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Abstract

Supercomputers are increasingly complex systems merg-
ing conventional microprocessors with system on a chip
level designs that provide the network interface and router.
At Sandia National Labs, we are developing a simulator
to explore the complex interactions that occur at the sys-
tem level. This paper presents an overview of the simula-
tion framework with a focus on the enhancements needed to
transform traditional simulation tools into a simulator ca-
pable of modeling system level hardware interactions and
running native software. Initial validation results demon-
strate simulated performance that matches the Cray Red
Storm system installed at Sandia. In addition, we include
a “what if” study of performance implications on the Red
Storm network interface.

1 Introduction

Modern supercomputers, such as the recent Red Storm
machine (the first Cray XT3) and the IBM BlueGene/L
machine, are complex systems combining microprocessors
with custom network interfaces and routers. In general, the
system level design of such machines is driven by intuition
and supported by component level simulations. The system
performance is vulnerable to interactions between compo-
nents that are hard to predict. Furthermore, the performance
impact of minor changes on MPI performance is seldom ob-
vious to the designers until a system has been built.

To address such issues, Sandia National Labs is devel-
oping an open source, system level simulator to explore the
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many complex interactions that occur at the system level.
The long term goal of the effort is to build a scalable par-
allel simulation capability that can be configured to provide
varying levels of fidelity for each of the system components.
We anticipate simulations that range from near cycle accu-
racy for every system component to simulations that model
one component in detail while substituting very high level
models for all of the other components.

We present an overview of the initial, serial version of
the simulation framework. It is derived from the Struc-
tural Simulation Toolkit (SST) [19], which is a hybrid
discrete-event/synchronous simulator that incorporates pro-
cessor simulation models from the SimpleScalar processor
simulation suite. Our first step toward system level simula-
tion is to enable high fidelity simulation of supercomputer
network interfaces. As observed in [17], traditional simula-
tors are poorly matched to system level simulation. Specifi-
cally, accurately modeling network transactions and delays
between the host processor and a connected network inter-
face were particular challenges. Thus, we extended SST to
accommodate a model of the Red Storm network interface
(the Seastar 2.1). That model has been used as part of a
two node system simulation running native Red Storm sys-
tem software. We provide a discussion of the challenges
of building a high fidelity network model with a focus on
the changes to the general simulation framework that were
needed.

The simulated system performance has been validated to
match Red Storm within 5% over most ranges of operation.
We were also able to explore several “what if” scenarios.
For example, what would happen to message throughput if
the clock rate of the network interface were doubled? If the
latency of the HyperTransport interface was reduced, would
it help performance? These are system level questions that
would be difficult to simulate in a Verilog model; however,
by using system level simulations we can rapidly explore
such system level questions.



2 Background and Related Work

A variety of simulators and simulation strategies are used
in computer architecture, providing a range of features and
functionality. At the lowest level, architectural simula-
tors explore design issues on the processor or system level.
These simulators represent programs by execution-based,
trace-based, or stochastic mechanisms and vary in level of
detail, configurability, and focus.

2.1 Simulators

SimpleScalar [6] is a commonly used architectural simu-
lation toolkit. It includes execution-based simulators, rang-
ing from simple execution to cache simulation to full simu-
lation of an out-of-order processor and memory hierarchy
(sim-outorder). SST leverages SimpleScalar to pro-
vide a the processor simulation. Similarly, other simula-
tors are derived from SimpleScalar and have extended its
functionality. For example, the SImulator for Multithreaded
Computer Architecture [9] (SIMCA) was developed to ex-
plore multi-threaded architectures.

Simics[13] and the Wisconsin Multifacet GEMS
simulator[14] that extends it provide a flexible environment
that addresses the needs of CMP and SMP simulation and
memory hierarchy design. GEMS also decouples the func-
tional portion from the timing and microarchitectural sim-
ulation to simplify timing design. In contrast, SST targets
issues in CMP, SMP, and MPP systems where a node is a
heterogeneous collection of processors, memories, NICs,
and routers. As noted in [17], it is extremely challenging
to simulate detailed system level details in Simics.

Some simulators have been developed to enable spe-
cific functionality. For example, SimOS [8] and ML-
RSIM [20] support the execution of an OS. Simulators such
as simg4 [16], were developed to model a specific proces-
sor (the PowerPC 7400) in detail.

