
Distributed Aggregation Algorithms with Load-Balancing
for Scalable Grid Resource Monitoring

Min Cai and Kai Hwang

University of Southern California

Dept. of Computer Science
Los Angeles, CA 90089 USA
{mincai, kaihwang}@usc.edu

Abstract1

Scalable resource monitoring and discovery are essen-

tial to the planet-scale infrastructures such as Grids and
PlanetLab. This paper proposes a scalable Grid monitor-
ing architecture that builds distributed aggregation trees
(DAT) on a structured P2P network like Chord. By lever-
aging Chord topology and routing mechanisms, the DAT
trees are implicitly constructed from native Chord routing
paths without membership maintenance. To balance the
DAT trees, we propose a balanced routing algorithm on
Chord that dynamically selects the parent of a node from its
finger nodes by its distance to the root.

This paper shows that this balanced routing algorithm
enables the construction of almost completely balanced
DATs, when nodes are evenly distributed in the Chord
identifier space. We have evaluated the performance and
scalability of a DAT prototype implementation with up to
8192 nodes. Our experimental results show that the bal-
anced DAT scheme scales well to a large number of nodes
and corresponding aggregation trees. Without maintaining
explicit parent-child membership, it has very low overhead
during node arrival and departure. We demonstrate that
the DAT scheme performs well in Grid resource monitor-
ing.

1. Introduction

Scalable resource monitoring and discovery are essential

to the planet-scale infrastructures such as Grids[10] and
PlanetLab[5]. In these distributed environments, adminis-
trators need to continuously monitor some global system
properties for capacity planning or system diagnostics.
Users or applications need to monitor the real-time status of
resources, and to discover the appropriate ones that are of
their interests. However, resource monitoring and discov-
ery in Grids are quite challenging due to their increasing
scales. For example, the current PlanetLab consists of 706

This work was supported by NSF Grant ITR-0325409 at the
University of Southern California. Corresponding author is Kai
Hwang. Tel: 213-740-4470, and Fax: 213-740-4418.
1 1-4244-0910-1/07/$20.00 c2007 IEEE.

machines at 340 sites[5], and the planet-scale Grid will
have 100,000 CPUs in 2008[19]. P2P Grid such as the SETI
@Home[11] achieves massively distributed computing by
aggregating CPU cycles from millions of contributing
computers.

Most existing systems in Grids maintain a centralized
server [3][8][15] or a set of hierarchically organized serv-
ers[9][13] to aggregate and index resource information. For
example, R-GMA[8], GridRM[3] and CoMon[15] use a
centralized server to monitor all resource information. In
contrast, Globus MDS2[9] and Ganglia[13] employ a set of
hierarchical servers, such as LDAP-based directory server.
The centralized server might become both a bottleneck and
a single point of failure in a planet-scale environment.
Zhang et al[23] show that GIIS in MDS2 and Manager in
Hawkeye can only manage up to 100 GRIS or Agent serv-
ers. On this scale, both GIIS and GRIS need to enable data
caching with large time-to-live (TTL) values, which is not
suitable for real-time status such as CPU load. In addition,
the partitioning scheme in hierarchical systems is often
predefined and can not adapt to the dynamic change of Grid
environments. For example, if the upper level GIIS fails,
the low level GRIS needs to be manually redirected.

To overcome the above shortcomings, several peer-to-
peer (P2P) schemes, e.g. MAAN[6], NodeWiz[4] and
SWORD[14], have been proposed to index and discover
Grid resources in a structured P2P network. By using ap-
propriate routing schemes, search queries are routed to the
nodes that are responsible for indexing the corresponding
resources. Therefore, these schemes scale well to large
number of participating nodes. On the other hand, their flat
indexing structures pose a major challenge to the global
resource monitoring in Grids due to its large-scale and
decentralized nature.

Distributed aggregation is an essential building block for
global resource monitoring in large-scale Grids. By em-
ploying a distributed aggregation tree (DAT), the global
resource status can be calculated by recursively applying an
aggregate function on a subset of local status. A distributed
aggregation scheme has to meet three requirements on
scalability, adaptiveness, and load balance. First, to scale to
a large number of nodes, each aggregation should only
introduce a limited number of messages with respect to the
network size. The DAT tree should have low construction

and maintenance overhead. Second, the aggregation
scheme has to adapt to the dynamics of node arrival and
departure. Third, the aggregation workload should be dis-
tributed evenly among all nodes without any performance
bottleneck. Load balancing is thus essential for both
workload fairness and system scalability.

This paper proposes a P2P-based architecture for Grid
resource monitoring and discovery. Our scheme extends
P2P-based Grid resource discovery with DAT trees for
global resource monitoring. The DAT trees are constructed
among nodes by leveraging a structured P2P network, i.e.
Chord[18]. In DAT, all nodes use a balanced routing
scheme to build a balanced DAT tree towards the root node.
We have implemented a prototype DAT system running on
top of RPC protocol or on a discrete event simulation en-
gine. We evaluated the performance of the DAT system on
Grid resource monitoring with up to 8192 nodes.

The remainder of this paper is organized as follows:
Sec.2 describes the P2P-based Grid resource monitoring
architecture. We present the DAT construction algorithms
in Sec. 3 and a prototype implementation in Sec. 4. The
performance results of the DAT system are reported in Sec.
5. We discuss the related work in Sec. 6 and conclude this
paper in Sec. 7.

