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Abstract

Modern single and multi-processor computer systems in-
corporate, either directly or through a LAN, a number of
storage devices with diverse performance characteristics.
These storage devices have to deal with workloads with un-
predictable burstiness. Storage aware caching scheme—
that partitions the cache among the disks, and aims at bal-
ancing the work across the disks — is necessary in this
environment. Moreover, maintaining proper size for these
partitions is crucial. The existing storage aware caching
schemes assume linear relationship between cache size and
hit ratio. But, in practice a (disk) partition may accumu-
late cache blocks (thus, choke the remaining disks) without
increasing the hit ratio significantly. This disk choking phe-
nomenon may degenerate the performance of the disk sys-
tem. In this paper, we address this issue of disk choking
and present a repartitioning framework based on the notion
of marginal gains. Experimental results shows the effec-
tiveness of our approach. We show that our scheme out-
performs the existing storage-aware caching schemes while
supplied with a workload showing the non-linear relation-
ship between cache size and hit ratio.

1 Introduction

Modern computer systems interact with a broad and di-
verse set of storage devices. Accessing of local disks, re-
mote file servers such as NFS [22], AFS [11], Sprite [18]
and xFS [2], archival storage on tapes, read-only compact
disks, and network attached disks [10] is a common phe-
nomenon now a days. Disk arrays [20], where disks of dif-
ferent ages and performance parameters may be incorpo-
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rated, are commonly used with an aim of reducing disk la-
tencies. Moreover, nowadays there exist storage sites that a
client can access across the Internet [15, 25]. Thus, there is
a diversity of behavior and properties of the storage devices.
And these characteristics of the devices will vary greatly as
new storage components [6] are introduced.

Though this set of devices is disparate, one similarity is
inherent among all: the time to access them is high, spe-
cially as compared to the CPU cache and the memory la-
tency. Thus, there exists a wide gap between the perfor-
mance of microprocessors and disks. To bridge this gap be-
tween microprocessors and disks, today’s file systems use
a file cache. A file cache is a portion of the main memory
allocated by the operating system to be used for storing tem-
porarily the frequently used disk blocks. Thus, the storage
system can server a disk block without accessing the disk if
the requested block is found within the file cache. This way,
the file cache filters disk requests reducing the overall exe-
cution time of individual applications and increases overall
system performance, often by an order of magnitude.

Though there has been substantial changes in the storage
technology over the past decades, the caching architecture
used by modern operating systems have remained unmod-
ified. However, there have been some innovations in tech-
niques, for example, incorporating application control [4],
integrating file cache and virtual memory cache [18], inte-
grating caching and prefetching [3]. But, the caching policy
underwent relatively minor changes, with most operating
systems employing LRU or LRU-like algorithms to decide
which block to replace. The problem with these algorithms
is that they are cost oblivious: the replacement cost is as-
sumed to be uniform for all the cache blocks. On the con-
trary, these cache blocks might be fetched from devices with
diverse performance characteristics. So, the assumption of
uniform replacement cost is problematic in a system with
multiple device types with a rich set of performance char-



acteristics. As a simple example, consider a block fetched
from a local disk as compared to one fetched from a remote,
highly contended file server. In this case, the operating sys-
tem should most likely prefer the block from the file server
for replacement [9].

The storage aware caching in [9]—that is herein re-
ferred to as Forney’s Algorithm— addresses this issue of
caching in a heterogeneous storage environment and pro-
poses a caching scheme based on aggregate partitioning that
attempts to balance work across devices; it partitions the
cache, assigns one partition to each device, and determines
the partition sizes, at the end of an epoch, that lead to bal-
anced work. Reference [7] proposes a modified scheme that
maintains the partition size across the devices in a continu-
ous fashion foregoing the notion of an epoch.

