbourhood sizes In an attempt to
confirm the O(1) size of the each node’s view of the sys-
tem, we evaluate the distribution of neighbourhood size on
all nodes. Figure 5.1, 5.2 and 5.3 show that the average and
maximal number of neighbours in the overlay is kept small.
As expected, for both distributions, the average number of
Voronoi neighbours (Figure 5.1) is less than 6, the maximal
degree is 24 and only 10 objects (among 300000) have de-
gree higher than 12. The same holds for close neighbours
(see Figure 5.2): the maximal degree (in the case of a sparse
distribution) is less than 20 and less than 20 nodes have a
degree higher than 15. Figure 5.3 depicts the number of
back long range neighbours, i.e. the number of nodes that
chose a particular node as their long link neighbour. In the
uniform case, the number of such neighbours is small, as
expected (see Section 3). The situation for the sparse distri-
bution is more interesting. Indeed, in this case, some nodes
are responsible for relatively large Voronoi cells, and one
may expect their number of back long range neighbours to
be rather high. Figure 5.3 proves that even for such strongly
non uniform distributions, this is not the case (less than 30
nodes have a degree higher than 11). In fact, nodes that
lie in large Voronoi cells do not have close neighbours, and
since the probability of having a long link of distance d is
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Figure 5. Distribution of the sizes of neighbours set of nodes. (1) Voronoi neighbours ; (2) Close
neighbours ; (3) Back long range neighbours, for Uniform and Sparse distributions of objects.

of order 1
d2 , most long links are ”too short” to reach them.

This explains why the overall number of neighbours of any
node is small in the overlay, whatever the distribution.

Poly-logarithmic routing costs, long range neighbours
Figure 6(a) presents the evolution of H , the number of hops,
against the number of objects in the overlay. The evolu-
tion presents a polylogarithmic shape. To ensure this prop-
erty, figure 6(b) depicts the evolution of log(H) against
log(log(|O|)), where |O| denotes the actual number of
nodes in the overlay. In such a plot, a line shape corre-
sponds to a routing in O(logx(|O|), where x is the slope
of the line. These results prove that, for both distributions
our algorithm achieves poly-logarithmic routing. Note that
the value of |O|target is set to 300000 during all the simu-
lation, irrespective of the actual number of objects |O| in
the overlay. Therefore, even if the theoretical results on
O(log2(|O|)) routing hold true only assuming that |O| is
close to |O|target, the simulation results prove that our algo-
rithm achieves poly-logarithmic routing even if |O| is much
smaller than |O|target, during bootstrap for instance. In this
case, the slope of the line is close to 2.8 (meaning that H
is of order O(log(|O|)2.8) for small values of |O| and be-
comes closer to 2 when |O| gets closer to |O|target.

Finally, we analyze the impact of using more than one
long range neighbour per node. All links are drawn us-
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Figure 6. Mean route lengths as a function
of the overlay size for the two distributions:
(a) linear plot and (b) log(H) as a function of
log(log(|O|)).
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Figure 7. Study of the influence of the number
of long range links on routing.

ing the same algorithm. Figure 5 shows that increasing the
number of long range neighbours consistently improves the
routing performance: roughly, as expected theoretically (for
small values of k), using k long links per node improves the
routing length by a factor k. Practically, such a configura-
tion would be privileged to reduce the stress on the network
and latency.

6 Related Work

In this section, we survey some routing protocols and
overlays based on Voronoi tessellations or their dual, De-
launay triangulations, and extensions of the Kleinberg’s
model, that are related to our work. First, Steiner and Bier-
sack [12] propose to use Delaunay triangulations in two or
three dimensions to build peer to peer networks in the con-
text of virtual community networks. Their approach deals
with the three dimensional case, but does not deal with
long range contacts nor calculation degeneracy. Effectively,
the proposed algorithm is based on edge flipping, which is
known to behave badly in presence of calculation degener-
acy [15]. Delaunay-based networks are also used in ad-hoc
networks, see [10], where the construction of the overlay
is constrained by ranges of transmission allowed to nodes
(sensors). On the other hand, some work has been done
to adapt the Kleinberg model to higher dimensions. It has