The ASIM [7] performance model framework is com-
posed of a set of modules which can be composed to form
different architectures. A novel feature of ASIM is the
partial separation of the performance model for system
components from the program execution. Other modular
simulation efforts include the Liberty Simulation Environ-
ment [23], which has developed a number of modules in its
own LSS language, and Microlib which provides a number
of modules in SystemC [22].

The message PAssing computeR SIMulator, PAR-
SIM [21] was developed to explore algorithms and network
topologies for parallel computers. It models program exe-
cution as a generalized algorithm divided into computation
and communication. Processor speed and network charac-
teristics can be parameterized, but the internals of the pro-
cessor are not modeled.

In general, most simulation efforts focus on a given piece
of the system with varying degrees of accuracy and pa-
rameterizability. As noted in [17], readily available simu-
lators tend to lack the ability to pull together high fidelity
simulations of all system components into a single frame-
work. Our experience extending SST highlights the chal-
lenges that are faced when using available tools to model a
supercomputer accurately.

2.2 Models of Computation

An important characteristic of a simulator is the under-
lying model of computation [12], which defines how time is
advanced and how components interact. SST leverages both
a synchronous and a discrete event model. Synchronous, or
time-stepped, models discretize time into fixed increments
(cycles in the case of architectural simulators) at which all
components are evaluated (e.g. SimpleScalar and PAR-
SIM). SST provides a synchronous model to enable effi-
cient implementation for those components that need near
cycle accuracy. A discrete event, or event-driven, model
generates events for each transition. Generally, event driven
models are more efficient for components where events are
relatively infrequent when compared to the clock rate. SST
provides a discrete event model for the system level com-
ponents that communicate less frequently than every cycle.
For example, a bus interface that has a 100 ns latency and
that is not used every cycle does not need to be evaluated at
a 2 GHz rate.

3 Framework

The Structural Simulation Toolkit (SST) is an architec-
tural simulator implemented in about 45,000 lines of C++.
It is composed of four primary elements (see Figure 1):
the Front Ends, which model the execution of a program;
the Back Ends, which model architectural components of
the system; the Processor/Thread Interface, which allows
the front and back ends to interact; and Enkidu [18], a
component-based discrete event and synchronous simula-
tion framework that coordinates communication between
back end components and models the passage of time. To
provide modularity and reconfigurability, it is possible to
select a front end and choose a variety of back end compo-
nents at run time. This allows the user to explore a variety
of hardware configurations while using the execution model
best suited to the available toolset.

3.1 Front End

The front end generates instructions and threads to be
processed by the back end. The front end also defines how
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the execution of these instructions changes the program-
mer visible state. In short, the front end simulates how
the program executes from a software perspective — it ig-
nores hardware and timing details and just looks at how
the state of its registers and memory is modified by the
instructions.

The front end provides a loader to load the program into
the simulated memory. Once simulation begins, the front
end provides instruction and thread objects to the back end
(see Section 3.3). Most importantly, it determines how the
program state (usually memory and registers) are modified
by the instruction’s execution. Much like SimpleScalar’s [6]
ss.def or powerpc.def files, or SPIM’s [11] run.c,
this usually involves a lookup of the instruction in a “big
case statement” to ascertain how state should be updated.
Currently, three front ends exist and can be selected at run-
time: PPC, PISA, and Trace.

Only the PPC front end is used in these experiments. It
is an execution-based front end which uses the PowerPC
ISA [15] and the MachO [2] executable format. It includes a
small subset1 of the AltiVec vector extensions. The MachO
format is the standard format for MacOS X executables and
allows the use of binaries created by a number of modern
compilers. It has been tested with a variety of compilers.

3.2 Back End

The back end models the hardware of the system. It con-
sumes instructions and threads generated by the front end
and determines how long it would take for the hardware to
execute them. It ignores the specifics of what values are
written where and focuses on the timing details of which
components are accessed, how long memory transactions
take, and other microarchitectural details. The back end is
composed of many different Enkidu components that rep-
resent physical components such as processors, networks,
memory controllers, and DRAMs. Components can com-
municate through Enkidu’s discrete event system.

