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Abstract

In a recent study, we proposed a trusted gossip protocol
for rumor resistant information sharing in peer-to-peer net-
works. While trust aware gossiping significantly reduced
the rumor spread on the network, we observed that the ran-
dom message spraying in trusted gossip creates too many
redundant messages increasing the message overhead and
error rate. In this paper, we propose a message targeting
scheme that can significantly improve the performance of
the trusted gossip. Our targeting scheme can be easily im-
plemented in a social network setting. We performed large-
scale simulations using traces collected from the Flickr so-
cial network and other data sets to estimate the perfor-
mance of targeting in trusted gossip. Our experiments show
that significant performance gains can be achieved.

1 Introduction

The phenomenal success of blog and Wiki servers is re-
newing the interest in peer-to-peer (P2P) information shar-
ing that was tried decades earlier in systems such as ru-
mor monger developed for internal use at Apple Computer
Inc. [26]. The potential of the P2P model to alleviate cen-
sorship and bias in information sharing is one of the prime
motivator for this renewed interest.

One of the major mechanisms within an P2P information
sharing system is message dissemination. An ideal mech-
anism for message dissemination should provide scalable
and efficient implementation, censorship immunity, fault
tolerance, and trustworthiness. Previous studies [7, 11] have
shown that gossip-based protocols have all the above prop-
erties minus the trustworthiness. In gossip protocols, each
node selects a random subset of the nodes known to it (re-
ferred to as next nodes) and forwards them the messages
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currently held by it. By randomly selecting the next nodes
the protocol tolerates unreliable and uncooperative nodes.
Further, by limiting (often to a constant) the number of next
nodes gossip achieves very high scalabilities.

Most existing gossip based dissemination schemes ad-
dress the trust concern by requiring off-line trust relations.
Obviously, this solution does not support dynamic networks
where nodes can join and leave. In a previous work [17], we
proposed a trusted gossip protocol that supports dynamic
networks. The core idea was to inline a message filtering
process into the dissemination protocol such that the spread
of trusted messages is maximized while the spread of un-
trusted messages is minimized. As messages spread, each
node makes an accept, reject, and forward decisions based
on a credibility measure which is computed from the esti-
mates of the origin node’s trust and the particular message’s
trust. While trusted gossip significantly improved upon the
normal gossip by disseminating messages according to the
preferences of the participating nodes, it incurred signifi-
cant overhead in terms of number of messages and reviews.
In this paper, we address the efficiency of trusted gossip by
introducing message targeting into the gossip process.

In targeted gossip, each origin node maintains a favor-
able set of target nodes based on acceptance of its messages.
A random subset of the favorable set is always included in
the next nodes. In this paper, we show that targeted gossip
retains all the benefits of trusted gossip while significantly
reducing various overheads typically incurred by the gos-
siping process. We performed extensive simulations using
actual traces from social networks such as Flickr to evaluate
the performance of the targeted gossip protocol. The results
indicate significant benefits are achieved by targeted gossip.

In Section 2, we discuss the system model and assump-
tions. Section 3 presents the targeted gossip algorithm. Sec-
tion 4 discusses results from trace driven simulations under
representative scenarios. Section 5 examines related litera-
ture.



2 Assumptions and System Model

In this work, we make the following assumptions regard-
ing the information sharing process: (a) each node in the
network has some form of identity credentials issued by a
certification authority, (b) messages are signed using such
credentials so that the origin of a message can be estab-
lished, (c) above message signing process prevents mali-
cious message tampering, (d) information dissemination is
only concerned with spreading a digest of the stories and
full content is transferred by other means, and (e) nodes can
join and leave the network at any time.

The data messages that carrying information (e.g., adver-
tisements, news stories, blog stories) are referred to as sto-
ries. The stories that are trusted and accepted by a node are
facts and others that are untrusted and rejected are rumors.
A story considered as rumor by one node can be consid-
ered as fact by another node (i.e., there is no global criteria
for evaluating stories). A node attaches higher level of trust
with servers that consistently provide facts.

The trusted gossip algorithm is completely decentralized
with each node running a complete set of functions that can
be divided as: filtering and disseminating. A message that
comes into the filter will be classified as one of the three
types: new story, review request, or review reply. Each mes-
sage type will then be handled accordingly. A new story can
come from the originating node or a relaying node. The
relaying node is a node that has accepted the story itself
and wishes to spread the information further. The incom-
ing story is passed through a node-level filter that makes an
accept/reject decision based on the reputation of the story
originator. The stories that cannot be decided by the node-
level filter pass through a message-level filter. Each story
passing through this filter is sent away for review by like
minded reviewers. A review request that comes into a node
is directed to a user willing to review it unless the story
has been already reviewed by the node for a prior request.
In that case, the old review is sent to the requesting node.
When a node receives all replies for reviews requested, it
aggregates the ratings and makes the final decision.