been demonstrated in [7] that it is possible to extend Klein-
berg’s model to more general graphs such as Cayley graphs
or graphs whith certain ball growth. Also, Barrière et al.
work [4] on generalization of Kleinberg’s results to tori of
higher dimensions is of particular interest in our context.
These theoretical frameworks present proofs of feasibility,
but no detailed protocols providing desired properties. An-
other method for adding long range links to a general graph
is the HopLevel protocol [1], where long range contacts are
created in a lazy way. The main drawback of this method is
its lack of theoretical analysis, an aspect VoroNet is partic-
ularly aiming at. In [2], the authors introduce Skip Webs, an
efficient data structure for multi-dimensional data sets. The
approach proposed by the authors is completely different
from ours (it is based on a generalization of skip lists rather
than Kleinberg’s model), although they share the same goal
of dealing efficiently with range and neighbour queries on
multi-dimensional attribute spaces. Routing in Skip Webs
is slightly more efficient than in VoroNet (O(log N) in-
stead of O(log2(|O|))) but the size of data structures stored
at each node is higher (O(log N) instead of O(1)). To the
best of our knowledge, VoroNet is the first work to combine
these aspects all together, using Voronoi diagrams and ex-
tension of the Kleinberg’s model for poly-logarithmic rout-
ing, along with proofs and evaluations.

7 Conclusion and perspectives

In this paper, we have proposed VoroNet, a object-
based scalable overlay network relying on Voronoi tessel-
lations. VoroNet links application objects rather than phys-
ical nodes in the attribute space, thus allowing a support
for further research on efficient query mechanisms, such as
range queries. It is based on Voronoi diagrams, and inher-
itates their structural properties, such as O(1) direct neigh-
bour set. Moreover, VoroNet is the basis for the proposal
of a generalization of Kleinberg’s work to generic data dis-
tributions, providing poly-logarithmic greedy routing and
fair distributions of neighbourhood sizes, even with highly
sparse distributions.

This research opens the way to many perspectives. First,
the nature of the network enables to design and evaluate rich
query mechanisms. The simplest one is a range query on
one of the attribute: this query may be represented as a seg-
ment in the unit square. Then all objects lying on this seg-
ment can be reached easily by forwarding the query along
this line, potentially splitting the line in different subsets
for reduced latencies. Moreover, Delaunay triangulation is
known to be a t-spanner [10, 6], that is for any subset of
the graph, it is possible to efficiently build a spanning tree.
Since every square-like subset of the network is itself a De-
launay triangulation, we may use this property to build ef-
ficient range query mechanisms. Even richer query mech-
anisms, such as radius queries, where all objects in a given



disk are queried, can also be considered. We are currently
designing these query mechanisms using the VoroNet net-
work capabilities as the key to efficiency and comprehen-
siveness of the queries.

Second, we want to investigate the support of fault-
tolerance mechanisms. In the current version of VoroNet, it
is assumed that a physical node leaving the network leaves
fairly, that is it redistributes the Voronoi region of all its
objects to other objects in their local vicinity, and there-
fore recomputes the local Voronoi diagrams of other objects
concerned by its objects departure. This will not happen
if the physical node crashes, and this may lead to routing
failures, or degeneracy of the diagram. A straightforward
solution would be to use the fact that objects already know
the zones, addresses and points of their Voronoi neighbours.
A simple heartbeat-based monitoring protocol between an
object and one of its (elected) Voronoi neighbours can de-
tect physical nodes failures and object deletion. A proactive
reconstruction of the local diagram at the initiative of the
monitoring neighbour, which require to query for the failed
object old neighbourhood (by constrained flooding, for in-
stance), would permit to repair the overlay rapidly with a
limited cost. Long range links and close neighbours may be
repaired in a lazy way, as they permit efficient routing but
are not vital to its correct termination. Another possibility
for supporting fault tolerance as a key design decision could
be to use gossip-based overlay construction protocols, and
to construct Voronoi cells and long range contacts locally at
each object by gossiping with peers about their actual par-
tial view of the network, and locally evolve towards globally
desired properties.

Third, the generalization of VoroNet to upper dimen-
sions for the attribute space is also under work. General-
izations of Voronoi diagrams in high dimensions exist, but
the average number of neighbours is not bounded in this
case, so that it is impossible to guarantee that all data struc-
tures are of order O(1). Moreover, computing the Voronoi
diagram in dimension d is of cost O(n log n + n� d

2 �), and
is prone to higher number of error propagations. Neverthe-
less, Voronoi diagrams have strong theoretical properties,
whereas the main issue in our routing algorithm is to find at
each node at least one close neighbour that is closer to the
target point. Indeed, the use of long range links is enough
to ensure polylogarithmic routing. Because generalizing di-
rectly the Voronoi diagram approach to dimension higher
than 2 poses limitations, we are currently investigating the
possibility to use a constrained size set of neighbors at each
node, on a higher dimension attribute space, while keeping
the (loose) property of routing effectiveness and providing
routing efficiency by a similar use of long range contacts.
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