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Abstract

Unbalanced energy consumption is an inherent prob-
lem in wireless sensor networks where some nodes may be
overused and die out early, resulting in a short network life-
time. In this paper, we investigate the problem of balanc-
ing energy consumption for data gathering sensor networks.
Our key idea is to exploit the tradeoff between hop-by-hop
transmission and direct transmission to balance energy dis-
sipation among sensor nodes. By assigning each node a
transmission probability which controls the ratio between
hop-by-hop transmission and direct transmission, we for-
mulate the energy consumption balancing problem as an
optimal transmission probability allocation problem. We
discuss this problem for both chain networks and general
networks. Moreover, we present the solution to compute the
optimal number of sections in terms of maximizing the net-
work lifetime. Numerical results demonstrate that our meth-
ods outperform the traditional hop-by-hop and direct trans-
mission schemes and achieve significant lifetime extension
especially for dense sensor networks.

1. Introduction

Rapid advances in wireless technologies have enabled
the deployment of wireless sensor networks (WSNs) for
a wide range of applications such as environment moni-
toring (e.g., habitat, traffic and security)[3][11], industrial
sensing[10] and health data gathering[1]. Sensors in such
networks are usually equipped with small inexpensive bat-
teries and expected to operate for months or even years.
Moreover, in many scenarios, it is usually impractical or in-
feasible to replace or recharge the batteries once the sensors
have been deployed. Thus, a critical consideration in de-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

signing such WSNs is conserving energy so as to maximize
the post-deployment network lifetime.

The research for energy-efficient solutions has led to nu-
merous algorithms and protocols that strike for the goal of
reducing energy consumption and prolonging network life-
time. Topology control[4][13] aims to conserve energy by
dynamically adjusting the transmission power level while
maintaining network connectivity. Power-aware routing
protocols[12][17] reduce energy consumption by selecting
minimum-energy paths to deliver packets.While sleep man-
agement schemes[19][5] save energy by periodically turn-
ing off the radio to avoid idle listening. However, all these
protocols and algorithms do not explicitly take care of the
phenomena of unbalanced energy consumption, which is an
inherent problem in WSNs. For example, in periodical data
gathering applications, multi-hop wireless paths are usually
utilized to transport packets to the sink. Inevitably, sensors
close to the sink may experience more traffic and higher
energy consumption rate. These nodes will die out early,
thus resulting in network collapse although there may be
still significant amount of energy in other sensors.

Direct transmission and hop-by-hop transmission are
two basic communication patterns in wireless networks. In
direct transmission where packets are directly transmitted
to the sink without any relay, the nodes located farther away
from the sink have higher energy burden due to long range
communication, and these nodes may die out first. On the
other hand, the hop-by-hop transmission drains less power
at each hop, but the sensors close to the sink have a high
load of packets relay and may run out of energy quickly.
To achieve balanced energy consumption, an elegant solu-
tion is to deliver packets through the combination of direct
transmission and hop-by-hop transmission. In this article,
we address the problems of balancing energy consumption
and maximizing network lifetime by exploiting the energy
tradeoff between direct transmission and hop-by-hop trans-
mission. Our analysis pertains only to the data gathering



sensor networks where each sensor must periodically report
its observations to the sink.

We first discuss the problem of balancing energy con-
sumption on chain networks and propose a fully distributed
solution which exchanges only O(1) messages per chan-
nel and O(n) messages in total. We derive the energy bal-
anced solution for general topology networks by dividing
the network into sections and approximately mapping it on
chain models. We also present the approach to compute
the optimal number of sections in terms of maximizing net-
work lifetime. Finally, we discuss the application of our
scheme to heterogeneous cluster-based senor networks and
show that our scheme outperforms cluster heads rotation
scheme since the overheads incurred by cluster heads re-
election have been completely avoided.

The rest of this article is organized as follows. Section
2 discusses related work. Section 3 describes the system
models and formulates the problems. Section 4 presents
the optimal energy balanced solution for data gathering in
chain networks. Section 5 presents the solution for general-
topology sensor networks. Section 6 gives the approach to
derive the optimal section numbers in terms of maximizing
network lifetime. Section 7 discuses the application of our
scheme to heterogeneous cluster sensor networks. Finally,
we summarize our work and conclude the article in Section
8.

2. Related Work

There have been many studies on exploring energy ef-
ficiency in wireless sensor networks. Strategies such as
topology control[4][13], energy aware routing [12][17] or
periodical sleeping[19][5] have been proposed to conserve
energy to prolong network lifetime. However, most of them
focus on minimizing the total energy consumption of end-
to-end packet delivery and do not explicitly solve the un-
balanced energy consumption problem which can result in
short network lifetime.