When the system bootstraps, all the nodes have the same
default node-level trust. This invokes message-level filter-
ing for each message. The node-level trust can evolve in
three different ways: (i) post reviews of the stories accepted
by a node, (ii) pre reviews of stories yet to be accepted, and
(iii) recommendations on nodes. In this paper, we did not
use node-level recommendations.

3 Targeted Gossip Algorithm

The targeted gossip algorithm shares the same basic
structure as the trusted gossip algorithm we introduced in

[17]. It runs trusted dissemination and trust evaluation rou-
tines. The trusted dissemination has components running at
the sending and receiving nodes. The receiving nodes run
the trust based filtering routines to block messages that they
deem to be rumors. Sending nodes runs targeting routines
to select the most appropriate targets for its messages. The
trust evaluation phase is implemented using an augmented
Bayesian framework.

3.1 Trusted Dissemination

In trusted dissemination, a receiver’s objective is to ad-
mit the most appropriate stories using a trust aware filter-
ing process. The trusted filtering process will be consid-
ered ideal if it can admit all and only those stories that are
regarded as trustworthy by all post reviews (reviews after
acceptance). Similarly, a sender wants to push its stories to
receivers that are most likely to accept and further propagate
the stories. Transmissions from a sender that are eventually
dropped by the receivers are wasted messages. The objec-
tive of targeting is to avoid this unnecessary overhead while
improving the accuracy of the overall algorithm.

The trust filtering module mentioned Section 2 is used
for making the accept/reject decision at the receiver and it
works by classifying the incoming stories. The classifica-
tion process is based on the observation that the trust of a
origin node is determined by the perceived quality of the
stories it produces. Nodes that have created stories that are
consistently highly rated by receiving nodes will have high
trust scores. That is, we can expect a story originating from
a highly trusted node to be of high quality with high prob-
ability. Suppose the receiver’s trust is Trcvr and story orig-
inator’s trust is Torig. Let 0 ≤ ϕ ≤ 1 be a trust threshold
value set by the receiver. A story is classified as a FACT
if Torig ≥ (1 + ϕ)Trcvr and is accepted by the receiver node
into the local aggregate. If Torig ≤ (1 − ϕ)Trcvr the story is
tagged as RUMOR and dropped. Other stories are classified
by a receiver as QUESTIONABLE and additional informa-
tion is solicited by sending review requests to a random set
of nodes. A review request message expects the review-
ing node to rate the story according its knowledge. Setting
ϕ high means the receiver will increase its reliance on so-
licited recommendations than the trust of the originator.

If a user at the reviewing node has the time and knowl-
edge to process the review request, a review reply is sent to
the requesting node. At least φ1 positive review replies are
required for a story to be accepted. Moreover, a receiving
node keeps track of the previous review requests posted for
a story. If this count exceeds the threshold value of φ2 then
the story is discarded. Because of the decentralized archi-
tecture, we need to use P2P aggregate estimation process
[11] to determine the outstanding review requests. How-
ever, in this work, we use a simple approach where a node



remembers review requests that passes through it.

Maintaining Target Lists: We assume that each ori-
gin has certain number of friend nodes with whom it has
solid trust that is supported by offline relations. Although
these relations are immune to cheating and other malicious
activities, the dissemination process cannot exclusively use
these relations. Suppose we restrict the story transmissions
to friend nodes, a busy origin’s friends could be inundated
with messages. In addition, an origin node will only be able
to disseminate messages acceptable for its friend nodes.

In our scheme, when the origin disseminates a story, it
includes its identity and a sequence number in the story
header. When a friend node receives a gossiped story and if
the relaying node is not the origin, the friend sends a copy
of the story to the origin. The origin can use the sequence
number in the header to determine the next node it selected
for this particular transmission. The forwarded message
from the friend node serves as a confirmation for the origin
that the next node has accepted and propagated the story.

We assume that any node within two hops away from a
given origin node on the social network can qualify as its
friend. However, an origin node does not select all of its
social neighbors as friends. It randomly changes its friends
within its social neighborhood to reduce the load on them
and to prevent malicious nodes from initiating false con-
firmations. The set of friends who are actively forwarding
confirmations is not publicly known.

In addition to the friend nodes, each origin maintains
a fixed-size list, called target list (TL), of favorable next
nodes that are known to have accepted stories from the ori-
gin. Besides TL, the origin maintains a test-TL that does not
have any overlap with TL. When the origin learns about a
favorable next node, it adds the node to the test-TL. Each
node in the TL and test-TL is assigned a counter c, initial-
ized to 1. Every time the origin receives a confirmation
about a node in TL or test-TL, the corresponding counter
value is incremented by 1. Based on the counter value, a
weight ω is computed for each member in both lists. Only
the nodes with the k highest ω values will be in TL and the
remaining nodes in test-TL. When a test-TL member’s ω
grows more than a TL member’s weight it replaces the TL
member. Weights for TL and test-TL members is computed
as: omegai = λ

∆ti ci∑k
j=1 c j

where, i and j are members in the

origin’s TL, k is number of members in TL, 0 < λ < 1, and
∆ti is the time elapsed since last confirmation for node i.