2. P2P-based Grid Monitoring Architecture

In this section, we present a scalable P2P-based Grid

monitoring architecture. This architecture leverages a
multi-attribute addressable network for indexing resources
and a distributed aggregation tree for summarizing global
resource information.

2.1. Architecture

The P-GMA architecture extends the Grid Monitoring

Architecture (GMA) proposed by the Global Grid Forum
[20] with two important components, i.e. P2P-based re-
source indexing and aggregation. Fig. 1 shows the layered
architecture of P-GMA. The seven layers in P-GMA are
sensor, producer, indexing, aggregation and consumer
layers. As suggested by Zanikolas and Sakellariou[22], a
sensor monitors the status of one or more resources and
generates events to producers. The sensor could be simply
some scripts that collect the system status from the /proc
file system. In GMA, a producer is a process that sends
events to a directory service or consumers. A producer may
also accept search queries from its local users or applica-
tions. Several systems have implemented their own pro-
ducers, such as MDS GRIS, Ganglia monitor daemon
(gmond), and Hawkeye Agent.

The key different between P-GMA and ordinary GMA is
on the design of the registry or directory service. The GMA
assumes a centralized registry or a hierarchically organized
directory service like LDAP. In contrary, P-GMA leverages

the recent research efforts on P2P-based indexing tech-
niques to index and search resource information in a scal-
able P2P network. The indexing layer of P-GMA can be
implemented by using various alternate schemes, such as
MAAN[6], NodeWiz[4], or SWORD[14]. Applications in
the consumer layer can directly search resources or monitor
their status by issuing multi-attribute range queries to any
nodes in the P2P indexing network. To monitor the global
resource status, P-GMA builds an aggregation layer on top
of the indexing layer with distributed aggregation trees. We
will discuss the details of building a balanced aggregation
tree in the rest of this paper. The consumer layer of P-GMA
includes various essential applications for Grids, such as
application scheduling, system diagnostics and capacity
planning.

Figure 1: The architecture of P2P-based Grid re-
source monitoring

2.2. Multi-Attributed Addressable Network

We have proposed a multi-attribute addressable network

called MAAN[6] to index Grid resources in a structured
P2P network like Chord. In MAAN, a Grid resource is
represented with a list of attribute-value pairs, such as
(<cpu-speed, 2.8GHz>, <memory-size, 1GB>, <cpu-usage,
95%>, ...). MAAN stores each Grid resource on the Chord
successor nodes of its attribute values. Suppose a resource
has m pairs <ai, vi> and Hi(v) is the hash function for at-
tribute ai. Each resource will be stored at node ni = suc-
cessor(H(vi)) for each attribute value vi, where 1 ≤ i ≤ m. A
registration message for attribute value vi is routed to its
successor node using the Chord successor routing algo-
rithm[18]. Thus, the routing hops for resource registration
is O(m log n) for a resource with m attributes in a network
of n nodes. Since numeric attribute values in MAAN are
mapped to the Chord identifier space by using a locality
preserving hash function H, numerically close values for
the same attribute are stored on nearby nodes. Given a
range query [l, u] where l and u are the lower bound and
upper bound respectively, nodes that contain attribute value
v∈[l, u] must have an identifier equal to or larger than

successor(H(l)) and equal to or less than successor(H(u)).
Suppose a node wants to search for a resource with at-

tribute value v∈[l, u] for attribute a. It first uses the Chord
routing algorithm to route it to node nl, the successor of H(l).
Node nl then finds its locally matched resources, and for-
wards the query to its successor if it is not the successor of
H(u), denoted by nu. Otherwise, node nu sends back the
query result to the query originator. There are total O(log n
+ k) routing hops to resolve a range query for one attribute,
where k is the number of nodes between nl and nu.
Multi-attribute range queries are resolved by using a sin-
gle-attribute dominated approach that only does 1-iteration
around the Chord identifier space. It takes O(log n + n×smin)
routing hops to resolve the query, where smin is the mini-
mum selectivity of all sub-queries.

2.3. Distributed Aggregation Tree

In P-GMA, the aggregation problem can be formulated

as follows. Consider a network of n nodes, each node i
holds a local value xi(t) ∈ X in time slot t, where 1 ≤ i ≤ n.
For a given aggregate function f: X+ → X, the goal is to
compute the aggregated value g(t) of all local values in time,
i.e. g(t) = f(x1(t), x2(t), ..., xn(t)) in a decentralized fashion.
To solve the above aggregation problem, we propose a
distributed aggregation tree (DAT) approach that builds a
tree structure implicitly from the native routing paths of
Chord. In DAT, each node applies the given aggregate
function f on the values of its child nodes, and sends the
aggregated value to its parent node. By recursively aggre-
gating the values through the tree in a bottom-up fashion,
the root node will calculate the global aggregated value
very efficiently since it only needs to collect the values
from its direct children.