In aggregate repartitioning, each disk is assigned a parti-
tion of the cache. And the size of this partition is adjusted
during the activity of the storage system. The goal of this
adjustment is to balance the work across the disks.More for-
mally, for each device, the number of cache misses times
the average cost of each miss should be equal. We observe
that existing aggregate repartitioning algorithms still have
an inherent problem. These algorithms assume that the re-
lationship between cache size and hit ratio is linear, and
hence work across a slow disk can be increased by allo-
cating more cache blocks to that disk. But, this relationship
is not linear after a certain threshold. Hence, in practice
a disk with a higher age or workload may consume blocks
without increasing cache hits proportionately. This happens
when a disk enters the saturation region where additional
disk blocks can’t impart significant increase in cache hits.
This problem is inherent in all the caching methods based
on aggregate partitioning. At a first glance, it appears that a
lazy repartitioning approach may alleviate the problem. In
lazy repartitioning, the algorithm doesn’t reallocates blocks
instantly to adjust the partitions to the desired size. On the
contrary, this scheme reallocates blocks on demand. So,
even if a slow disk logically derives blocks from the fast
disks, the fast disk can still use the blocks that belong to the
slow disk. Hence, the number of unutilized blocks in the
slow disk could be reduced. But, in this approach, the allo-
cation is one way: the fast disks only loose the blocks, but
can never regain. In a system where the working set corre-
sponding to the slow disk is larger than the cache size, this
problem can easily be realized: in this scenario, the slow
disk can consume the whole cache blocks choking the re-
maining disks.

In this paper, we address this problem of disk choking
and propose a solution based on the notion of marginal util-
ity. Here, marginal utility refers to the reduction in work
performed by a disk (or, delay) with the addition of an extra
cache block to the corresponding partition. The concept of
using marginal utility in allocating buffer has been studied

by the database community. In [19], the authors propose
an approach for buffer allocation based on both the access
pattern of queries and the availability of buffers during run-
time. In relational database management systems, queries
are issued by the clients and these queries wait in a queue
before execution. As a query is selected for execution, the
buffer manager examines the access pattern of the query
and availability of the buffers in the buffer pool. Based
on these observations the buffer manager allocates buffers
to the queries. The issue of partitioning a cache among
several competing disks is different from the buffer allo-
cation among the queries. In database management system,
a query runs for a short time, and the buffer allocation algo-
rithm doesn’t allocate buffers to a running query based on
the performance of the query as it runs: buffers are allocated
before execution. The main difference is that in heteroge-
neous storage environment, categorization or formulation
of various access patterns is not possible. So, the marginal
utility should be computed online based on the observation
of the cache performance while supplied with a reference
string. We propose a framework to capture the marginal
utility values of the cache block. Based on this framework,
we propose a technique to adjust the partition size during
the system activity.

The rest of the paper is organized as follows: Section 2
presents the overview of the algorithmic space. Section 3
describes the framework and mechanism to repartition the
cache. Section 4 outlines the simulation environment. Sec-
tion 5 presents experimental results showing the effective-
ness of the utility-based approach. Finally, section 7 con-
cludes the paper and outlines future works.

2 Preliminaries

This section provides an overview of the algorithmic is-
sues we explore. First, we outline the existing cost-aware
algorithms based on aggregate repartitioning. Then we pro-
vide a taxonomy of aggregate partitioning. We use the terms
page and block interchangeably in the subsequent pert of the
paper.

2.1 Algorithms Based on Aggregate Par-
titioning

In a cost-oblivious caching approach, an incoming page
(or block) replaces an existing page that may be anywhere
in the cache. This can also be termed as place-anywhere ap-
proach. In a place-anywhere algorithm costs are recorded at
a page level granularity, and a page can occupy any logical
location in the cache. On the contrary, an aggregate parti-
tioning algorithm divides the cache into logical partitions,
and assigns a partition to a device. The algorithm maintains



performance or cost information at the granularity of parti-
tions. As cost information is maintained for each partition,
the amount of meta-data is reduced and cost information
can be updated without scanning the whole cache. More-
over, this aggregate partitioning integrates well with the ex-
isting software, as cost oblivious policies can be employed
for replacing individual pages within a partition.