The weight ω is used for selecting next nodes from tar-
get lists. To avoid selecting the same set of next nodes,
we randomly select κ nodes from TL (i.e., TRGT) and κ′
from test-TL (i.e., testTRGT), and κ′′ other nodes (i.e., non-
TRGT) from the network. These selections are made sub-
ject to κ ≥ κ′ ≥ κ′′.

3.2 Trust Evaluation: Augmented
Bayesian Approach

Our trust evaluation framework is an extension of the
Bayesian trust framework in [22]. We briefly describe the
Bayesian trust framework before presenting the extensions.
Please see [16] for details.

Although the Bayesian framework involves complex
computations, it provides a theoretically sound basis for
computing reputation scores for the nodes. In this frame-
work, a posteriori reputation score is computed by com-
bining a priori reputation scores with new rating values
[19, 22, 30]. The reputation score is then presented in the
form of probability expectation value.

Unlike earlier works, the Bayesian framework in [22]
provides rating values that can range over 5 discrete lev-
els. In this framework, each node Px maintains a Direct
Trust (DT) table for every origin node Py from which it re-
ceives a story; DT serves the a priori value for the Bayesian
framework. The DT is a 5-tuple, (d1, . . . , d5) where d j is the
probability that Px has a direct trust at level l j for peer Py

and 1 ≤ l j ≤ 5. The direct trust at level l j is represented as
p(DTx,y = l j). Node Px uses the DT to compute Py’s trust
as Tx,y =

∑
j∈[1,5] p(DTx,y = l j) · j

5 .
Besides DT, node Px also maintains an experience table

ET to store its experience with Py; |ET | = 5 × 5 and the
cell eαβ in ET represents the probability that even though
Px has a direct trust in Py at level lα (or event 1) it has eval-
uated (i.e., post reviewed) the new story from Py at level
lβ (or event 2). The values in ET are used to compute the
likelihood, or condition probabilities used for evaluating the
posteriori every time Px receives a new story, using Bayes’
Theorem [9] for 2 events.

An originating node can create different stories with dif-
ferent expected trust levels. The Bayesian framework in
[22] does not support this situation. We extend the frame-
work by incorporating a pre-rating from the story origin.
We implement the extension by modifying the experience
table ET to include the origin’s pre-ratings.

Therefore, in our system, ET is an 5× 5× 5 table, where
the cell eαβγ represents the probability that Px having a di-
rect trust at level lα (or event 1) post-reviews a new story
from Py at level lβ (or event 2) when the pre-rating from
Py for the story was at level lγ (or event 3). The posteri-
ori is then evaluated using Bayes’ Theorem for 3 events [9];
the likelihood is computed using our augmented ET . The
process to evaluate the posteriori at Px for Py is as follows.

Before receiving: Before accepting a new story, the re-
ceiver node Px has the following prior belief probabilities
about Py which is expressed by the 5-tuple (d1, . . .d5). The
weighted sum of the tuple is used to compute its existing
trust level lα for Py given as: lα =

∑5
j=1

j
5 · p(DTx,y = l j)

After receiving: After receiving a new story with pre-



rating at level lγ, Px will evaluate the new story and assign
it a post-rating of level lβ. Then the likelihood is computed
using the ET values as:

Θ = p(ETx,y = lβ|DTx,y = lα) =
1
5

5∑

j=1

eαβ j∑5
ı=1 eαi j

Λ = p(rec = lγ|ETx,y = lβ,DTx,y = lα) =
eαβγ∑n
j=1 eαβ j

where, Θ represents the conditional probability of evaluat-
ing a story at level lβ when Px’s direct trust for Py was at
lβ and Λ is the conditional probability for Py providing a
pre-rating at lγ but Px has evaluated the story at lβ when its
direct trust for Py was at lα.

Based on this likelihood Px’s direct trust with Py is com-

puted using Bayes’ theorem as follows: dt
α =

dt−1
α ·Θ·Λ∑

i dt−1
i ·Θi ·Λi

where, Θi = p(ETx,y = lβ|DTx,y = li) and Λi = p(rec =
lγ |ETx,y = lβ,DTx,y = li)

After performing post-reviewing of the new story, the
node Px will updates it experience with Py, i.e., the ex-
perience table ETx,y is updated accordingly to reflect Px’s
change in trust level for Py. This is given as: ∀α ∈
[1, 5], eαβγ = eαβγ + dt

α and ∀γ ∈ [1, 5], eαβγ = dt
α.

Currently, our trust evaluation framework does not seek
recommendations on node reputations but can be extended
to accommodate recommendations in a straightforward
manner and doing so will significantly reduce the time re-
quired for estimating a node’s trust value.

3.3 Analysis of Targeted Gossip

We provide a simple analysis to show scalability and
censorship resistance properties of targeted gossip. First,
we compute the per node and per round overhead created
by targeted gossip and establish it is independent of the net-
work size. This indicates targeted gossip is scalable w.r.t.
network size. Second, we sketch a proof that reveals tar-
geted gossip is censorship immune under certain conditions.