However, it is challenging to build aggregation trees
explicitly by maintaining the parent-child membership [12].
First, explicit tree construction has limited scalability on a
large number of aggregation trees since the parent-child
maintenance overhead increases linearly with the number
of trees. Second, the membership overhead will be further
exaggerated when nodes dynamically join or leave the
network. Instead of maintaining explicit parent-child
membership, the DAT scheme uses the existing neighbor-
ing information of Chord to organize nodes into a tree
structure in a bottom-up fashion. When a node joins or
leaves the network, the Chord protocol will update its
neighbors automatically using the finger stabilization al-
gorithm [18]. Therefore, the DAT scheme does not have to
repair the parent-child membership and significantly re-
duces the tree maintenance overhead.

In DAT, all nodes aggregate towards the global infor-
mation with regard to a given object key called rendezvous
key. A rendezvous key is the Chord identifier of a given
aggregate index similar to the "Group By" clause in the
SQL language. The rendezvous key is determined by DAT

applications. For example, in Grid resource monitoring
systems, the aggregated global resource attributes are in-
dexed by different attribute names, e.g. CPU usage. In this
case, the rendezvous key is the SHA1 hash value of the
attribute name.

3. Load-Balancing DAT Algorithms

This section presents the design and analysis of two

DAT construction algorithms based on different Chord
routing schemes. The basic scheme builds a DAT tree from
the finger routes of all Chord nodes to a given root node. To
further balance the aggregation load among nodes, a new
balanced routing scheme is proposed in Algorithm 1 to
build more balanced DAT trees.

3.1. Structured P2P Network Model

We assume that the nodes will be self-organized into a

Chord network [18]. We model the Chord network as an
undirected graph G with n nodes. For a node v, let ID(v)
denote the unique identifier of v in a b-bit identifier space,
where ID(v) ∈ [0, 2b). In Chord, the identifier space is
structured as a cycle of 2b, and the distance between two
identifiers i1 and i2 is DIST(i1, i2) = (i1 + 2b −i2) mod 2b.
Similar to [18], we use the term node to refer to both the
node and its identifier. Chord assigns objects to nodes using
a consistent hashing scheme. For an object stored in Chord,
let k be its key in the same identifier space as nodes, i.e. k ∈
[0, 2b). Key k is assigned to the first node whose identifier is
equal to or follows k in the circular space. This node is
called the successor node of key k, denoted by successor(k).

All Chord nodes organize themselves into a ring topol-
ogy according to their identifiers in the circular space.
Besides its immediate predecessor and successor, each
node also maintains a set of finger nodes that are spaced
exponentially in the identifier space. The j-th finger of node
v, denoted by FINGER(v, j), is the first node that succeeds v
by at least 2j−1 in the identifier space, where 0 ≤ j < b. A
lookup message for key k is forwarded to its successor node
by using the finger routing scheme. Let v be the successor
node of k, and fu,v be the finger routing path (i.e. finger route)
from u to v. Suppose fu,v is of the form < w0, w1, ..., wq−1, wq
> , we have (1) w0=u, wq=v, and (2) for any 0 < i < q, wi+1 =
FINGER(wi,j), such that wi+1 ∈ (wi, k] and DIST(wi+1,k)
=min{ DIST(FINGER(wi, j), k), 0 < j ≤ b }. Since the fingers
of u are spaced exponentially in the identifier space, each
hop in the finger route covers at least half of the identifier
space (clockwise) between u and v.

3.2. Basic DAT Construction

The basic construction scheme builds a DAT tree on
Chord in a bottom-up fashion. Let k be the rendezvous key
of a given aggregation, and r be the root node of the DAT

tree for this aggregation. The successor node of k is auto-
matically selected as the root node via the same consistent
hashing scheme as Chord, i.e. r=successor(k). Since con-
sistent hashing has the advantage of mapping keys to nodes
uniformly, this root selection scheme is capable of building
multiple DAT trees in a load-balanced fashion. Besides the
automatic selection of a root node, applications still have
the flexibility of designating a given Chord node as the root
by using its identifier as the rendezvous key.

Considering a Chord network of n nodes, F is the set of
finger routes from all nodes to a given root node r. We have
F={fv,r|1 ≤ v ≤ n}, where fv,r is the finger route from v to r as
we specified in Sec. 3.2. To build a tree rooted at node r,
each node uses the next hop of its finger route towards key k
as its parent node. Intuitively, all finger routes destined to k
will implicitly build a DAT tree, called Basic DAT. Let p(v,i)
be the next hop of v in fi,r from i to r, assuming p(v,i) is
empty if v is not in fi,r or v is the last hop of fi,r. We have: (1)
for any Chord finger route fv,r= < w0,w1,...,wq > from node v
to r, we have wi ≠ wj where i ≠ j and 0 ≤ i, j ≤ q; (2) for any
node v ≠ r, the next hop of v in any finger route fi,r is the
same, where v ∈ fi,r and 1 ≤ i ≤ n.