Forney’s algorithm is the first cost-aware algorithm that
utilizes the notion of aggregate partitioning. It considers
both static (due to diverse physical characteristics of storage
media) and dynamic (due to variation of workload on disks,
and network traffic) performance heterogeneity. In this ap-
proach, the cache is divided into logical partitions, where
blocks within a partition are from the same device and thus
share the same replacement cost. The size of each partition
is varied dynamically to balance work across devices. Here,
work is defined as the cumulative delay for each device. The
main challenge of this algorithm is to determine the relative
size of the partitions dynamically. This dynamic repartition-
ing algorithm basically works in two phases: in first phase,
the cumulative delay for each device is determined; and in
the second phase, cache partitions are adjusted. These two
phases repeat cyclically.

The cumulative delay for each partition (or device) is
measured over the last W successful device requests (dis-
tributed over all the devices), where W is the window size.
Knowing the mean delay over all partitions and the per de-
vice cumulative wait time, the relative wait time for each
device is determined.

During repartitioning, page consumers and page suppli-
ers are identified based on relative wait times of the parti-
tions. Page consumers are partitions that have relative wait
time above a threshold T ; and page suppliers are partitions
having below-average wait times. Here, the threshold value
is used to infer a variation in delay due to the variations
in workload or device characteristics only. Moreover, the
algorithm classifies each partition into one of four states:
cool, warming, cooling, warm. Of these, the first one cor-
responds to page supplier and the rest correspond to page
consumers. A page consumer increases its partition size by
I pages, where I is the base correction amount. If a parti-
tion remains as a page consumer during subsequent epochs,
the increase in partition size grows exponentially. On the
other hand, the number of pages a page supplier must yield
is given as:

IRWTj∑
i∈suppliers IRWTi

× No. of consumed pages

where,

IRWTj = 1 − relative wait time of partition j

Reference [7] attempts to repartition the cache among
the disks without using the notion of an epoch. This paper

provides three approaches to identify the page suppliers and
page consumers, and thus adjust the partition sizes during
the activity of the cache system.

2.2 Taxonomy

Two basic approaches are possible for aggregate par-
titioning: static and dynamic. In static scheme, size of
each partition is predetermined, and remain fixed during
the operation of the system. However, without estimation
of workload, and knowledge of miss rate as a function of
cache size, it is not possible to come up with partition sizes
that balance the work across devices. Thus, dynamic parti-
tioning is necessary, which adjusts the partition sizes during
the operation of the system.

Dynamic partitioning can be classified into eager parti-
tioning and lazy partitioning. In eager partitioning, partition
sizes are changed immediately whenever new partition sizes
are desired. Lazy partitioning gradually changes the parti-
tion sizes on demand. In this scheme, a partition doesn’t
incorporate newly assigned blocks instantaneously, rather
the partition claims new blocks only when it needs cache
blocks to store incoming disk blocks.

3 Solution Approach

As outlined in Section 1, the existing approaches based
on aggregate partitioning suffer from a significant limitation
related to linear relationship assumption between cache size
and hit ratio. However, this assumption is not valid: a disk
can consume blocks without increasing cache hits propor-
tionately. In this scenario, the proposed solution must track
the utilization of a block within a partition. A partition can
only consume a block if that partition can render better uti-
lization of the block. We maintain that marginal utilities of
the blocks within various partitions might be a suitable in-
dicator of the utilization of a block within a partition. We
outline a framework to calculate the marginal utility of the
blocks within a partition, and use this marginal utility to
make repartitioning decision. As illustrated in the subse-
quent subsection, the we maintain the marginal utility at the
granularity of cache segment that consists of a few cache
blocks. So, in this approach, the unit of repartitioning is a
segment.