The messages created by targeted gossip can be grouped
into: (a) gossip messages, (b) review and reply messages,
and (c) confirmation messages. Consider an origin node Po

that is gossiping with degree d. Each round it sends out
d = κ + κ′ + κ′′ messages. Suppose a fraction 0 < k ≤ 1
of the d receivers consider the story QUESTIONABLE and
each such node solicits m reviewers for endorsements and
p is the probability that a reviewer provides a review. Then
the total overhead from reviewing is kd(m + mp). Also, let
Po have f friend nodes and in a given round let p′ be the
probability that a friend sends a confirmation to Po. The
message overhead due to confirmation messages is given
by f × p′. Therefore, the total overhead is M = d + kd(m +
mp) + f p′, which is independent of the network size.

For the purposes of this analysis, we define censorship as
the act where a given set of nodes systematically filter all or
portions of messages disseminated by an origin node. The
trust based filtering proposed in our study is different from
this scenario because trust based filtering is a collaborative
process where filtering nodes are implementing the require-
ments of the community. Conversely, in censorship, cen-
soring nodes try to prevent the community from receiving
certain messages that the community would like to receive.

Consider the situation where a single origin Po is dissem-
inating its stories into the network. The dissemination net-
work can be modeled as a random graph where the vertices
are nodes including Po and an edge denotes that the two cor-
responding nodes are communicating Po’s messages. We
consider two nodes to be communicating Po’s messages if
one of them is not filtering the messages for malicious rea-
sons. This does not mean all of Po’s messages will be com-
municated over the edge – only the ones deemed trustwor-
thy by the nodes will be communicated.

The origin Po can push its messages to all or most of
the nodes in the network without being censored if there
is giant connected component in the random graph. If a
giant connected component exists, Po is part of it because
the edges denote the transmission of Po’s messages. From
random graph theory [20], a giant connected component ex-
ists if the number of second order neighbors are more than
the number of first order neighbors. Suppose the origin Po

disseminates to d nodes and the targeting mechanism to po-
sition has been exploited to place k malicious nodes in the
d node gossip set. Then, the dissemination reaches d(d − k)
second order neighbors. For a giant component, we should
have d2 > d + dk. This means the condition d > (1 + k)
should be true for censorship resistant communication from
Po when up to k malicious nodes are in the gossip set.

4 Performance Evaluation

In this section, we discuss the results from simulation
studies performed to evaluate performance of targeted gos-
sip. The simulators were written in Python and PARSEC
[2]. All experiments discussed below used a network setup
with N = 10K (K = 103) nodes, unless stated otherwise.

4.1 Trusted Dissemination

Experiment Setup - In our experiments, reputations of
nodes are computed as the average of all the ratings for
all stories they originate. Story ratings from three differ-
ent datasets were used to examine the performance of our
targeted gossip algorithm. The datasets used were Flickr
[6], Bookcrossing [31], and Movielens [12]. Flickr is a
popular online photo-sharing service, Bookcrossing is an



online book rating service, and Movielens is an online rec-
ommender system for movies. Object rating values from
these datasets are used to rate the stories disseminated in
our experiments. Figure 1(a) shows the rating distribution
for the three datasets used in our experiments, where the x-
axis is the rating scale used by the datasets. The rating dis-
tribution determines the node reputations used in our exper-
iments. In Flickr, most nodes have low reputation, whereas
in Bookcrossing and Movielens most nodes have medium
to high reputation. The story ratings from the Flickr dataset
were computed in two ways: (i) Flickr-Comments - num-
ber of comments left by Flickr users for Flickr photos
and (ii) Flickr-Favorites - number Flickr users declaring a
Flickr photo as their favorite. For our experiments, we used
three traces with number of stories M = 51838 for Flickr,
M = 5647 for Bookcrossing, and M = 2346 for Movie-
lens. Figure 1(b) shows a statistic of the connectivity among
users in the Flickr social network which serves as the base
network for our experiments. The gray columns show the
distances between Flickr users in general while the black
columns depicts the distance between story originators and
their target-nodes. Our analysis showed the neighborhood
graphs formulated by Flickr ratings have power-law distri-
butions.

In our experiments, each node selects the number of tar-
gets given by the gossip degree (d) such that it is uniformly
distributed in [2,5]. The d targets are chosen from TL, test-
TL, and the rest of the network as explained previously. The
size of TL, test-TL are set at k × d, where k is a parame-
ter selected uniformly from [2,3]. We assume that a node
has f friends in the network. For certain experiments, the
friends were placed randomly in the network and for others
the friends were selected from a social neighborhood. We
ran the experiments until the gossip process converges, i.e.,
nodes have no new stories to gossip.