Thus, each finger route is loop-free and each node except
r has a unique parent node. Each node v has the same next
hop p(v,i) towards r regardless of finger route fi,r. We can
simply use p(v,i) as the parent node of v to build a basic
DAT tree T(r). It is quite obvious that this scheme will
construct a DAT tree rooted at r since each finger route is
loop-free and each node except r has a unique parent node.
Figure 2 illustrates an example of constructing a basic DAT
rooted at node N0 in a Chord network of 16 nodes with 4-bit
identifiers. In Fig. 2(a), the label on each link, denoted by
FINGER(Ni, j), represents that the j-th finger node of Ni is
selected as the next hop of Ni towards the root node N0. In
this example, each finger route towards N0 from a Chord
node Ni corresponds to the path from Ni to the root in the
basic DAT. For example, the finger route from N1 to N0 is <
N1,N9, N13, N15, N0 > in Fig. 2(b), and the basic DAT has the
same path from N1 to N0 as shown in Fig.2(b). Since N0 is
the next hop of N8, N12, N14, and N15, it has four child nodes
correspondingly.

This basic DAT construction algorithm can be easily
extended to a distributed setting. Actually distributed nodes
do not need to build DAT trees explicitly. Instead, all the
nodes know its parent directly by using the Chord finger
routing; i.e., the next hop in the forwarding route is the
parent. Since Chord has a very nice stabilization algorithm
to update its fingers during node arrival and departure, the
resultant DAT tree will adapt to node dynamics accordingly.
Next, we will analysis two important properties of basic
DAT: namely the tree height and branching factor.

3.3. Analysis of Basic DAT Properties

The height and branching factor of a DAT tree are im-

portant for the scalability and load-balance of distributed
aggregation. The tree height determines the maximal
number of nodes an aggregation message must traverse
before reaching the root. The branching factor of a node is
the number of children of the node. Since each node in
basic DAT is responsible for aggregating the information
from its children, its branching factor indicates the aggre-
gation load of the node.

(a) Finger routing paths to N0 in Chord

(b) Constructed Basic DAT tree rooted at N0

 Figure 2: Basic DAT tree construction using
 Chord finger routes to N0 in a 16-node overlay.

.
In basic DAT, the tree height of is O(log n) for a network

of n nodes. This is because the tree height is equal to the
length of the longest Chord finger route, which is O(log n)
hops in a network of n nodes. From the example in Fig. 2(b),
we know that the branching factor of a node is related to the
distance between the node and the root. Let FINGER+(i, j)
denote the j-th outbound finger of node i, we have FIN-
GER+(i, j) = i +2j−1(mod 2b), where j=1,2,...,b. Symmetri-
cally, if v=FINGER+(i, j), we define i as the j-th inbound
finger of v, denoted by FINGER−(v, j). Therefore, we have
FINGER−(v, j)=v−2j−1(mod 2b). In the following proof, we
assume that all arithmetic operations on Chord node iden-
tifiers are modulo operations of 2b.

For a given node i, let PARENT(i) be the outbound finger

of i that most closely precedes r. The children of i must be a
subset of its inbound fingers. Not all inbound fingers of i
will choose i as their parents since they may have other
outbound fingers that are more close to r. Suppose node r is
the root node, and B(i, n) is the branching factor of node i in
a basic DAT with n nodes. We consider n=2b and with
index i=0,1,2,...,2b−1. As shown in Fig. 3(a), the identifier
space is divided into four disjoint intervals: (i) (, 2]jr i − , (ii)
(2 , 2]j ji r− − , (iii) (2 ,)jr i− , and (iv) [i, r], where j=⎡log2
(d+1)⎤. Fig. 3(b) identifies the parents of nodes in interval
(i), (ii), and (iii). Consider a basic DAT tree in which n
nodes are evenly distributed in identifier space, the
branching factor of node i is computed as follows: B(i, n) =
log2 n − ⎡log2 (d / d0 + 1)⎤, where d=DIST(i, r) and d0 is the
distance between any two adjacent nodes.

(a) Four disjoint intervals of the Chord ID space

(b) Parent fingers of nodes in (i), (ii), and (iii)

Figure 3: Illustration of the parent fingers of
nodes in different identifier spaces

The rigorous mathematical proof of this theorem is quite

involved, details are given in our technical report [10]. We
sketch the proof in two cases: (1) 1< d < 2b−1, and (2) 2b−1 ≤
d <2b. For case (2), B(i, n) = log2(n) − ⎡log2(d+1)⎤ = 0. For
case (1), the children of i are its inbound fingers in

(, 2]jr i − , where j = ⎡log2 (d+1)⎤. Thus, for case (2), node i
has B(i, n) = log2 n − j = log2 n − ⎡log2(d +1)⎤ children.
When n < 2b, we shrink the key space by a factor of d0=n/2b
to yield B(i,n)=log2(n) −⎡log2(d/d0 + 1)⎤. Thus, The
branching factor of a basic DAT is not the same for all
nodes. For example, the root node has the maximal
branching factor of log2(n). However, the minimal
branching factor of non-leaf nodes is 1 for nodes in the
interval of [r−nd0/4, r−nd0/2). Thus, the basic DAT is not
balanced and some nodes need to aggregate information
from many more child nodes than others. This prompts us
to build more balance DAT trees.

3.4. Balanced DAT Construction

The imbalance of the basic DATs is due to the greedy

strategy applied in the Chord finger routing algorithm. A
Chord node always forwards a message to the closest pre-
ceding node in its finger table. For example, the node N8 in
Fig.2 forwards its update to the node N0 directly, using the
finger 23 away in the identifier space from itself. To build a
balanced DAT with a constant number of branches, we
propose a balanced routing scheme to construct the routing
paths from all nodes to a given root node.