1lvx, stvx, vspltw, cmpequh[.], and vand instructions

Numerous back end components have been developed,
but the subset used to model Red Storm includes:

• Conventional Processor: an out-of-order, multi-issue
processor based on SimpleScalar’s sim-outorder.
It can use SimpleScalar’s memory model or can con-
nect to a memory controller component.

• Memory Controller: a memory controller model
which simulates bus contention, bandwidth con-
straints, latency, and DRAM interleaving.

• DRAM: a model of a DRAM chip with a configurable
number of DRAM banks. The DRAM bank size and
width can be configured. Open page latency and con-
tention effects are modeled, and the number of open
rows per bank can be adjusted.

• Simple Network: a simple network model connecting
NICs on different systems. Latency and bandwidth ef-
fects are modeled, but not topology.

3.3 Interface

The Processor/Thread interface is the key bridge
between the front end and back end. This interface defines
three abstract classes: processor, thread, and in-
struction. A processor is a back end component
which can execute instructions belonging to one or
more threads. Each front end defines a thread class
and instruction class.

3.4 Hybrid simulation

Modern processors often have dozens of instructions in
various stages of execution during each processor clock cy-
cle. Each of these instructions (potentially) moves to a new
stage on each cycle. As a result, several transition events
can be expected to occur each cycle. This tends to make
synchronous simulation more efficient.

In contrast, parallel supercomputers add network inter-
faces and routers. Communications between chips as well
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Figure 2. Block diagram of Seastar NIC

as communications within a network interface or router in-
volve the movement of large amounts of data per unit of
logic. This would be extremely expensive to model in a
synchronous fashion. For example, a router only needs to
know when a packet transfer starts and when it stops, rather
than every transition of every flit. Simply tracking start and
end times has proven to be sufficiently accurate.

To offer both efficient processor simulation and effi-
cient system simulation, the Structural Simulation Toolkit
(SST) is built around Enkidu, a hybrid simulation
framework. In Enkidu, component objects represent
each physical component of the system. Each of these
components is evaluated every clock cycle, allowing it
to advance its internal state. In addition, components can
communicate by passing event messages to each other in an
asynchronous manner.

4 Modeling Red Storm

Modeling a real system comes with many complications.
To facilitate a discussion of the issues, Figure 2 shows a
block diagram of the Seastar network interface [1]. There
are five major components of the Seastar that are connected
by a single bus. These include a processor, a local SRAM,
transmit and receive DMA engines, and a HyperTransport
interface to the host processor. The entire NIC runs at 500
MHz and the HyperTransport link to the host runs at 800
MHz and is 16 bits wide in each direction.

The PowerPC processor runs a firmware image that im-
plements the Portals 3.3 API [4, 5]. Portals is an API that
encapsulates MPI matching semantics and, thus, offloads
most of the MPI work to the network interface. A detailed
description and analysis of the Seastar hardware and soft-
ware environment are presented in [3]. The most important
note from that work is that the Opteron and PowerPC com-
municate through the SRAM on the Seastar.

4.1 Building the Hardware Model

As with most simulations, there were various compo-
nents to be modeled. While most of the hardware needed
new models, we could leverage the PowerPC model from
SimpleScalar for the processor implementation on both the
host and the NIC. Similarly, the DRAM component on the
host was a standard part of SST as was the SRAM compo-
nent, but both memory models had to be updated somewhat
as discussed in Section 4.3. Finally, for these experiments,
the network was modeled as a simple point-to-point net-
work using components from SST.

4.1.1 Bus Components

At the core of the Seastar chip is a bus connecting all of the
other components. It models both latency and contention ef-
fects for accesses from the PowerPC and from the Opteron
(host). The processor back end uses an event mechanism to
request the timing of accesses to devices on the Seastar. The
event is routed to the bus timing component, which models
latency and contention, and is then routed to the appropri-
ate component for additional delays before returning back
through the bus model to the processor back end.

The HyperTransport (HT) connection was modeled as
two components: one to model latency and one to model
bandwidth and contention. The HTLink (latency com-
ponent) introduces latency for access across HT based on
whether the access is a read or write. Each side of the HT
connection has an HTLink component that models time in
native cycles. An HTLink bw connects the host processor
to the Seastar with a model of bandwidth and contention.
Since the combination of the DMA accesses and processor
accesses can request much more than the HyperTransport
bandwidth, the HTLink bw tracks the backlog of requests.
The backlog of requests is incremented by arriving events
and decremented on each clock cycle based on the bytes
per clock that the HT can service. This is an example of
where discrete event simulation and synchronous simula-
tion intersect for a more efficient and more accurate simu-
lation model.