We compare the targeted gossip algorithm (TA) with un-
targeted trusted dissemination schemes proposed in [17]. In
this paper, targeted and untargeted gossiping are sometimes
collectively referred to as trusted gossiping. In the untar-
geted algorithms, trusted dissemination uses normal gos-
sip with three types of trust-based filtering, described as
following. (a) Receiver-Initiated (RI) - In this approach,
both node and message level filtering mechanisms are im-
plemented at the receiver side. Upon receiving new stories,
a node makes a decision based on its knowledge of the story
originator’s reputation (in our case, reputation is measured
by the trust the local node has with the story originator)
and/or with the help of the community’s review about the
story. (b) Sender-Initiated (SI) - In this approach, receiv-
ing nodes perform the node-level filtering and the sending
nodes (origins) perform message-level filtering. technique
is The idea is to prescreen socially unacceptable stories at
the source so as to not spam the whole network. This also
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Figure 1. Properties of input datasets.

helps the source nodes maintain high reputations. (c) Hy-
brid (HY) - This approach combines RI and SI. Receiving
nodes perform the node-level filtering while message-level
filtering is done probabilistically at both sender or receiver
nodes. One of the drawbacks hybrid shares with SI is the
limitation in estimating story acceptance. That is, these
methods can only target stories for the whole population.
They are not suited for targeted dissemination.
Performance Metrics - Following metrics are used to eval-
uate the performance of the targeted gossip algorithm.

Dissemination Error: measures the failure (error proba-
bilities) of the algorithms; (a) false negatives (FN): accept-
ing stories which should not be accepted and (b) false nega-
tives (FP): not accepting stories which should be accepted.

Find Capability: measures how many of the target-nodes
a node can find during its lifetime. This estimates the dis-
covery capability of the targeted gossip algorithm as the net-
work configuration evolves.

Message Overhead: measures the message count in
three parts: (i) gossip overhead: the total message overhead
for gossiping stories, (b) review overhead: the overhead due
to review requests and replies, and (c) TL update overhead:
the overhead due to target-node list updates.

Speedup: is given by S TargetAlgo/S BaseAlgo, where
S TargetAlgo and S BaseAlgo are the time taken for the facts to
reach all nodes using the targeted (i.e., TargetAlgo) and nor-
mal (i.e., BaseAlgo) gossiping algorithms, respectively.

Benefit: measures the improvement in message overhead
the targeted algorithm can yield compared to the base algo-
rithm. Bene f it is given by OverheadBaseAlgo − OverheadTargetAlgo

OverheadBaseAlgo
.

Gain: gives the reduction of in user decisions necessary
to accept or reject new stories. This metric indicates
the savings in users time due to overall collaborations
implemented by trusted gossip. Gain is defined as
Gain = untrusted #decisions−trusted #decisions

untrusted #decisions . In trusted gossip, a
user’s decisions are leveraged by the community, whereas,
in normal gossip a user’s decisions are only locally used.

Results and Discussion - Figure 2 shows the variation of
dissemination error with trust threshold for all trusted gos-
sip algorithms, TA, RI, SI, and HY. Total error is the sum of
false negatives and false positives, shown by the FN and FP
components in the graphs. Figure 2 shows the results when
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Figure 2. Dissemination errors: (a) using likeminded reviews , (b) for TA using different friend sets,
and (c) for TA using different datasets.

story review requests are sent to only likeminded nodes. We
define likeminded nodes as nodes that are within three hops
from each other on a social graph (e.g., Flickr social graph).
This is in agreement with the trusted friend circles defined
in other existing social networks. Moreover, Figure 1(b)
shows that majority of the socially connected nodes in the
Flickr network are within three hops of each other.

Figure 2(a) compares the trusted gossiping algorithms
using the Flickr dataset. When trust threshold ϕ = 0, re-
ceivers make all accept-reject decisions based on the origin
nodes’ reputation values. From Figure 1(a) we know that
only small number of nodes have high reputations, a large
proportions of stories originating at nodes with medium to
low reputation will be rejected. Results in Figure 2(a) show
that such decisions are erroneous approximately 25−50% of
the time. When ϕ > 0, node-level reputations are combined
with message-level recommender based decisions. As a
result, decisions regarding stories considered reputed by
the system were made with higher accuracy. Increasing ϕ
meant such combined decisions are made for larger fraction
of stories, which improved the accuracy level. In SI, the
message-level filtering is done at the origin nodes and the
chances of finding good quality reviewers in the simulated
Flickr network was high closer to the origin, consequently
SI made more accurate message-level decisions, and thus
performed better than RI. However, SI suffered from under-
exposure because stories not sanctioned by the reviewers
and dropped at the origin could have been accepted by some
nodes. Conversely, the RI algorithm suffered from over-
exposure because nodes were exposed to stories with low
trust that have somehow gathered sufficiently high ratings
from at least ζ members in the community, where ζ was
more than φ1 = φ2 = 5 stipulated by the algorithm. This
is the reason for the dominant FP component in the experi-
mental results. Such errors are suppressed to a large extent
in HY by probabilistically combining node and message
level filtering. The TA algorithm provided the best perfor-
mance in terms of dissemination error. The primary reason
for this reduction is that targeting yields optimal exposure of

the nodes to the stories. This is also the reason that FP com-
ponent of the errors are low across different trust threshold
values. Further, results indicate that HY algorithm is capa-
ble of achieving errors closer to TA at high trust thresholds.