Clustering is commonly considered as one of the most
promising techniques for prolonging network lifetime.
Cluster-head rotation schemes have been proposed to bal-
ance energy consumption among the nodes within the clus-
ter. LEACH [7] utilizes randomized rotation of cluster-
heads to evenly distribute the energy load. Simulations
show that LEACH can achieve as much as a factor of 8 re-
duction in energy dissipation compared with conventional
routing protocols. However, to achieve a better balance of
energy consumption, the cluster-head selection algorithm
must be performed frequently, which will add excessive
processing and communication overheads to the network.

Communication topology control is another approach
for dealing with the energy consumption balancing prob-
lem. Energy Balanced Chain (EBC) was proposed in [9]

to balance energy consumption by optimizing hop dis-
tances. The communication topology is pre-determined
based on the anticipated traffic within the network. Olariu
and Stojmenovic[14] investigated the uneven energy deple-
tion phenomenon in uniformly distributed sensor networks.
They divide the network area into coronas and derive an it-
erative process to determine the optimal size of the coronas
and the optimal number of coronas for balancing per-sensor
energy consumption.

Power control and load balancing techniques have also
been exploited to balance energy consumption in sensor net-
works. Perillo et al. in [15] formulated the problem of bal-
ancing energy consumption as transmission range distribu-
tion optimization problem and solved it by pre-allocating
the fraction of packets for each link based on the traffic in
the network. In [16], several energy-efficient communica-
tion protocols have been proposed based on power control
and load balancing, aiming at even distribution of the resid-
ual energy of the sensors and thus prolonging network life-
time.

Efthymiou et al.[6] studied the problem of energy-
balanced data propagation in wireless sensor networks.
They considered the scenario where the sensor nodes are
uniformly deployed in a fan-shaped or circular region and
all nodes are assumed to have the same packet generation
rate. Energy balance is achieved by optimally controlling
the fraction of packets for direct transmission and hop-by-
hop transmission. However, the authors did not actually
prove that such solution always exists. In this paper, we
use the same communication model and analyze the energy
balancing problem for data gathering sensor networks. We
also discuss the problem of computing the optimal number
of sections in terms of maximizing network lifetime, and
extend the solution to cluster sensor networks.

3. System Models and Problem Statement

We consider a sensor network composed of multiple sen-
sor nodes and one sink node. Both the sink and sensors
remain static once deployed. The sink is assumed to have
continuous and sufficient power supply, while the sensors
are powered by batteries that are inconvenient to replace
or recharge. For each sensor, we assume that it can com-
pute the approximate transmission distance based on the re-
ceived signal strength.

3.1. Data Gathering Model

For most data gathering applications, the sensors usually
operate in a low-duty-cycle mode. The interval between
one duty cycle to the next may be several minutes, hours
even days. This characteristic motivates the utilization of
periodical sleeping to conserve energy. In our model, we



assume that a loosely synchronized sleep/wakeup scheme
as in S-MAC[19] and T-MAC[5] is exploited. Between two
adjacent duty cycles, all sensors will turn off the radio to
conserve energy.

We define the process in which all sensors wake up, gen-
erate the sensed data and send the data to the sink as one
data gathering cycle (DGC). For simplicity, we do not con-
sider data aggregation and assume that all the packets are of
the same size.

3.2. Energy Model

It has been observed that variable-power packet trans-
mission is more energy efficient than fixed transmission
power schemes. In our model, we assume that each sensor
can intelligently choose the transmission power based on
the link distance. This is true in typical sensor node imple-
mentations. For example, the Berkeley Mica Mote provides
such program interfaces. The first-order radio model pro-
posed in [7] is used to describe the energy consumption for
the sensors. Let εt(R) and εr(R) be the energy consumed for
transmitting and receiving an m bits packet over distance R
respectively, then

εt(R) = εelec ×m+ εamp ×m×Rk (1)

εr(R) = εelec ×m (2)

where εelec is the energy spent by the electronic circuit
when transmitting or receiving one bit data and εamp is the
transmission amplifier, while k is the propagation loss ex-
ponent. When receiving a packet, only the receiving cir-
cuit is invoked, therefore, the energy spent on receiving is
εelec/bit.

3.3. Communication Model

The communication model we adopt is same to the one
proposed in[6]. The combination of direct transmission and
multi-hop transmission is exploited to balance energy con-
sumption among the nodes. For each sensor i, it forwards
the packets it generates or receives to next hop node towards
the sink with probability pi and directly transmits the pack-
ets to the sink with probability 1 − pi. We call pi the trans-
mission probability for node i. Here, we simply assume that
the transmission in the network is reliable and we will con-
sider the effects of data loss in future work.