 Instead of selecting a parent finger from the entire finger
table, node i only considers a subset of fingers that are at
most 2g(x) away from i, where g(x) is a function of the
clockwise distance x between i and the root r in the identi-
fier space. We call g(x) the finger limiting function of node i.
In Fig. 4, the solid arrows represent the fingers that could be
used as a parent finger of i in the balanced routing scheme.
The dashed arrow represents the parent finger that other-
wise would be used by the ordinary finger routing scheme.

Next, we derive a function g(x) such that all balanced
routing paths (i.e. balanced routes) to r will build a bal-
anced DAT tree with a constant branching factor, given
nodes are evenly distributed in the identifier space. Intui-
tively, any given node i should have at most two contiguous
inbound fingers that will use i as their parent fingers to r.
For the ease of exposition, we will also assume that n=2b
and i=0,1,2,...,2b−1. Let d=DIST(i, r), and j=⎡log2(d+2)⎤.
Suppose node u and v are the j-th and j+1-th inbound fin-
gers of i respectively. The whole space can be divided into
four disjoint intervals: (i) (r, i−2j), (ii) [i−2j, i−2j−1], (iii)
(i−2j−1, i], and (iv) (i, r] as shown in Fig. 4(b).

To have a constant branching factor for each node, we
will let u and v be the only two child nodes of a given node
i. Therefore, the inbound fingers of i in interval (i) and (iii)
must not use i as their next hop to r. For node v, we have

2log (2)

2

(2) 2
() log (2)

djx r i d
g x j d

+⎡ ⎤⎢ ⎥⎧ = − − = +⎪
⎨

= = +⎡ ⎤⎪ ⎢ ⎥⎩
 (1)

(a) Finger subset intervals

(b) Parent fingers of nodes in 4 intervals

Figure 4: Subset of fingers used in balanced
Chord routing scheme

Solving the above equation, we have g(x)=

⎡log2((x+2)/3)⎤. In Sec. 4.2, we will show that each node
has at most two children, i.e. the j-th and j+1-th inbound
fingers. When n < 2b, we shrink the identifier space by a
factor of d0=n/2b since nodes are evenly distributed.
Therefore, g(x)=⎡log2((x+2d0)/3)⎤, where d0 is the distance
between two adjacent nodes. Algorithm 2 specifies the
construction of a balanced DAT.

Algorithm 1 Balanced DAT Construction
1: INPUT: rendezvous key k, finger table FINGER(i, j)

of each node i, where i=1,2,...,n, and
 j=0,1,...,b-1.

2: OUTPUT: a balanced DAT tree T rooted at node
r=successor(k)

3: d0 ← average distance between two adjacent nodes
4: for i←1 to n do
5: if DIST(k, i) < DIST(PRED(i), i) then
6: ROOT(T) ← i
7: endif
8: x ← DIST(i, k)
9: max ← ⎡log2((x+2d0)/3)⎤
10: for j←max downto 0 do
11: if DIST(i, FINGER(i, j)) ≤ DIST(i, k) then
12: PARENT(i) ← FINGER(i, j)
13: endif
14: endfor
15: endfor

Figure 5(a, b) demonstrate this balanced routing scheme

and the almost balanced DAT tree. In Fig. 5(a), node N8
only selects the closest preceding finger from the fingers

that are at most 22 hops away from itself, since x=0−8 mod
24=8, and g(x) = ⎡log2(8 + 2)/3⎤ = 2. Therefore, node N1
now is the next hop of N8, while node N0 was its next hop in
Fig. 2(a) when the ordinary finger routing algorithm was
used. The routing of all other nodes remain unchanged and
the balanced DAT tree is balanced with a maximum
branching factor of 2 as shown in Fig. 5(b).

(a) Balanced routing paths to N0

(b) Balanced DAT tree rooted at N0

Figure 5: Building a balanced DAT trees by using
the balanced routing scheme

3.5. Analysis of Balanced DAT Properties

We now analyze the branching factor and tree height of

balanced DAT. When all nodes are evenly distributed in the
identifier space, we show that the resulting DAT from
balanced routing is indeed a well balanced tree with
maximum branching factor of 2. Consider a balanced DAT
tree with evenly distributed node identifiers, its tree height
is at most log2(n) for n nodes. As shown in Fig. 4(b), node u
is the closest child to i and DIST(u, i) = 12 j− . We prove
DIST(u,i)≥ d in the following two cases: (a) d=2k, and (b)
d=2k−1, where k=0,1,...,2b−1. When d=2k, DIST(u,i) =

2log (2) 12 d + −⎡ ⎤⎢ ⎥ = 2k = d. Similarly, when d = 2k−1, DIST(u,i) =
2log (2) 12 d + −⎡ ⎤⎢ ⎥ = 2k = d+1 > d. Since the distance between i

and its child is at least the same as the distance between i
and r, the length of any balanced routing path is at most
log2(n) in a network of n nodes. Therefore, the tree height of
balanced DAT is at most log2(n) as well.