Figure 2(b) shows the dissemination error variation us-
ing different friend sets. These experiments used two types
of friend-nodes: (a) social friend-nodes - nodes are located
within three hops and (b) random friend-nodes - nodes ran-
domly placed over the whole network. Unsurprisingly, re-
sults show that larger friend-node sets provide lower dis-
semination errors. Further, social friend-nodes are more ef-
fective in reducing dissemination error than random friend
nodes. For instance, for f ≥ 5% (at least 5% of the total
nodes are friends) the number of random friends are much
higher than the number of social friends within three hops.

Figures 2 (a) and (b) show that combining reputation and
recommendation based decisions in targeted gossip results
in very low dissemination errors. This is supported by Fig-
ure 2(c) which shows the error values for different datasets.
As the trust threshold is increased, the error values for the
algorithms converge. Figure 2(c) shows targeted gossip be-
ing less sensitive to reputation distribution among nodes
compared to a simple reputation based system (i.e., when
ϕ = 0). Error differences among the datasets consistently
decrease even though the datasets had varied populations of
trusted and untrusted nodes as shown in Figure 1(a).

Figures 3(a), 3(b) and 3(c) show the benefit estimates
using Flickr datasets. Figure 3(a) shows benefit variation
against ϕ when message-level filtering is done using like-
minded reviewers. The results show that the trusted algo-
rithms create 49%-83% less messages than normal gossip-
ing. Primary reason for this being that not all stories are
gossiped to all nodes by the trusted algorithms. Among
the tested algorithms, TA provides the maximum benefit.
In TA, due to targeting, story dissemination happen mostly
among nodes that consider the stories valuable. With tar-
geting schemes that are capable of discovering as much of
the favorable nodes, we can expect optimal story dissem-
ination patterns. As a result, TA eliminates lot of redun-
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Figure 3. Benefit achieved using likeminded and random reviews are shown in (a) and (b) while (c)
illustrates the trusted algorithms as scalable. Gossip message overhead incurred by all algorithms
are in (d) while (e) shows the TL update overhead for TA. Speedup estimates are shown in (f). Find
capability for TA is shown in (g), (h) and (i) while gain for all algorithms are shown by (j), (k) and (l).

dant messages found in other trusted gossips such as RI,
SI, and HY. Among these algorithms, SI causes the least
message overhead mainly because this algorithm suffered
from under-exposure of the nodes to stories. The over-
exposure of nodes in RI leads to much higher message over-
head while HY which inherited properties of both SI and RI
incurs the maximum overhead. Figure 3(b) shows the re-
sults when message level filtering is done using message
reviewers from the entire node set, i.e., not limiting to like-
minded reviewers within three hops. Comparing Figures
3(a) and 3(b) we see that the benefit for TA does not change
much while RI, SI and HY algorithms show reduced ben-
efit. Experimental logs showed that for RI, SI and HY the
dissemination error, mainly the FN component, increased
by 5%-8% which resulted in higher gossip overhead. Fig-
ure 3(c) shows the variation of benefit when the network
is scaled up. Scaling the network also increases the num-
ber of stories to be gossiped; logs showed an increase by a
factor k = [4, 6], i.e., M = k × N. The results show that
the message benefit remains approximately constant as net-
work size was scaled. Experiments with other datasets also
showed similar scalability trends.

Figure 3(d) shows the gossip and review message over-
heads for the algorithms. The reviewing overhead is a

small fraction of the gossip overhead. Although the sim-
ulations gossiped each story separately, an implementation
will gather all stories for a given period of time and then
gossip the collection as a single large message. Figure 3(e)
shows the overhead incurred by TA for keeping the TL set
up-to-date. Although this overhead rapidly increases with
the network size, it still forms only 0.01% of the overall
overhead shown in Figure 3(d).

Figure 3(f) shows the variation of speedup with trust
threshold for the trusted gossips. Speedup is basically the
ratio of the message spreading times of the trusted and nor-
mal gossip. Because story dissemination is lesser in trusted
gossip it obviously takes less time. Among the trusted gos-
sip algorithms, SI and TA provide maximum speedup. SI
achieves higher speedup at the expense of under-exposing
the nodes to the stories. RI has the least speedup due to
the over-exposure problem. TA performs best compared to
other algorithm due to targeting.

Figures 3(g), 3(h) and 3(i) show the variation of the find
capability for TA algorithm. Find capability quantifies the
ability to discover the best nodes for the target lists. We
compute the find capability as follows. First, using the
traces we determine the ideal target nodes for each origin.
Next, we compute find capability as the percentage of time



one of the ideal target nodes was placed on the TL or test-
TL by the targeting algorithm. Figure 3(g) shows that TA is
successful in locating more than 80% of the target-nodes.