3.4. Problem Statement

Let n represent the number of sensors in the network
and E[ξi] denote the expected energy consumed by node
i during the whole lifetime. Assume that all nodes in the
network have the same amount of initial battery energy. We

say that the network is energy balanced if each sensor in the
network has the same expected energy consumption, i.e.,
when

E[ξi] = E[ξj ] i, j = 1, 2, ..., n (3)

To achieve balanced energy consumption, each sensor
should transmit its data with an optimal transmission prob-
ability. If the probability is large, transmissions tend to hap-
pen locally. The sensors close to the sink may be overused
and die out early. On the other hand, if the probability is
small, the large part of packets will be directly transmitted
to the sink. The energy at the sensors that are far away from
the sink may be exhausted quickly. Thus, the problem of
balancing energy consumption can be transformed as the
optimal transmission probability allocation problem. Our
objective is to compute the optimal transmission probabil-
ity for each node so that balanced energy consumption is
achieved.

4. Balancing Energy Consumption in Chain
Networks

We start by investigating the problem of energy balanced
data gathering in chain networks. Although our final aim is
to deal with this problem for general-topology networks, as
we will show shortly, the analysis on chain networks pro-
vides deep insights on the solution for general networks. In
this section, we discuss this problem on two different chain
models.

• Regular Line Networks (RLN): where the sensors
are regularly deployed along a straight line with the
same distance between any two neighboring sensors.

• General Chain Networks (GCN): where the sensors
are irregularly deployed in a region, and the chain is
constructed by each node selecting its near-sink neigh-
bor for next hop packet relay.

Without loss of generality, the sink is assumed to be
placed at one end of the chain. The nodes are marked with
0 to n from the sink to the farthermost sensor. During each
data gathering cycle, node i forwards its packets to node
i − 1 with probability pi and directly transmits the packets
to the sink with probability 1− pi. The objective is to com-
pute the optimal pi for node i so that energy consumption is
balanced among the nodes.

Consider one data gathering cycle in which each sensor
wakes up, generates one packet and reports it to the sink.
Let fi denote the number of packets that sensor i forwards
to sensor i − 1 and di represent the number of packets that
sensor i directly transmits to the sink. Thus,

fi + 1 = fi−1 + di−1, 1 < i ≤ n (4)



Denoted by E[λ] the expectation of a random variable λ,
then

Lemma 1 pi = E[fi]
E[fi]+E[di]

, 1 ≤ i ≤ n

Proof. Let P (i, j) (i > j > 0) denote the probability that
node j receives a packet from node i. Obviously, the pack-
ets transmitted by node i can arrive at node j only through
hop-by-hop transmission. Thus,

P (i, j) =
i∏

k=j+1

pk (5)

Since fi is also the number of packets received by node i−1.
Therefore,

E[fi] =
∑n

k=i P (k, i− 1)
=

∑n
k=i

∏k
j=i pj

=
∑n

k=i+1

∏k
j=i pj + pi

= pi(
∑n

k=i+1

∏k
j=i+1 pj) + pi

= pi(
∑n

k=i+1

∏k
j=i+1 pj + 1)

= pi(E[fi+1] + 1)

(6)

Because fi+1 + 1 = fi + di, by the linearity of expecta-
tion, E[fi+1] + 1 = E[fi] + E[di]. Replacing E[fi+1] + 1
with E[fi] + E[di], we get pi = E[fi]

E[fi]+E[di]
, 1 ≤ i ≤ n.

Let E[εi] be the expected energy consumed by sensor i
in one DGC. We get the following theorem.

Theorem 1 E[ξi] = E[ξj ] ∀i, j = 1, 2, ..., n if and only if
E[εi] = E[εi−1] where i = 2, ..., n.

Proof. In our scheme, the optimal transmission probabil-
ity for each sensor node is pre-computed and remains con-
stant once the network starts to work. Therefore, the perfor-
mance of data gathering in one DGC is fully independent
on those in other DGCs. Let N be the total number of
DGC in the whole lifetime, then, E[ξi] = NE[εi]. There-
fore, E[ξi] = E[ξj ] ⇔ E[εi] = E[εj ]. By the transitive
property, Theorem 1 is correct.

4.1. Optimal Solution for RLN Case

Consider the case where n sensor nodes are regularly de-
ployed along a straight line with equal distance R between
any two adjacent nodes (see Fig.1). The sink is placed at
one end of the network. Therefore, the distance from node
i (1 ≤ i ≤ n) to the sink is iR.