For any given node i, only its j-th and j+1-th inbound
finger in (r,i) are the children of i in a balanced DAT. We
discuss the following four cases:
(1) ∀w ∈ (r, i−2j), we have i ≠ PARENT(w) since w+2j < i;
(2) ∀w ∈ (i−2j−1, i), we have i ≠ PARENT(w) since w+2j−1

∈ (i,r);
(3) w=i−2j−1, we have i =PARENT(w) since 1(2)jg d −+ =

2log (2) 1
2log ((2 2) / 3)dd + −⎡ ⎤⎢ ⎥⎡ ⎤+ +⎢ ⎥

=
2log (2) 1d + −⎡ ⎤⎢ ⎥ =j-1;

(4) w=i−2j, we have i=PARENT(w) since (2)jg d + =
2log (2)

2log ((2 2) / 3)dd +⎡ ⎤⎢ ⎥⎡ ⎤+ +⎢ ⎥
 = 2log (2)d +⎡ ⎤⎢ ⎥ = j .

In addition, a DAT must be a balanced tree if its tree
height is log2(n) and the branching factor is at most 2. For
any given node i, its left sub-tree should have at most one
more node than its right sub-tree, and vice versa. Otherwise,
the overall tree height will be more than log2(n) for a tree of
n nodes since the branching factor is at most 2.

Thus, if the ranges between two immediately adjacent
nodes are the same, the balanced routing scheme will lead
to a balanced DAT tree. However, if the interval of a ran-
domly selected node is split as that in Chord, the ranges will
not be uniformly distributed [1]. The ratio of the maximal
and minimal ranges is O(log n), where n is the network size.
To ensure the ranges among nodes distributed uniformly,
Adler et al[1] proposed an identifier probing approach in
which each joining node probes O(log n) neighbors of a
randomly selected node and splits the one with the maximal
interval. The ratio of the maximal and minimal ranges in
this approach is bounded by a constant factor. Our simula-
tion results in Sec. 6.2 show that with node identifier
probing, the maximal branches in the balanced DAT will be
a constant as well.

4. DAT Prototype Implementation

Based on the above DAT construction algorithms, we

implemented a prototype system of DAT, called libdat, in C
language on both Linux and FreeBSD. Next, we will de-
scribe the architecture of our DAT implementation, and
detailed mechanisms on identifier probing and aggregation
synchronization. Fig. 6 shows the implementation archi-
tecture of our DAT prototype. In this implementation, each
DAT node consists of three layers, i.e. RPC, Chord and
DAT layers. The RPC layer implements the low-level
mechanisms of remote procedure call for the communica-
tion among distributed nodes. A RPC manager module is
implemented ar the socket-level to send and receive UDP
packets. To simplify the testing and evaluation of our DAT
prototype, we also implemented a discrete event simulation
engine that provides the same interface to the Chord and

DAT layers. A heap-based event queue is used to insert and
fire those events in a chronological order. Without modi-
fying the upper layers, the simulator can be used to evaluate
the performance of libdat with large number of nodes as we
show in Sec. 5.

Figure 6: DAT Implementation Architecture

The Chord layer extends the original Chord protocols

with extensions on identifier probing and maintaining extra
information about fingers. It consists of three components,
i.e. Chord procedures, finger table and finger stabilization.
Each node keeps not only the information of its direct fin-
gers, but also the information of its fingers of finger (FOF).
When a node joins the network, it first sends a join request
with a random identifier to a well-known node. Then the
request is forwarded to the successor of the random identi-
fier. The successor splits the maximal interval of its fingers
and returns the designated node identifier to the joining
node. Finally the node uses the same node join operation as
in Chord [18] to join the network.

The DAT layer implements both on-demand and con-
tinuous aggregate modes for different aggregation func-
tions. It leverages the three underlying Chord routines, i.e.
route, broadcast and upcall. To support multiple DAT trees
simultaneously, each DAT node also maintains an aggre-
gation table that keeps track of the current active DAT trees
as shown in Fig. 6. When a node initializes an aggregate for
a given rendezvous key, it adds a new entry in the aggre-
gation table for this aggregate, and computes its child nodes
based on the information in the Chord finger table.

5. Experimental Results

In this section, we measure the performance and scal-

ability of our DAT prototype system with three metrics,

including tree properties, message overhead, and effects of
load balancing.

5.1. Experiment Setup

To faithfully evaluate the DAT system at different scales,

we have implemented a UDP-based RPC module as well as
a discrete event simulator. We deployed the DAT system in
an 8-node cluster at the USC Internet and Grid Computing
Lab. The cluster nodes are dual Xeon 3.0 GHz processors
with 2 gigabytes of memory running Linux kernel 2.6.9 and
connected via a 1-Gigabit Ethernet switch. We ran up to 64
DAT instances on each machine to create a network of 512
nodes. For larger networks up to 8192 nodes, we ran the
DAT prototype in the event-driven simulator. Note that
both RPC-based and simulator-based setups use the same
Chord and DAT layers. They indeed have the consistent
results for the metrics we measured in this section.