Because the HT component models contention, it would
be possible for the backlog to grow arbitrarily long. Since
this would be an impractical scenario (even for simulation)
and the impacts on a broader network simulation would be
unrealistic, the HT component maintains flow-control with
requesters by having a finite depth request queue. As with
real hardware, this queue depth is set to cover round-trip
times such that full bandwidth can be sustained.

4.1.2 DMA Engines
The Seastar network interface also includes a robust DMA
engine that is controlled by the PowerPC. While the detailed
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complexities of the DMA engines are beyond the scope of
this paper, the implementation was designed to respond to
the same set of commands (e.g. bit patterns in a control
word) and to present the same interfaces as real hardware.
Thus, the Red Storm firmware could run unmodified in the
simulator and interact correctly with these DMA engines.

Beyond the control interfaces, the DMA engines are also
required to move data in the form of packets. On the trans-
mit side, the DMA engine processes a command and makes
64 byte requests over a flow-controlled interface to Hyper-
Transport with finite request buffer space. These requests
return timing information about when the request should
complete. Like the real hardware, all of these operations
are packet oriented.

On the receive side, the Seastar has a FIFO of arriving
packets. The DMA engine consumes up to 8 bytes per cy-
cle from the FIFO and allows the network to deliver up to 8
bytes per cycle. That rate can be throttled by the HT inter-
face because the receive DMA engine competes for band-
width with both the processor accesses and the transmit
DMA engine’s HT read requests2. Tracking this contention
and flow control is critical as it creates measurable, real sys-
tem effects.

One of the novelties of real system hardware is that reads
and writes have side-effects. For example, a read from a
register may pop a value from a queue. The DMA engines
have numerous such side-effects that must be tracked with
correct timing. And, correspondingly, there must be a tim-
ing component that provides timing information back to the
bus component for processor accesses.

4.2 The Software Stack

Our goal in modeling Red Storm was to run the software
stack with as little modification as possible. On the host
processor, Sandia runs a lightweight kernel that provides
relatively bare access to the hardware [10]. Using the “ac-
celerated” mode of operation [3], the network stack is split
between a library in user space and firmware on the network
interface; thus, we lose very little in fidelity when working
without an OS. The small number of OS functions that are
typically needed in the production software stack (e.g. pro-
tection) are not needed in the simulated environment.

In the simulated environment, the production software
is used with minimal modification. The small portions of
the host side code that normally run in protected mode are
pulled into the library. On the firmware side, TLB setup in-
structions were eliminated and cache manipulation instruc-
tions (cache invalidates) were removed3.

2HyperTransport connections are directional. Thus, a small read re-
quest goes over the same path as write data. Read data returns over a
different path.

3The firmware can work without them because the processor model
always pulls data from memory rather than storing the data in cache.

4.3 Modifying the Simulator

SST relies heavily on SimpleScalar to provide an accu-
rate model of a microprocessor. The infrastructure was built
around the desire to add a variety of system level aspects
to SimpleScalar; however, it took for granted that the Sim-
pleScalar model was sufficient to model the processor. In
attempting to model Red Storm, we have found that there
are a number of system level issues that could not be ad-
dressed in the current framework.

4.3.1 Memory and Addressing

One of the biggest challenges associated with using the ex-
isting simulation framework was associated with the mem-
ory and addressing models. Rather than a single SRAM,
real systems tend to have numerous memory regions. For
example, the Opteron model can see both its own cacheable
DRAM and an uncacheable space of SRAM that is on the
Seastar and used to communicate between the Opteron and
PowerPC. On the Seastar, the PowerPC can access local
SRAM, the Opterons DRAM (uncacheable), and numerous
physical registers through its address space. Not only do
these various regions have different timing properties, but
they can also have side effects. For example, writing to a
DMA register starts a data transfer.