3.1 Marginal Utility

For a cache of size n, marginal utility of the nth cache
block can be expressed as:

MU(s) = D(n − 1) − D(n),

where D(n) refers to delay experienced by the cache misses
when the cache size is n.
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Figure 1. The LRU cache is broken into seg-
ments. Marginal utility for each segment rep-
resents the number of cache hits within the
cache segment.

Maintaining marginal utility at block level leads to over-
head in terms of processing and storage space. So, we
divide a cache into segments of length ns and maintain
marginal utility for each segment. This leads to the piece-
wise estimation of the delay as a function of cache size.
Here we assume that the cache uses the LRU replacement
algorithm. Figure 1 shows the marginal utilities of the cache
segments.

While accessing a block, the cache is searched for the
block starting from the first location in the cache. If the
block hits within a segment, the marginal utility of that seg-
ment is incremented by the access time of that block.

3.2 Repartitioning

The repartitioning scheme uses the marginal utility val-
ues while making the repartitioning decision. A parti-
tion(consumer) takes a cache segment from another parti-
tion (supplier) if the cache segment can better be utilized
within the former partition. For this, a consumer should
maintain the utility of the segments that are not within the
current partition. So, a consumer should keep a ghost cache
for the segments that lie outside the current partition size.
The ghost cache doesn’t keep the cache blocks; it only
stores the block identifiers. So, the space overhead for the
ghost cache space is very low.

3.2.1 Basic Idea

Let Pi denote partition i of size si in segments (sith segment
is the last segment of partition Pi), and let P s

i refer to the
sth segment of partition Pi. At this point, partition Pi may
either consume a segment at location si + 1 or supply its
sith segment. We call the sith segment (that the partition
will supply first) the primary S-segment, and the si + 1th

j
P

P
i

i
s +1

i
s1 s +2

i

s1 j

ghost segments

s +2s +1
j j

Figure 2. Partition Pi consumes the Sjth seg-
ment (and subsequent segments) of the par-
tition Pj if those segments would render bet-
ter utility in partition Pi. Once the sjth seg-
ment is transferred to the partition Pi, this
segment becomes the si + 1th segment of
partition Pi. Now, the si + 1-th segment of
the partition Pi is loaded with the disk blocks
contained within ghost segment si + 1. Par-
tition Pj maintains a ghost segment for the
sjth segment.

segment (where a segment consumed from another partition
will be placed) the primary C-segment of partition Pi. Now,
a partition (Pi) can consume a segment from a partition j if

MU(P si+1
i ) ≥ MU(P sj

j ) + δ.

Here, δ is a threshold that should be chosen carefully. This
parameter is introduced to suppress transferring segments
from one partition to another due to instantaneous variation
in the workload. Here it should be noted that a partition can
consume not only one segment but multiple segments (from
one or more other partitions) at a time. So, this approach
can quickly adapt to the variation in workload. Moreover,
as the ghost segments (for a consumer) stores the identifiers
of the cache blocks, those blocks can be prefetched instanta-
neously from the disk. This will increase the throughput of
the disk system. Figure 2 shows this concept of transferring
a segment to the consumer. We address issue of maintaining
ghost segments at the end of this subsection.

3.2.2 Identifying Supplier and Consumers

So far we have laid out a part of the framework for repar-
titioning. One major issue that remains to be resolved is to
decide when to make this repartitioning decision. In utility
based approach the relation between a supplier and a con-
sumer stays for a very short interval. This relation may dis-
appear immediately after a repartitioning decision is made

As described in subsequent part this section, a partition can consume
or supply multiple segments at a time. Hence, the primary is introduced to
refer to the first segment to supply or consume



(i.e., one or more segments are transferred to a consumer).
So, maintaining the supplier-consumer relationship is not
conducive is this respect.