As mentioned earlier, we used κ > κ′ > κ′′ to decide
how many nodes should be chosen from the TL, test-TL,
and rest of the network, respectively. For all experiments,
we set κ = d/2, κ′ = d/3, κ′′ = d − (κ + κ′). For experiments
with d = 2, κ = 1 while κ′ and κ′′ was randomly set to 1
or 0 with equal probability. Figure 3(g) shows that the find
capability increases sharply as d increases from 2 to 3. This
indicates that for targeting it is necessary to maintain some
level of random selection in the dissemination process. The
random selections allow the dissemination process to spread
the stories to a wider set of nodes. With large gossip de-
gree values, certain number of targets are selected from the
TL and test-TL sets and others are randomly selected. Fig-
ure 3(h) shows the variation of find capability with network
size. The results indicate that TA is highly scalable and
adaptable to network expansions. Figure 3(i) shows evolu-
tion of find capability with time. The results demonstrate
the targeting process undergoes a learning phase and the
length of the learning phase depends on the trust threshold.

Figures 3(j), 3(k) and 3(l) show the variation of gain
using the Flickr dataset. Using normal gossip, each node
makes independent decisions for each story and these de-
cisions are never shared with the community. Therefore,
with M stories and N nodes, total number of user deci-
sions amount to N × M. In trusted gossip, we want to share
the decisions among likeminded users along with the node
reputations to reduce the number of decisions made by the
users. Further, each story is reviewed only once by a user
but a story can receive multiple reviews from different users.
Figures 3(j) and 3(k) show that SI achieves a constant 20%
gain independent of the trust threshold and the number of
nodes, respectively. In our experiments, each origin uses
a fixed number of reviewers to pre-review a story before it
releases the story into the network. Therefore, SI’s gain is
indicative of the performance of a recommender based sys-
tem. In RI, at threshold ϕ = 0, nodes make decisions based
on reputations without requesting any reviews for the sto-
ries. At ϕ > 0, reviews are requested by the receiver nodes
in RI. Therefore, increasing ϕ reduces the gain because re-
view requests will be sent out for a larger fraction of the
stories. As can be noted from the results, the decrease in
gain for increases in threshold in small. We attribute this
to the fixed size of the reviewer set. The HY algorithm ini-
tiates the review process at the sender and receiver sides
probabilistically and it performs better than SI. Further, the
results indicate that RI and HY which combines reputation
and recommender based approaches can almost double the
gain of a pure recommender based approach.

Figure 3(k) shows that the TA algorithm achieves 2%
to 8% improvement over RI in terms of gain. The RI

algorithm has the best gain value among all the untargeted
trusted gossips. We attribute this improvement in gain to
the best node-to-story exposure provided by TA. Specifi-
cally, because TA is able to cut down the over-exposures
that can lead to redundant review requests that can create
more overheads. Figure 3(k) shows the the gain values
for TA and SI remain almost constant as the network size
is scaled up while the gain for RI and HY show small
decreases. Because the decreases on the gain of RI and
HY are small compared to the network increases, we can
claim that all algorithms are scalable. Figure 3(l) shows the
variation of gain with the gossip degree d for TA. As we
increase d, stories gain more exposure that creates more
review requests, which leads to lower gain.

4.2 Trust Evaluation

Experimental Setup - Receiver nodes compute trust val-
ues for originating nodes. In the experiments below, we
evaluate the trust values every gossip round. We associate
an error probability with each node which when combined
with a story’s ratings is used to denote the story’s quality
as evaluated by that node (i.e., post review). Likeminded
nodes will have similar error probabilities.
Results and Discussion - Figure 4(a) shows the success
rates for computing trust values by our augmented Bayesian
framework. Success rate is the percentage of the nodes
whose behavior the framework is able to predict correctly
in a round. The figure shows the success rates of our frame-
work and compares it with the existing (or base) framework
[22] where no pre-ratings are provided by the story origin.
Both frameworks were able to estimate trust values with
equal accuracy, but clearly, the time taken to compute the
trust correctly is much less in the augmented framework.
Primary reason for this being that more information is used
to compute a node’s trust. The result shows that even with
a low number of likeminded nodes, the augmented frame-
work is able to converge faster than the base framework.

Figure 4(a) also shows that within the augmented frame-
work, as the number likeminded nodes increase the time
taken to estimate the trust values is reduced. This was ex-
pected since likeminded nodes will be evaluating each oth-
ers trust more accurately with each story exchange. The
error-bars in the figure shows that the error estimation pro-
cess improves with every subsequent round. It should be
noted, that we did not include node recommendations in
our experiments. We conjecture that using node-level rec-
ommendations to compute trust will improve the time taken
for trust estimation. Without node-level recommendations,
the time estimates from our trust evaluation framework can-
not be compared to existing systems that use active polling
to collect community information to compute trust.
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Figure 4. Trust computation using 10K nodes.