Before presenting the distributed algorithm for allocat-
ing the optimal transmission probability among the nodes
in RLN, we give the following lemma.

Lemma 2 To balance energy consumption in RLN, the fol-
lowing equation should hold

E[di] = ((i−1)k−1)εampRkE[di−1]+2εelec+Rkεamp

2εelec+ikRkεamp
(7)

i = 2, ..., n

Figure 1. A regular line network composed of
n sensor nodes

Proof. For node i where 2 ≤ i ≤ n, the expected energy
consumed during one DGC is given by

E[εi] = E[fi]εt(R) + E[di]εt(iR)︸ ︷︷ ︸
transmit energy

+E[fi+1]εr(R)︸ ︷︷ ︸
receive energy

(8)

where E[fi]εt(R) is the expected energy spent by node i for
forwarding packets to node i − 1 and E[di]εt(iR) is the ex-
pected energy spent on transmitting the packets directly to
the sink, while E[fi+1]εr(R) represents the expected energy
consumed for receiving packets from node i + 1. Obvi-
ously, E[fn+1]=0 since node n receives no packets during
data gathering.

Consider two neighboring nodes i and i− 1, from Theo-
rem 1 we get

E[εi] = E[εi−1] ⇔
(E[fi] − E[fi−1])εt(R) + (E[fi+1] − E[fi])εr(R)

= E[di−1]εt((i−1)R) − E[di]εt(iR)

Note that fi+1 + 1 = fi + di, by the linearity of
expectation, E[fi+1] − E[fi] = E[di] − 1. Replacing
E[fi+1] − E[fi] and E[fi] − E[fi−1] with E[di] − 1 and
E[di−1] − 1 respectively in Equation (10), we get

E[di] =
(εt(iR) − εt(R))E[di−1] + εr(R) + εt(R)

εr(R) + εt(iR)

By Equation (1) and (2),

E[di] = ((i−1)k−1)εampRkE[di−1]+2εelec+Rkεamp

2εelec+ikRkεamp
(9)

i = 2, ..., n

For node 1 which is only one hop away from the sink,
the delivery of any packet from node 1 to the sink can be
regarded as either direct transmission or hop-by-hop trans-

mission. From Lemma 2, E[d2] = 2εelec+Rkεamp

2εelec+2kRkεamp
, which

implies that p1 will not influence the allocation of trans-
mission probabilities for other nodes. Therefore, p1 can be
assigned any value ranging from 0 to 1.

Note that εelec and εamp are both system-dependent pa-
rameters. Given fixed R, E[di](i > 2) depends only on
E[di−1]. Observe that E[fi] = E[fi+1] + 1 − E[di], both



E[di] and E[fi] can be obtained by local information ex-
change. Therefore, the optimal transmission probability
that achieves balanced energy consumption can be easily
computed according to Lemma 1. Now we present the dis-
tributed algorithm run at each node u to compute optimal
pu.

Algorithm 1: Compute pu for node u
Upon receiving E[du−1] from u− 1

Begin
Compute E[du] according to Lemma 2;
If u �= n then

Send E[du] to node u+ 1;
Else
E[fu] = 1 − E[du];
Compute pu according to Lemma 1;
Send E[fu] to node u− 1;

End.
Upon receiving E[fu+1] from u+ 1

Begin
E[fu] = E[fu+1] + 1 − E[du];
Compute pu according to Lemma 1;
If u > 1 then

Send E[fu] to node u− 1;
End.

It is easy to prove that Algorithm 1 exchanges only O(1)
messages per-channel and O(n) messages in total, which
indicates its energy efficiency and suitability for resource-
limited sensor networks.

Now we give the proof that such optimal solution always
exists for RLN.

Lemma 3 0 < E[di] < 1, i = 2, 3, ..., n.

Proof. From Lemma 2, E[d2] = 2εelec+Rkεamp

2εelec+2kRkεamp
. Since

εelec > 0, εamp > 0 and k > 0, therefore, 0 < E[d2] < 1.
Suppose 0 < E[di] < 1 where 2 < i < n. Then,

E[di+1] >
2εelec+Rkεamp

2εelec+(i+1)kRkεamp
> 0, and E[di+1] <

(ik−1)εampRk∗1+2εelec+Rkεamp

2εelec+(i+1)kRkεamp
< 1. Hence, the lemma is

proved.

Theorem 2 There always exists an optimal transmission
probability for each node in RLN so that energy consump-
tion can be balanced during data gathering.

Proof. If there exists a solution that can achieve balanced
energy consumption for data gathering in RLN, the follow-
ing conditions must be satisfied.