One simple approach is to take the decision at each cache
miss. But, this is prohibitive as we have to scan all the
partitions to decide whether there exists any consumer or
supplier. Moreover, a partition may consume or supply seg-
ments after a large interval of disk activity. Another ap-
proach is to make the repartitioning decision after a certain
time interval. But, this approach is also inefficient: it may
perform unnecessary repartitioning task or may repartition
at inopportune moment (e.g., partitions should have been
adjusted long before).

Based on the above observations, we propose a reparti-
tioning approach that minimizes the overhead and adjusts
two partitions whenever it is necessary. In this approach,
we try to maintain two variables max and min that refers to
the partition with the maximum and minimum MU -values
of the primary C-segment and S-segment, respectively . We
find that maintaining the value min is not feasible. So, in-
stead of the value min, we keep minV which is the min-
imum MU -value of the primary S-segment among all the
partitions.

Maintaining the variable max is simple. Upon a cache
miss on a partition, the partition:

1 adjusts the MU-values,

2 if there is any change in the MU-value of its primary C-
segment, it checks whether MU-value of its C-segment
is greater than that of the partition denoted by max,and
adjusts max accordingly.

So, the max value is set properly whenever there is miss.
And this max value always refers to the partition with the
maximum MU-value of the primary C-segment. But, the
scenario is different in case of the variable min. The vari-
able might refer to a partition that has not been accessed
for a long time interval. So, the task of setting the variable
min should be attributed to other active partition. For this,
we maintain the variable minV . Now, we try to adjust the
variable minV only when

MU(P smax+1
max ) − minV ≥ δ.

Hence, we attempt to adjust the variable minV when the
MU -value of the C-segment of the partition Pmax exceeds
the minV by the amount δ. Note that, the above is the
condition for repartitioning, but repartitioning might not be
feasible at this moment as minimum MU -value of the S-
segments among all the partitions might have been changed

It should be noted that in this scenario partitions can’t be categorized
as suppliers or consumers beforehand. The intention of maintaining max
and min is to track whether there develops any supplier-consumer rela-
tionship within the system.

i
s

i
s +1

Pi s +r
i

i
s +r+11

ghost−window

Figure 3. The rightmost ghost segment cor-
responds to the cache segment si + r. When
the partition Pi consumes a segment si + 1,
the leftmost ghost segment is allocated for
the cache segment si + r + 1. The MU -value
of the segment si + r + 1 is estimated (us-
ing a forward interpolation equation) based
on the current values in the window. Thus,
the space for the ghost window remains con-
stant.

since the variable minV is initialized. So, we first adjust
the minV value and check whether any adjustment in the
partition sizes is feasible. Thus, when a miss occurs in a
partition, we have to perform the following steps in addition
to the two steps given earlier.

3 if there is any change in MU(P smax+1
max ) (i.e., either max

refers to the current partition or max is changed) and
if MU(P smax+1

max )−minV ≥ δ, then initialize minV .
Otherwise stop.

4 if MU(P smax+1
max )−minV ≥ δ adjust the partition sizes.

3.2.3 Ghost Segments

Here, it should be noted that maintaining the ghost segments
for all the cache segments is not necessary. It might be
sufficient to maintain a few ghost segments for each par-
tition. We observe that increasing the number of ghost seg-
ments doesn’t increase the performance, and maintaining
only three ghost segments per partition renders good per-
formance. As a partition grows, there arise the need for
estimating the MU -values of a high order segment. This es-
timation can be done based on the MU -values of the ghost
segments maintained by the algorithm, using a forward in-
terpolation method. When a partition grows, low order seg-
ments of the ghost segments can be allocated to maintain
the high order ghost segments that will newly enter into the
ghost. Figure 3 shows the concept of using ghost window.