Figure 4(b) illustrates the scalability of the framework
when the number of nodes and stories were scaled up. Here
nodes do not over-rate their story’s’ qualities. The results
show that with more likeminded modes the success rate
increases by a small amount. The average success rate
falls slightly when network size increases from 1K to 10K.
But for larger networks the success rate remains almost the
same. The error-bars show that with larger network or with
more likeminded nodes the accuracy improves by a very
small amount. Thus, the augmented approach exhibits scal-
ability to a reasonable extent.

5 Related Work

Information Dissemination Systems - P2P file shar-
ing networks (PPFNs) [25] and content delivery networks
(CDNs) [29] are popular dissemination systems used for
pushing content across geographically distributed networks.
PPFNs and CDNs implement integrity checks by merely
verifying the content as authentic, whereas, targeted gos-
sip deals with a broader notion of appropriateness of the
stories. In systems using targeted gossip, users seek infor-
mation that is previously unknown to them. By using a com-
bination of server and message level trusts evaluations, our
proposed system can present an unbiased collection of sto-
ries to the users while preventing rumors from spamming
the network. Usenet [27] another popular system, employs
techniques like collaborative filtering [12] to reduce users’
immediate visibility to small chosen set of articles but does
not prevent the spreading of unwanted articles in the net-
work. Publication systems like blogs and Wikis dissemi-
nate via hot linking, external means (e.g., emails) or by syn-
dication [10, 21] where users selectively pull news item(s)
of interest. In contrast, our dissemination model is a com-
pletely distributed push-based system using a inlined filter
to prevent spamming with less trustworthy stories.

Rumor spreading in large networks is similar to com-
puter virus spreading. Current studies [4, 8, 18] modeling
viral propagation using epidemiological models consider a
virus as harmful at all nodes in the system; a virus will be
treated same way by all nodes. This approach is in abso-
lute contrast with ours where a story considered as rumor

or spam by one node can be considered as fact by another
node. Meaning, stories are treated differently at different
points of the network. Further, targeted gossip can be con-
sidered as a form of regional gossip where the regions are
defined based on message interest. This is in contrast to gos-
siping schemes [5, 7, 14] based on node densities or lacking
message trust information.
Reputation/Recommender Based Systems - Reputation
systems [13, 24] compute global estimate of a node’s trust
solely based on a node’s behavior without involving the
quality of its messages/transactions. This effects overall ac-
curacy since it becomes difficult to distinguish trustworthy
transactions from less reputed nodes and vice versa. In con-
trast, our proposed system defines a trust spectrum to clas-
sify nodes, where a node’s reputation is a definitive indi-
cator if it is placed very high or very low in the spectrum;
for all other cases, we combine the message level recom-
mendations to make the decisions. Recommender systems
[1, 23] also provide global context of users’ behavior. Mod-
els [12, 28] proposed for this purpose use user ratings for
news/products to make predictions for likeminded users or
employ social data mining techniques [15]. In a distributed
environment, such systems result in very high network mes-
sage overhead by active polling of recommendations. Our
simulations show that our model is able to contain the ex-
plosion of recommendation messages by combining recom-
mendations with reputation based decisions.
Trust Evaluation Systems - Trust based systems have been
widely employed to create cooperative distributive systems.
In [19], a Bayesian formalization for a distributed rating
process is proposed. However, this work considers only bi-
nary ratings and does not decay the rating values over time.
In the Bayesian reputation scheme presented in [3], the ag-
ing of ratings were considered but still it used binary rat-
ings. The binary ratings issue was tackled in [30] which
used a rating scale in range [0, 1] to describe a Bayesian ap-
proach to filter unfair ratings. The framework [22] provides
further flexibility of using a n-level rating scheme. It pro-
vides lightweight n-level trust metric which protects user
anonymity. We extend the Bayesian framework in [22] to
make the trust metric more expressive; we incorporate more
information about a node’s behavior. Results show that our
model was able to compute a node’s trust quicker.

6 Conclusions

In this paper, we proposed a targeted gossip algorithm
where an inline filtering process is used while gossiping to
retard the spread of unacceptable stories and accelerate the
spread of acceptable stories. The targeted gossip includes
a targeting phase which is used by each story originator to
determine the best audience for its stories.

We performed extensive simulations using traces ob-



tained from the Flickr social network and other datasets to
verify the performance of targeted gossip. Our results in-
dicate that targeting significantly increases the accuracy of
trusted gossiping while the message complexity and user
engagement are simultaneously reduced. The reduction in
user engagement is particularly compelling because the to-
tal user time spent on reviewing stories is reduced by cutting
down the redundant transmissions. In the targeted gossip,
each origin uses a set of friends to provide feedback on the
dissemination process. The simulation results indicate that
selecting the friend nodes from the two-hop social neigh-
borhood is sufficient. This friend node selection strategy is
practical in almost all social networks.

In conclusion, we developed a targeted gossip algorithm
and established that it provides significant benefits using
traces from actual social networks. The targeted gossip can
be used as a building block for a new class of P2P informa-
tion sharing applications such as P2P news networks and
social advertisement dissemination networks.
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