1. E[ξi] = E[ξj ], 1 ≤ i, j ≤ n.

2. 0 ≤ pi ≤ 1, 1 ≤ i ≤ n.

From the proof of Lemma 2 and Theorem 1, pi obtained by
Algorithm 1 must satisfy the first condition. From Lemma
3, 0 < E[dn] < 1, and E[fn] = 1 − E[dn] > 0. Suppose
E[fi] > 0 where 1 < i < n. Since E[fi] = E[fi−1] +
E[di−1]−1 and 0 < E[di−1] < 1, we can getE[fi−1] ≥ 0.
From Lemma 3 and Lemma 1, 0 ≤ pi ≤ 1. Hence, the
theorem is proved.

4.2. Solution for GCN Case

Despite the merits of RLN model such as simplicity and
existence of optimal solution for energy balanced consump-
tion, it has too much constraints on network deployment. In
practice, it may be not suitable to deploy the sensors along a
straight line with equal distance. In this subsection, we fo-
cus on solving the balancing energy consumption problem
for more general chain network.

Consider a simple example of GCN (Fig. 2). Let Ri rep-
resent the distance from node i to the sink. To derive the
energy balancing solution, we also assume that all the sen-
sors use the same power for hop-by-hop packet transmis-
sion. The assumption is reasonable in view of the following
two practical considerations. First, for homogeneous sen-
sor networks, two neighboring sensors may not be placed
too close or too far in view of network coverage. More
importantly, most current sensor motes can not transit a
packet with power as small as possible. Usually, there is
a minimum transmission power. In some scenarios, all sen-
sors have to use this minimum power for hop-by-hop packet
transmission.

Figure 2. A general chain network composed
of n sensor nodes

Given fixed transmission power P for hop-by-hop packet
forwarding, let R0 be the maximum distance that a packet
can be transmitted using P . Denoted by Ri,j the distance
from node i to node j. Obviously, R0 ≥Max{Ri,i−1, 1 ≤
i ≤ n}. Similar to RLN, we can get the following lemma.

Lemma 4 To balance energy consumption in GCN, the fol-
lowing equation should hold:

E[di] = (Rk
i−1−Rk

0 )εampE[di−1]+2εelec+Rk
0εamp

2εelec+Rk
i
εamp

(10)



i = 2, ..., n

The proof of Lemma 4 is similar to that of Lemma 2 and
we omit it here.

If Ri ≥ Ri−1 ≥ R0 (1 < i ≤ n) which can be guaran-
teed during the chain construction, the optimal solution for
balancing energy consumption in GCN always exists. Even
when R1 < R0, the optimal solution may still exist if R1

is not too small. We will demonstrate this by numerical re-
sults later. Obviously, the optimal transmission probability
for each node in GCN can also be computed by Algorithm
1.

4.3. Numerical Results and Analysis

We set k = 2, n = 100, εelec = 50nJ/bit and εamp =
100pJ/bit/m2. Fig.3 plots the optimal transmission prob-
ability obtained by Algorithm 1 for each node in a RLN.
For all cases, it can be observed that the optimal transmis-
sion probability increases initially, and then remains more
or less for a large number of nodes in the middle part of the
network. Finally, it drops quickly for the nodes located at
the end part of the network. This behavior can be explained
based on the energy model we adopt. For the nodes that are
far away from the sink, it handles only a small number of
packets. To balanced energy consumption, direct transmis-
sion will be used frequently to deliver the packets. While
for the node that are close to the sink, although the distance
to the sink is small, the probability still remains large be-
cause the nodes need to relay more packets compared with
the nodes at the middle and last part.

Figure 3. The transmission probability pi for
sensor i in RLN with k = 2, n = 100, εelec =
50nJ/bit and εamp = 100pJ/bit/m2.

Fig.4 shows the optimal transmission probability ob-
tained for each node in a GCN with 100 nodes. The system
parameters, k, εelec and εamp, are chosen to be the same

Figure 4. The transmission probability pi for
sensor i in GCN with k = 2, n = 100, εelec =
50nJ/bit and εamp = 100pJ/bit/m2.

Figure 5. Comparison of energy consumption
for node 1 in RLN with n = 100, εelec = 50nJ/bit
and εamp = 100pJ/bit/m2.

as those in RLN. The distance from node i to the sink is
initiated using the following function which guarantees that
Ri ≥ R0, (i ≥ 1). Ri+1 = Ri + Random(R0), R0 > 0.
As seen from Fig. 4, the transmission probability has the
same change trend as that in RLN although the curve is
not smooth. It is also deserve to note that the transmission
probabilities for the nodes close to the sink remain large
(e.g., larger than 0.9). Therefore, even when R1 < R0, the
optimal solution may still exist.