Age Bandwidth Seek time Rotation
(years) (MB/S) (ms) (ms)

0 20.0 5.30 3.00
1 14.3 5.89 3.33
2 10.2 6.54 3.69
3 7.29 7.27 4.11
4 5.21 8.08 4.56
5 3.72 8.98 5.07
6 2.66 9.97 5.63
7 1.90 11.1 6.26
8 1.36 12.3 6.96
9 0.97 13.7 7.73

10 0.69 15.2 8.59

Table 1. Aging a base disk device(IBM 9LZX):
The table shows the performance parameters
of the same base device in different genera-
tions as the disk technology improves.

4 Evaluation Environment

This section describes our methodology for evaluating
the performance of storage-aware caching. We describe our
simulator and the storage environment assumed in the sim-
ulator. In Section 5, we present the results obtained using
this simulator.

To measure the performance of storage-aware caching,
we have implemented a trace-driven simulator. This simula-
tor assumes a storage environment where a number of disks
(of varying ages) are accessed by a single client. The client
has a local cache that is partitioned across the disks. Each
partition is maintained using the LRU replacement strategy.
The focus of our investigation is to maintain the proper par-
tition size dynamically. The client issues the workload for
the disks.

The client workload that drives the simulator is captured
using a trace file. The trace file specifies the data blocks ac-
cessed at various time points. We derive the synthetic disk
traces using the PQRS algorithm proposed in [26]. This al-
gorithm is shown to generate traces that capture the spatio-
temporal burstiness and correlation in real traces [21]. We
use several traces (trace 1, trace 2 and trace 3) in evaluating
the performance of the caching schemes. Number of disk
blocks for trace 1 and trace 2 are 1,20,000 and 1,00,000, re-
spectively. Whereas, the number of requests for trace 1 and
trace 2 are 2,00,000 and 1,80,000, respectively. The size of
a disk block is taken as 8KB. Trace 3 emulates the non-
linear behavior between the cache size and hit rate. This
simple trace file contains a series of sequential scans of the
disk blocks.

Using these three trace files, we perform three sets of ex-

perimentations. In the first setting, we use only trace 1, and
apply this trace file among each of the disks. This is similar
to RAID-0 environment where a disk block is splitted across
a set of disks, and each of the disks should be accessed to
retrieve a block. In the second setting, we use only trace 2,
and feed the reference string of the trace file on the disks
in a shifted fashion. We identify equally spaced positions
within the reference string, and start to feed the reference
among the disks starting from these positions. In the sec-
ond setting, we use only trace 1, and apply this trace file
among each of the disks. This is similar to RAID-0 envi-
ronment where a disk block is splitted across a set of disks,
and each the disks should be accessed to retrieve a block.
In the third setting, we use trace 3 and trace 2. We apply
trace 3 on the slow disk, and apply trace 2 among the rest
of the disks starting from the different position as described
earlier.

We model the disk access time using only disk band-
width, average seek time, average rotational latency. Hence,
our disk model consider the worst case scenario. Device
heterogeneity is achieved by device aging. As in [9], we
consider a base device (IBM 9LZX) and age its perfor-
mance over a range of years. A collection of disks from
this set is used as the disk system in the simulator. Charac-
teristics of the disks of various ages is shown in Table 1.

5 Experimental Results

In this section, we present a series of experimental results
demonstrating the effectiveness of the proposed caching
scheme. We measure the throughput obtained at the client
side, and use it as the performance metric. This throughput
is measured by observing the delay in retrieving the disk
blocks. While measuring the delay, we consider only the
delay in cache misses. Delay experienced in cache hit is
comparatively negligible. We measure this throughput by
varying the age of the slow disk and cache size. We perform
the experimentations using three settings of the trace files as
stated in section 4. Using each of the settings, we observe
throughput varying the disk age and cache size. As the disk
system, we consider a set of four disks. To compare our re-
sults, we use two existing storage-aware caching schemes
(Forney’s scheme and continuous repartitioning scheme).
The δ-value is set to 500, and is observed to capture the
changes in the stable behavior of a disk. For the utility based
approach we maintain only three ghost segments per parti-
tion. The control values of the cache size and age of the
slow disks is set to be 250 MB and 4 years, respectively.
We set the segment size as the 2 percent of the total cache
size.