5.2. Measured DAT Tree Properties

We examine the DAT tree properties with various net-

work sizes from 16 to 8192. We studied three different
properties of DAT trees, i.e. maximum and average
branching factors. Fig. 5(a) shows the maximal branching
factor as a function of network size for both basic and bal-
anced DATs. The maximal branching factor of the basic
DAT increases on a log scale with the number of nodes.
Note that the network size is in log scale. When probing is
used to balance node identifiers, the maximal branching
factor decreases significantly, e.g. 16 vs. 43 for 8192 nodes.
However, it still increases on a log scale with network size.
In contrast, the maximal branching factor of balanced DAT
is almost a constant of 4 when node identifiers are uni-
formly distributed by probing O(log n) neighbors. However,
without identifier probing, balanced DAT trees still have
the maximal branching factor that increases on a log scale.
This is due to the ratio of the maximal and minimal ranges
between adjacent nodes is O(log n) when node identifies
are randomly chosen.

Figure 5(b) shows that the average branching factors of
balanced DAT are constant as the network size increases.
When identifier probing is used, two DAT trees have al-
most the same constant average branching factor of 2.
However, they increase to 3 and 3.2 respectively if there is
no identifier probing, although they remain constant as
network size increases.

5.3. Effects of Load Balancing

Besides the average message overhead per node, the

distribution of aggregation messages among nodes is an-
other important metric to evaluate the performance of the
DAT system. Apparently, the evener the messages are
distributed among nodes, the better the aggregation process

is load balanced. Fig. 9(a) plots the distributions of aggre-
gation message in a network of 512 nodes for three dif-
ferent schemes. In this figure, the DAT nodes are sorted in
the descending order of the number of aggregation mes-
sages. We define node rank as the position of a node in this
sorted node list. As shown in Fig. 8(a), the message dis-
tribution of the centralized scheme without DAT is quite
skewed. Note that the y-axis is in a log-scale. For example,
the root node is the most loaded one with 511 aggregation
messages, which is almost the same as the total number of
nodes in the network. This is because each node in the
network except the root node itself must send their local
values to the root node directly. In addition, the closer a
node precedes the root node in the Chord identifier space,
the more aggregation messages it has to forward for other
nodes due to the nature of the Chord finger routing algo-
rithm.

(a) Maximum branching factor vs. network size.

(b) Average branching factor vs. network size

Figure 7: Comparison of tree properties for dif-
ferent DAT schemes

In contrast, distributed aggregation in the network with

DAT trees significantly reduces the imbalanced load at the
root monitor. Each intermediate node in the DAT tree only
processes the aggregation messages from its direct children
instead of every node in the sub-tree. For example, the most
loaded nodes in basic and balanced DATs have only 24 and
4 messages respectively. Since basic DAT is not a balanced
aggregation tree, the root has more children than other
nodes. Therefore, the distribution of message overhead in

basic DAT is still more skewed than that in balanced DAT.

(a) Distribution of aggregation messages among nodes

(b) Imbalance of aggregation messages vs. network size

Figure 8: Comparison of load balance for cen-
tralized, basic and balanced DAT schemes

We define the imbalance factor of message overhead as

the ratio between the maximum and average number of
aggregation messages on each node. The aggregation is
well balanced if the imbalance factor is close to 1. Fig. 8(b)
shows the imbalance factor as a function of the network
size varying from 100 to 1000 for three difference aggre-
gation schemes. The imbalance factor of the centralized
scheme increases almost linearly with the network size
since the root node has to process O(n) aggregation mes-
sages. The imbalance factor of the basic DAT only in-
creases on a log-scale with the network size. For example,
the imbalance factors are 4.2 and 8.5 for the networks of
100 and 1000 nodes respectively. The balanced DAT has an
almost constant imbalance factor under different network
sizes, e.g. 1.9 and 2.0 for 100 and 1000 nodes respectively.
This further validates our theoretical analysis of the DAT
tree properties in Sec. 4.2 and Sec. 4.4.

5.4. Accuracy of Grid Resource Monitoring

Figure 9 illustrates an example of aggregating the global

average CPU usage in a simulated Grid with 512 nodes. We
collected a 2-hour long trace of the CPU usages on an
8-processor Sun Fire v880 server at USC. We then simu-
lated a Grid with 512 nodes, and each node has the same

CPU usage as in the trace. Fig. 9(a) plots the total CPU
usages over the time period of 2 hours. The solid and dotted
lines show the actual and aggregated usages respectively.
Fig. 9(b) plots the actual vs. aggregated CPU usages where
the solid line shows the equality. As most points are clus-
tered around the diagonal, our DAT scheme achieves a very
accurate aggregation of the global CPU usages.

(a) Aggregated total CPU usage in a time period of 2 hours

(b) Aggregated vs. actual total CPU usage

Figure 9: Aggregated CPU usage in 2 hours for a
simulated Grid with 512 nodes

6. Related Work

Many Grid resource monitoring and discovery systems

[3][4][6][8][9][13][14][15] are related to our research.
Zanikolas and Skellariou[22] has surveyed these systems in
a scope-oriented taxonomy with great details. Due to the
limited space, we will not discuss them in this paper.

Our work on DAT is related to several previous research
efforts on aggregating the global information in distributed
systems. Astrolabe [16] provides a DNS-like distributed
management service by grouping nodes into
non-overlapping zones and specifying a tree structure of
zones. Several aggregation schemes have been proposed to
leverage the topology information of structured P2P net-
works [2][12][17][24]. SOMO[24] offers an information
gathering and disseminating infrastructure on top of arbi-
trary DHTs. The SOMO tree is built by recursively dividing
the DHT identifier space into disjoint regions and assigning
each region to a DHT node. DASIS[2] and Willow[17] use

a similar scheme to build a single aggregation tree on hy-
percube-based DHTs, such as Pastry. By aggregating the
depth information, DASIS improves the node joining al-
gorithm for better load balance[2].