Delivering packets through multi-hop routes with short
hop-to-hop distance has been shown more energy efficient
than single hop with long distance. To demonstrate the
efficiency of our scheme, we compare it with hop-by-hop
transmission scheme on a RLN composed of 100 nodes.
Fig.5 shows the energy consumed by node 1 in one DGC



with respect to the variation of hop distance R. Clearly, our
energy balanced solution consumes less energy than hop-
by-hop transmission scheme especially when the distance
R is relatively small. Nearly 82% of energy saving has
been achieved by our scheme when R = 5m. Even when
R = 20m, our scheme can still save more than 34% of en-
ergy than the hop-by-hop transmission scheme. However,
with the increase of R, the improvement degrades since
the direct transmission for most nodes become energy in-
efficient and most packets will be delivered via hop-by-hop
transmission.

5. Balancing Energy Consumption in General
Topology Sensor Networks

In general, a large number of sensors may be deployed
in a region to perform data gathering task. The sensors self-
organize into a network and the topology may be more com-
plex than a simple chain. In this section, we discuss energy
balanced data gathering for networks deployed in a strip-
like region with general topology. However, this constraint
may be removed by combing our scheme with clustering
techniques and we will discuss this improvement in Section
7.

Consider a snapshot of the general topology sensor net-
work with n sensor nodes and one sink. We divide the net-
work into c sections where each section contains the same
number of sensors, i.e., n

c . For simplicity, we assume that
n can always be divided by c. A simple example is given in
Fig. 6.

Figure 6. A general wireless sensor network
and its map onto the chain model

Let Si denote the ith section and RSi
represent the dis-

tance from Si to the sink. RSi
is defined as the maximum

distance from sensors in Si to the sink. To derive the energy
balanced solution, we make the following assumptions:

1. All sensors in Si forward their packets to sensors in
Si−1 with same probability pi and transmit packets di-
rectly to the sink with same probability 1 − pi.

2. All sensors in Si use the same power to forward pack-
ets to sensors in Si−1. Similarly, all sensors in Si use
the same power to transmit packets directly to the sink.

3. For all sensors in the same section, the expected num-
ber of packets received in one DGC is same.

The last assumption seems strict, but it is not difficult
to realize. Since each section contains the same number of
sensors, there must exist the following bijective mapping
between any two adjacent sections Si and Si−1.

ψ : k → ψ(k) k ∈ Si, ψ(k) ∈ Si−1 (11)

When node k forwards a packet to next section, the packet
is unicasted to ψ(k) instead of broadcasting. By this, the
last assumption can be guaranteed.

Let dis(j, k) represent the distance from node j to node
k where j ∈ Si and k ∈ Si−1. From the second assump-
tion, the optimal bijective map between Si and Si−1 can be
obtained by solving the following optimization problem.

Minimize max
j∈Si,k∈Si−1

dis(j, k) (12)

Based on these assumptions, we can get the following
lemma.

Lemma 5 E[εj ] = E[εk],∀j, k ∈ Si 1 ≤ i ≤ c

Proof. Let hi denote the number of packets handled by
node i in one DGC. From the second assumption, the energy
spent by all sensors in the same section on forwarding a
packet to next section is same, and we denote it by ε. Thus,
the expected energy spent by node j ∈ Si in one DGC is

E[εj ] = piE[hj ]ε+ (1 − pi)E[hj ]εt(RSi
) (13)

+(E[hj ] − 1)εr(RSi
)

where piE[hj ]ε is the expected energy spent on forward-
ing packets to next section and (1 − pi)E[hj ]εt(RSi

) is the
expected energy consumed for direct transmission, while
(E[hj ] − 1)εr(RSi

) represents the energy consumed for
packets receiving.

For any node j in the last section Sc, hj = 1. From
Equation (13), all nodes in Sc have the same energy con-
sumption.

For any j, k ∈ Si where 1 ≤ i < c, from the third
assumption, E[fj ] = E[fk]. Since E[hi] = E[fi] + 1, we
get E[hj ] = E[hk]. From Equation (13), E[εj ] = E[εk].