Here it should be noted that, contrary to the reference [9],
we don’t model the disk request size and don’t use the re-
quest locality to calculate the seek time and rotational la-
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Figure 4. Overall throughput of the disk sys-
tem with varying ages of the slow disk (Trace
setting 1)
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Figure 5. Overall throughput of the disk sys-
tem with varying ages of the slow disk (Trace
setting 2)

tency. In our simulation the request size is equal to the block
size. Hence, we take a pessimistic approach and assume
that one disk miss results in a delay equal to the disk access
time. Whereas in the reference [9], the delay is calculated at
the granularity of the request size by exploiting the locality
of the requests. Here, the request size is far greater than a
block size. So, these two simulation results might not be
similar.

Figure 4, Figure 5 and Figure 6 show the effect of vary-
ing the age of a disk. Here, we select a particular disk
and get the simulation data by aging the disk. As shown
in the figure, throughput decreases with the increase in the
slow disk’s age. In the first two settings the performance
of the continuous repartitioning and utility based scheme is
almost identical, the throughput of the latter slightly dom-
inating that of the former. However, performance of these
two schemes is notably higher than the Forney’s scheme.
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Figure 7. Overall throughput of the disk sys-
tem with varying cache sizes (Trace setting
1)
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Figure 9. Overall throughput of the disk sys-
tem with varying cache sizes (Trace setting
3)

Here, throughput with trace 2 is higher than that with trace
1 because of higher spatial and temporal locality. The ef-
fectiveness of the utility based scheme is evident in Fig-
ure 6. Here, the trace captures the non-linear relationship
between cache size and hit ratio, and in this scenario the
utility-based scheme attains significantly higher throughput
than other two schemes.

The effect of varying cache size on the caching schemes
is shown in Figure 7, Figure 8 and Figure 9. Here, through-
put for each of the settings increases with increase in cache
size. In the first two settings (Figure 7 and Figure 8),
the utility-based scheme performs as good as the continu-
ous repartitioning scheme. However, this scheme outper-
forms the rest of the schemes in experimental setting 3
where a trace with non-linear relationship between cache
size and hit ratio is feed onto the slow disk. Here, as the
cache size is increased, the throughput for the utility based
scheme increases rapidly. In case of continuous repartition-
ing scheme, there is only a little increase in the throughput
with the increase in cache size. On the other hand, in case of
Forney’s scheme the throughput remains almost stable with
an increase in cache size.

6 Related Work

There has been works on cost-aware caching in area of
web caching, main memory caching and database commu-
nities. We revisit the significant works in each of the areas.

Page replacement algorithms developed in the context of
CPU or file caches don’t necessarily apply to web caches.
The main reason behind this is that a CPU or file cache
stores fixed size blocks, and doesn’t take into account the
size of a document. But, a web cache uses whole document
caching, and the size of the web documents vary depending
on the type of the information they contain (video, audio,

text, etc). Moreover, there is large variation in performance
in the wide area Internet compared to the performance vari-
ation in main memory or disk storage.

In web caching, the pages can be of different sizes and
costs. Hence, the scenario is different from the uniform
caching where all pages have a uniform size and uniform
fault cost. The general caching problem is more intricate
than the uniform version.