SimpleScalar uses a split memory model that handles
data access independently from access timing. Thus, inde-
pendent paths need to be implemented to support the model.
This adds some complexity to the implementation. In ad-
dition, the instruction is “executed” in the dispatch stage
(early in the instructions life). This means that the mem-
ory resident state is changed long before the commit, which
is the part dependent on the timing parameters. This has
implications for correctness.

Supporting the various address ranges required handling
of both timing and data redirection. Timing redirection was
accomplished by adding a bus component that was the pro-
cessor’s timing point of contact. A registration function
for the bus allowed other components (such as the SRAM
or DMA engine) to indicate which ranges of memory they
were responsible for. The bus can then contact the appro-
priate units for timing information when a memory access is
made. Data redirection was accomplished by changing the
memory component that backs the actual data in the con-
ventional simulator. By allowing the components to also
register with the memory object, the memory object is able
to forward the data accesses to the appropriate component.

When multiple components interact, it becomes impor-
tant to implement correct memory timings and semantics.
One major issue is the need to separate cacheable and un-
cacheable address regions. In the real Seastar firmware, ac-
cesses to register space must be uncached for correctness.
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Register accesses have side effects and registers change in-
dependently of the PowerPC. Thus, a flag was added to
read timing requests to indicate to the processor back end
whether the access could be cached (and the line was not
inserted into the cache if the space was uncacheable).

In addition to the issues of cached versus uncached
space, the split memory model introduces an issue of timing
correctness. The host CPU and the Seastar CPU communi-
cate using polling of various memory regions. Because the
processor model directly changes memory early in an in-
struction’s life and then commits at a time based on the tim-
ing model, the other processor could “see” changes before
they should have actually happened. Rather than invasively
modify the processor model, we chose to modify the mem-
ory component to delay writes based on timing. This issue
also appears in high latency reads to shared space4, but it
has not been seen to cause a significant problem in practice.

Finally, because we desire minimal modifications from
production software, we wanted a virtual memory capabil-
ity comparable to what exists with the real host processor.
This allows us to map hardwired addresses appropriately
into the applications address space in the same place that
they would otherwise land. The modification occurs in the
simulators front-end, which remaps virtual addresses based
on address ranges.

4.3.2 Simulator Infrastructure

There are two issues associated with the simulator infras-
tructure that needed to be addressed as well. The origi-
nal SST assumed a homogeneous load of one binary onto
some number of homogeneous processors. In a model of
a Red Storm node, we need to execute 2 unique binaries
using different processor models (PowerPC vs. Opteron),
different memory layout, and different clock rate. The SST
binary loader was modified to create multiple memory ob-
jects, each of which can be loaded with unique binaries. The
loader was also modified such that the location of text, stack
and heap could be specified on a per binary basis. The SST
configuration scheme was modified such that the same com-
ponent could be configured differently. This allows for ex-
ample different clock rates and memory layout for the con-
ventional processor component which is used to model both
the Opteron and PowerPC.

SST also made the assumption that everything operated
on a single clock. It was possible to run a component at
a different (synchronous) clock but it had to be coded into
each component. In contrast, a Red Storm node has com-
ponents in three major clock domains: an Opteron at 2GHz,
a PowerPC at 500MHz, and HyperTransport at 800MHz.
Multiple clock support was generalized by modifying the
base simulation component, Enkidu, such that it calls the
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Figure 3. MPI ping-pong latency validation

work functions for each component at a frequency derived
from the primary simulation clock rate. We plan further
generalization to allow arbitrarily aligned clocks.

5 Validation Against Red Storm

To validate the simulation, we have compared results
from the simulator to measurements taken from Red Storm
hardware. These measurements come from both high level
network benchmarks and low level measurements from the
firmware. The overall result indicates that the simulation
very accurately models the real system.

At the high level, we used two benchmarks to validate
the model of the Red Storm system. We began with mea-
surements of MPI ping-pong latency. Ping-pong latency is a
common network benchmark that helped to insure that basic
latencies are correct. As Figure 3 illustrates, the MPI ping-
pong latency matches within 5% between the simulated and
real systems.

While an MPI ping-pong latency measurement demon-
strates that numerous system timings have been modeled
correctly, it can hide numerous other inaccuracies in a
model of a network interface. Thus, we also used the
streaming bandwidth benchmark developed by the Ohio
State University, which is another standard benchmark for
supercomputer networks. This benchmark posts 64 receives
on a target node and then streams 64 messages from the
source node. The goal is to measure peak streaming band-
width at various message sizes; thus, a key part of this mea-
surement is the rate at which new messages are handled.