By Lemma 5, the energy consumption for the nodes that
fall in the same section have been balanced. If energy con-
sumption for the nodes located in different sections can
be balanced, the objective is achieved. Since all nodes in
the same section have the same probability for packets for-
warding or direct transmission, the network can be approx-
imately mapped onto the chain model if we look upon each



section as one node (also see Fig.6), where each node gen-
erates n

c packets per DGC.
Consider the case where all nodes are uniformly de-

ployed in a regular region such as square or strip. The dis-
tance between any two adjacent sections is same, denoted
by R. Therefore, the network can be mapped onto the RLN
model. Let Di denote the number of packets that the sen-
sors in Si directly transmit to the sink. Similar to Lemma
2,

E[Di] = ((i−1)k−1)εampRkE[Di−1]+
2n
c εelec+

n
c Rkεamp

2εelec+ikRkεamp
(14)

i = 2, ..., c

It is easy to prove that 0 < E[Di] < n
c . From Theorem 2,

the optimal pi for each section Si always exists.
For the case where the distance between two adjacent

sections is not equal. The solution can be obtained by map-
ping the network onto the GCN model.

6 Maximizing Network Lifetime

In this section, we focus on deriving the optimal num-
ber of sections with the objective to maximize the network
lifetime. Similar to other studies[2][8], the network lifetime
is defined as the time elapsed until the first sensor node in
the network runs out of its energy. We measure the network
lifetime by the number of DGC that the network can func-
tionally operate.

It seems as if the network lifetime can be maximized
once energy dissipation has been balanced among the nodes
in the network. The case is true for fixed transmission power
scenario. But for variable transmission power case, the
network lifetime also depends on the transmission power
which determines the network topology. In our scheme,
both the hop-by-hop transmission power and the direct
transmission power can be controlled by adjusting the num-
ber of sections. If the network is divided into only a few sec-
tions, the distance between two adjacent sections is large.
The expected energy consumption may be high since the
energy spent on transmitting a packet over distance R is
proportional to Rk. On the other hand, dividing the net-
work into a large number of small sections decreases the
energy dissipation for hop transmission, but increases the
number of hops. As shown in the energy model, a fixed
amount of energy (εelecJ/bit) will be spent to run the elec-
tronic circuit whenever transmitting or receiving a packet.
Thus, a large amount of energy may be wasted by running
the electronic circuits, resulting in the increase of the ex-
pected energy consumption. Therefore, there is a trade off
for choosing the number of sections in the view point of
network lifetime maximization.

As shown in Section 5, the solution for balancing energy
consumption in general-topology networks can be derived

by mapping it onto the chain model. Thus, the optimal sec-
tion number problem can be discussed on chain networks.

Consider a chain network with n sensor nodes. The net-
work is divided into c sections and each section contains n

c
nodes. Since energy consumption is balanced, the expected
energy consumption for any node in one DGC is equal to
that of the last node, i.e., E[εn]. Therefore, the network
lifetime can be maximized only when E[εn] is minimized,
and the problem can be formulated as the following opti-
mization problem.

Minimize E[εn]
s.t. 1 ≤ c ≤ n (15)

Let E[Di] represent the expected number of packets for-
warded from Si to Si−1. From the analysis in Section 5, for
any node j in Si, E[dj ] = cE[Di]

n .
For RLN model, let L be the distance from node n to the

sink. Then, the expected energy consumed by node n can
be computed by the following equation.

E[εn] = (1 − E[dn])εt( L
c ) + E[dn]εt(L) (16)

where (1 − E[dn])εt( L
c ) is the energy spent on packets for-

warding, while E[dn]εt(L) represents the energy consumed
for direct transmission. Since node n doesn’t receive any
packets during data gathering, the energy consumed for re-
ceiving packets is 0.

Replacing E[dn] with cE[Dc]
n in Equation (16), by Equa-

tion (1) and (2), we get

E[εn] = mεampL
k[(1 − c

n
E[Dc])(

1
ck

− 1) + 1] +mεelec

(17)
From Equation (14),

E[Dc] = ((c−1)k−1)( L
c )kE[Dc−1]εamp+ 2n

c εelec+
n
c ( L

c )kεamp

2εelec+Lkεamp

(18)
For GCN model, we assume that all nodes use the same

power for packets forwarding. Let RS0 be the maximal dis-
tance between two adjacent sections. Similarly, E[εn] and
E[Dc] can be computed by the following equations.

E[εn] = E[dn]εt(RSc ) + (1 − E[dn])εt(RS0 )

= mεamp[(1 − c

n
E[Dc])(Rk

S0
−Rk

Sc
) +Rk

Sc
] +mεelec (19)

E[Dc] =
(Rk

Sc−1
−Rk

S0
)εampE[Dc−1]+

2n
c εelec+

n
c Rk

S0
εamp

2εelec+Rk
Sc

εamp

For both cases, it is difficult to obtain a closed form ex-
pression for E[εn]. Hence, we solve the problem numeri-
cally by the recursive random search (RRS) algorithm pro-
posed in [18] which overcomes the drawbacks of random
search and can provide a strong probabilistic and fast con-
vergence.