In [12], Irani studies the special case of this general
problem considering only the pages with varying sizes.
Here, it is pointed out that Belady’s rule is no longer op-
timal if pages and costs differ. Page replacement policies
for the general caching problem is studied by Albers et
al. [1]. Here, the authors classified general caching prob-
lems into four models and proposed several approximate
solutions to the offline case of the problems. The theo-
retical computer science community has studied cost-aware
algorithms as k-server problems [17]. Cost-aware caching
falls within a restricted class of k-server problems—i.e.,
weighted caching. The Greedy-Dual (GD) algorithm [28]
introduces variable fetch costs for pages of uniform size.
The Greedy-Dual-Size(GDS) algorithm [5, 12] extends the
GD to the environment with variable object size and fetch
cost. LANDLORD [29], which is closely related to the GDS
web caching algorithm in [5], is a significant algorithm in
the literature. Page replacement algorithms developed in the
context of web caches don’t necessarily apply to storage-
aware cache. The main reason behind this is that a file cache
stores fixed size blocks, and doesn’t take into account the
size of a document. But, a web cache uses whole docu-
ment caching, and the size of the web documents vary de-
pending on the type of the information they contain (video,
audio, text, etc). Moreover, there is a large variation in per-
formance in the wide area Internet compared to the perfor-
mance variation in main memory or disk storage.

In the reference [13], the authors propose a Cost-
Sensitive OPTimal replacement algorithm (CSOPT) that
minimizes a miss cost function in a system which has two
types of miss costs: local and remote memory misses. This
work is set in the context of CC-NUMA multiprocessors
where local and remote misses have different costs due to
the large remote-to-local memory latency ratio [16, 27].
Moreover, a remote miss always consumes interconnect
bandwidth whereas a local miss can be satisfied locally.
This algorithm doesn’t always replace a block selected by
the OPT algorithm if the block has high miss cost. In-
stead, CSOPT considers keeping a high cost block in the
cache until it is referenced again. So, this algorithm tries
to save a miss on an expensive block by trading off several
misses on some cheap blocks. Hence, instead of minimiz-
ing the miss count, CSOPT minimizes the overall cost in
cache misses. The size of the search tree used by the al-
gorithm is huge which makes the algorithm unrealizable in



any practical system.

In the reference [14], the authors consider the non-
uniform miss costs among the cache blocks and propose
several extensions of LRU. The idea behind these exten-
sions is to keep (if feasible) a high cost block victimized by
LRU in the cache until its next reference and replace a block
with low replacement cost. In such a case, the victimized
block with high replacement cost is called to be in reserva-
tion. This idea of reservation is borrowed from the CSOPT
algorithm mentioned earlier. The cost of the reserved block
is deprecated over time according to various algorithms and
ultimately the reservation is released.

In the reference [8], Chu and Opderbeck propose a
method for varying the amount of physical memory avail-
able to a process. This method is based on the observa-
tion of page fault frequency. Partitioning the cache among
multiple processes has been proposed in [24]. In this ap-
proach, an associative cache is partitioned into disjoint
blocks among several processes, and the size of each parti-
tion is determined by the locality of the corresponding pro-
cesses. The cache management algorithm determines the
size of each partition, and dynamically adjusts the partition
size. The partitioning technique is based on the method pro-
posed by Stone, Wolf and Turek [23]. However, none of the
approaches consider the storage device heterogeneity.

7 Conclusion

In this paper, we identified a problem with the caching al-
gorithm in heterogeneous storage systems. A storage-aware
caching scheme based on aggregate partitioning partitions
the cache among disks. In such a scenario, supplied with
a uniform workload having non-linear relationship between
cache size and hit ratio, a slow disk may consume cache
space choking the rest of the disks. This phenomenon of
disk choking degenerates the performance of the disk sys-
tem as a whole. We proposed a framework to partition the
cache based on the utility of the cache blocks within a parti-
tion. Experimentations using a simple trace capturing the
non-linear behavior between the cache size and hit ratio
demonstrate that the utility based scheme notably outper-
forms other schemes. A strategy for caching disk blocks is
implemented by the operating system and thus affects the
performance of the computer system at a very fundamental
level. Thus even a small improvement on this score assumes
large significance. In our work we assume that a disk block
is brought into the cache only when a miss occurs, i.e., we
don’t consider prefetching. As future works we like to in-
vestigate the issue of prefetching in the heterogeneous stor-
age environment, and carry out the thorough experimenta-
tions.
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