For this test to match between the simulation and the real
system, most of the model has to be correct. The band-
width between the host processor and the network interface
has to be accurate, or the peak bandwidth will be incor-
rect. The processors involved (both the host and the one
on the NIC) have to be relatively accurate, or the messages
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Table 1. Individual routine timings
Routine Simulated Actual
handle command PUT 0.486 us 0.592 us
tx complete() USER message 0.196 us 0.154 us
rx message() - ACK 0.959 us 1.002 us
rx complete() - ACK 0.127 us 0.242 us
handle command POST 0.477 us 0.442 us
rx message() - USER message 1.936 us 1.686 us
tx complete() - ACK 0.114 us 0.118 us
rx complete() - USER message 0.230 us 0.378 us

will be handled too quickly. Similarly, most timings on the
NIC have to be correct, or the messages will be handled too
quickly or too slowly. Figure 4 indicates that the message
processing rate and peak bandwidths match within 5% over
a large range of message sizes. The graph includes measure-
ments from a Red Storm system with Seastar 1.2 network
interface chips along with simulations of the Seastar 1.2.
It also includes a prediction of the performance of Seastar
2.1 chips (being installed now) based on low level measure-
ments from the Seastar

The only major discrepancy in Figure 4 is for messages
of 16 bytes or less. In this range, the simulated perfor-
mance deviates from the real performance by approximately
12%. Messages of this size are handled slightly differently
in the Red Storm system; thus, they exercise slightly differ-
ent paths in the simulator. To further investigate where any
discrepancies arise, we instrumented the firmware on both
production hardware and simulated hardware and show the
results in Table 1. The first four lines are send side oper-
ations while the last four lines are receive side operations.
The biggest discrepancy between real and simulated hard-
ware is the handle command PUT. This arises from a
known issue in the simulation: the SimpleScalar PowerPC
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Figure 5. Impact of changing HyperTransport
latency on MPI latency

instruction set implementation does not include cache line
invalidate instructions. Thus, a region of the memory on
the NIC that is used to communicate with the host is treated
as always cached rather than being cached but invalidated
when a new command arrives. The message rate limiting
point appears to be the extra time in rx message. We are
still investigating the cause of this discrepancy, but the accu-
racy of the remaining routines gives us sufficient confidence
in the model accuracy to move forward with evaluations.

6 Results

One of the surprising factors experienced with the
Seastar was a much higher effective HyperTransport (HT)
latency than expected. To explore the impacts of HT latency
on the MPI latency, we ran simulations with the HT latency
set to 1

2
and 2× the measured value. In Figure 5, we can

see that MPI latency is linearly related to the change in HT
latency. The one notable point is that the change in MPI
latency is 4× the change in HT latency; however, this is
not surprising, since two HT writes and one HT read are in-
volved in an end to end transaction (push a command to the
Seastar, a DMA read of the data, and pushing a result to the
host — the Seastar does not use a programmed-I/O mech-
anism for short messages). Also of note is that the change
in HT latency had no impact at all on streaming bandwidth
(not shown).

Like HT latency, the HT bandwidth was lower than ini-
tially hoped. In Figure 6, we present the results from vary-
ing HT bandwidth from 1

2
to 2× the measured value. Since

HT bandwidth did not impact MPI latency, we only show
the results from streaming bandwidth. The change in the
HT bandwidth yields the expected change in peak stream-
ing bandwidth, but does not change bandwidth at smaller
message sizes at all.
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Figure 8. Impact of changing clock frequen-
cies on (a) latency and (b) streaming band-
width

The latency of accesses on the bus in the Seastar chip
were also somewhat higher than originally predicted. The
bus latency affects the performance of every processing
operation performed by the PowerPC. It takes longer to
read status registers, longer to access the local SRAM, and
longer to write commands. Figure 7(a) indicates that an
8% latency reduction can be achieved by halving the bus
latency; however, further improvements in bus latency have
minimal impacts as other points become the bottleneck.