Figure 7. Optimal section number c for RLN
with n = 100,k = 2 and εelec = 50nJ/bit/m2.

Fig.7 plots the optimal number of sections obtained on
a RLN composed of 100 nodes with different εamp. We set
k = 2, εelec = 50nJ/bit and the hop distance, R, was
varied from 1m to 70m. Interestingly, the optimal section
number increases almost linearly before reaching n with
the increase of hop distance R. While for the same hop dis-
tance, the optimal section number obtained by a small εamp

is smaller than that obtained with a big εamp.

Let � be the initial energy supply for each sensor. In
hop-by-hop transmission, the first node will experience the
heaviest traffic burden and die out firstly. Let ε1 be energy
consumed in one DGC, the lifetime is �

ε1
for hop-by-hop

transmission according to the definition of network lifetime.
While for our scheme, network lifetime is �

E[εn] since en-
ergy consumption has been balanced. We set � = 30J .
Fig.8 gives the comparison of lifetime for energy balanced
scheme and hop-by-hop transmission scheme when k =
2,εelec = 50nJ/bit/ and εamp = 100pJ/bit/m2.

It is easy to observe that the energy balanced scheme out-
performs the traditional hop-by-hop transmission scheme
especially when R is small. Compared with hop-by-hop
transmission, the lifetime has been prolonged nearly 400%
when R = 5m. Even when R = 10m, the network life-
time has been doubled. However, the improvement de-
grades with the increase of hop distance, and the reason
for this behavior can be explained as follows. With the in-
crease of hop distance R, the distance from the nodes to
the sink becomes large. According to our energy model,
the direct transmission will consume much energy and be-
comes energy inefficient. To balance energy consumption,
only a small part of packets will be directly transmitted to
the sink, which means that most packets are delivered via
hop-by-hop transmission.

Figure 8. Lifetime comparison for a RLN with
100 nodes.

7. Application to Heterogenous Cluster-based
Sensor Networks

In our scheme, energy balancing is achieved by intel-
ligently controlling the ratio between direct transmission
and hop-by-hop transmission. However, such policy has
a limited effect. When network becomes larger, for the
nodes located far away from the sink, direct transmission
is energy expensive and most packets will be delivered to
the sink through hop-by-hop transmission (see Fig.3). Al-
though our scheme still outperforms the hop-by-hop trans-
mission scheme with respect to large-scale networks, the
network lifetime extension becomes small, which can also
be easily observed from Fig.8. Another practical consid-
eration deserved to note is that most realistic sensor motes
usually have limited transmission range. For the case where
the sink is out of the maximal transmission range of some
sensor nodes, our scheme may be not applicable. However,
we argue that this drawback can be efficiently solved by in-
tegrating our scheme with clustering techniques.

Hierarchical (clustering) technique has been shown as
an energy efficient scheme for large-scale networks. In-
stead of using the flat communication pattern, the sen-
sors are organized into small clusters. Each cluster has a
cluster head which is responsible for coordination among
the nodes within its cluster and communication with other
cluster heads or the sink. Although cluster heads rotation
scheme has been proposed to balance energy consumption,
our scheme has more advantages than cluster heads rotation
scheme. First, the transmission probability allocated to each
node only needs to be computed once, and the communica-
tion complexity for computing such optimal transmission
probability is very low. More importantly, the processing
and communication overheads incurred by cluster heads re-
election have been completely avoided.



8. Conclusions

In this article, we investigate the problem of balancing
energy consumption to maximize network lifetime for data
gathering sensor networks. The combination of hop-by-
hop transmission and direct transmission is exploited and
we formulate the energy consumption balancing problem
as an optimal transmission probability allocation problem.
We first discuss this problem for chain networks and pro-
pose full distributed solutions which exchange only O(1)
messages per-channel. The solution to balance energy con-
sumption in general-topology sensor networks is derived
by dividing the network into sections and mapping it onto
chain models. We also derive the optimal number of sec-
tions in terms of maximizing network lifetime. Numerical
results reveal that our scheme outperforms the conventional
hop-by-hop transmission scheme which has been shown
more energy efficient than long distance transmission. Fi-
nally, we extend our solution to heterogeneous cluster-based
sensor networks. We show that our scheme is more efficient
than cluster heads rotation scheme because the overhead in-
curred by cluster heads re-election has been fully avoided.
Moreover, by integrating with clustering techniques, the
drawbacks of our scheme can be overcomed, and network
lifetime can be prolonged to a significant extent.
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