Halving the Seastar bus latency increased small message
throughput, which increased streaming bandwidth by ap-
proximately 15% as seen in Figure 7(b). Only small mes-
sages are shown so that the effect can be seen, but the ad-
vantages persist all the way to 2 KB messages. Beyond that,
bandwidth effects dominate the time. As with the latency,
the improvements from further improving bus latency are
minimal.

Another potential impact on performance comes from
the clock frequency of the Seastar chip. Because the Seastar
chip (NIC) is a standard cell design, it only runs at 500
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MHz; however, it is clear that it is possible to do designs
on a 130 nm process at 1 GHz or even 2 GHz. Figure 8
compares the impacts of changing various clock rates in
the system. We get large advantages (30%) in latency for
a 1GHz clock on the Seastar NIC and an additional 20% for
increasing that to 2 GHz. Streaming bandwidth, however, is
a different story. While we see an enormous 45% improve-
ment in streaming bandwidth for a 1 GHz NIC clock, the
increase to a 2 GHz NIC clock yields almost nothing as the
host side processing becomes the bottleneck.

Unlike changing the NIC clock, changing just the host
clock has virtually no impact. This is because most of the
processing happens on the NIC and the NIC is a significant
bottleneck with a 500 MHz clock (as seen by the impacts
of changing the NIC clock). While the latency results for
changing the host clock in Figure 8(a) look slightly odd,
they correlate to our experience on the real system. There is
a quantization of time changes caused by the main polling
loop in the firmware. Thus, making some parts of the sys-
tem slightly faster can make the MPI latency result worse.

The final comparison, shown in Figure 9, considers two
combinations of enhancements. The host processor perfor-
mance is held constant. For the “Enhancement” line, the
HT latency is reduced in half, the Seastar bus latency is re-
duced in half, and the Seastar clock rate is increased by a
factor of two. With a slightly more aggressive design point,
each of these should be achievable. This combination of
improvements would yield a 45% improvement in latency
and a comparable improvement in streaming bandwidth.

The “Aggressive Enhancement” line doubles HT band-
width, quarters HT latency, quarters the bus latency, and
increases the Seastar clock rate by a factor of four. While
it yields another 30% improvement in MPI latency, it is an
extremely aggressive design point. Streaming bandwidth is
still constrained at smaller message sizes by MPI process-
ing. After 2 KB, it starts to see an advantage from the extra
HT bandwidth provided.

7 Conclusions

This paper has presented an overview of an initial ver-
sion of a system simulation framework. The framework
had to undergo numerous adaptations to allow us to accu-
rately simulate a pair of Red Storm nodes. These changes
highlight the challenges of accurately simulating production
hardware in traditional simulation environments. However,
they also illustrate that it is possible to build an environment
that is capable of running virtually unmodified production
software in a simulated system. This will become an impor-
tant capability in the long run as systems become increas-
ingly more complex.

We also present a study using the modified simulator.
Beginning with a validated model of the Red Storm node,
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Figure 9. Impact of enhanced network inter-
face designs on (a) latency, (b) small mes-
sage streaming bandwidth, and (c) large
message streaming bandwidth
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we demonstrate that relatively minor changes to the perfor-
mance of the network interface (Seastar) could yield signif-
icant improvements in network performance. Most notably,
a small reduction in bus latency could have a 15% impact
on streaming bandwidth. At the extreme end, increasing the
Seastar clock rate by 2× could yield an impressive reduc-
tion in latency by 40% and increase in streaming bandwidth
by 45

8 Future Work

The changes to SST to facilitate modeling of Red Storm
were performed in a branch of the tree to quickly demon-
strate feasibility before implementing the concepts in the
primary tree. As such, now that the model is “close enough”
we have begun porting the changes into the primary tree —
incorporating things we have learned along the way. There
are still some aspects of the simulation environment that
add inaccuracies to the system model that we intend to fix
during the port. Primary among these is the lack of cache
manipulation instructions in the PowerPC model. A lesser
issue is the inability to model clocks that are not multiples
of the primary simulation clock. In addition, the timing of
the data access on memory reads in the SimpleScalar model
raises concerns, although it has not been a problem in prac-
tice. We intend to address all of these issues as the changes
are implemented in the primary version of the tree. Finally,
we are in the process of releasing the simulator with an open
source license.
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