Li et al [12] build an aggregation tree by mapping nodes
to their parents in the tree with a parent function. By ad-
justing parameters in a parent function, their approach can
build multiple interior-node-disjoint trees to tolerate single
points of failure. SDIMS[21] is the most closely related
project to our work. In SDIMS, each attribute is hashed on
to a key and corresponding aggregation tree is built from
Plaxton routes to the key. The aggregation trees in SDIMS
are similar to the basic DATs built from Chord finger routes.
Our work focuses more on the construction algorithms of
more balanced aggregation trees.

7. Conclusions

We have presented the DAT algorithms, prototype im-

plementation, performance evaluation and application on
P2P-based Grid resource monitoring. Our work extends
previous methods for distributed information aggregation.
Summarized below are four major contributions: (1) We
proposed a P2P-based architecture for scalable Grid re-
source monitoring and discovery; (2) A balanced DAT
scheme is developed on Chord overlays to aggregate the
global information in an efficient and load-balanced fash-
ion. (3) The prototype DAT has been successfully evalu-
ated with good tree properties, message overheads, and load
balancing. (4) We demonstrate that the DAT scheme per-
forms well in Grid resource monitoring and other applica-
tions.

For continuing efforts, we suggest to investigate the
performance of DAT under extreme node dynamics. For
example, it would be meaningful to test the DAT prototype
system through benchmark experiments in a wide-area
environments such as the PlanetLab or the DETER testbed.
With the introduction of scalable aggregation schemes,
many killer applications are now enabled to explore dis-
tributed resources in P2P and Grid computing systems.

References

[1] M. Adler, E. Halperin, R. M. Karp, and V. V. Vazirani, "A

Stochastic Process on the Hypercube With Applications to
Peer-to-Peer Networks," Proc. of the 35th STOC, June 2003.

[2] K. Albrecht, R. Arnold, M. Gahwiler, and R. Wattenhofer,
"Aggregating Information in Peer-to-Peer Systems for Im-
proved Join and Leave," Proc. of the 4th Int'l Conf. on
Peer-to-Peer Computing, 2004.

[3] M.A. Baker, G.C. Smith, "GridRM: An Extensible Resource
Monitoring System", Proc. of the IEEE International Cluster
Computing Conference, 1–4 December 2003, pp. 207–214.

[4] S. Basu, S. Banerjee, P. Sharma, and S.-J. Lee, " NodeWiz:
Peer-to-Peer Resource Discovery for Grids", Proc. of Cluster
Computing and the Grid (CCGrid), 2005,

[5] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S.
Muir, L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzo-
niak, "Operating System Support for Planetary-Scale Net-
work Services", Proc. of the 1st Symp. on Networked Systems
Design and Implementation (NSDI), 2004.

[6] M. Cai, M. Frank, J. Chen, and P. Szekely, "MAAN: A Mu-
lit-Attribute Addressable Network for Grid Information Ser-
vices," Journal of Grid Computing, no. 1, pp. 3-14, 2004.

[7] M. Cai, K. Hwang, “Distributed Aggregation Schemes for
Scalable Peer-to-Peer and Grid Computing", submitted to
IEEE Trans. on Parallel and Distributed Systems, Sept,2006.

[8] A. W. Cooke et al., "The Relational Grid Monitoring Archi-
tecture: Mediating Information about the Grid", Journal of
Grid Computing, vol. 2, no. 4, December 2004.

[9] S. Czajkowski, K. Fitzgerald, I. Foster, C. Kesselman, "Grid
Information Services for Distributed Resource Sharing",
Proc. of HPDC, 2001..

[10] I. Foster and C. Kesselman, "Globus: A Metacomputing
Infrastructure Toolkit," The Int'l Journal of Supercomputer
Applications and High Performance Computing, 11(2), 1997.

[11] E. Korpela, D. Werthimer, D. Anderson, J. Cobb and M.
Lebofsky. "SETI@Home - Massively Distributed Computing
for SETI", Computing in Science & Engineering, Jan. 2001.

[12] J. Li, K. Sollins, and D.-Y. Lim, "Implementing Aggregation
and Broadcast over Distributed Hash Tables," SIGCOMM
Computer and Communication Review, vol. 35, no. 1, 2005.

[13] M.L. Massie, B.N. Chun, D.E. Culler, "Ganglia Distributed
Monitoring System: Design, Implementation, and Experi-
ence", Parallel Computing, vol. 30, 2004, pp. 817–840.

[14] D. Oppenheimer, J. Albrecht, D. Patterson and A. Vahdat.
"Design and Implementation Tradeoffs for Wide-Area Re-
source Discovery". Proc. of HPDC, July 2005.

[15] KyoungSoo Park and Vivek S. Pai, "CoMon: A
Mostly-Scalable Monitoring System for Planetlab", Operat-
ing Systems Review, Vol 40, No 1, Jan 2006.

[16] R. V. Renesse, K. P. Birman, and W. Vogels, "Astrolabe: A
Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining," ACM Trans-
action on Computer Systems, 21(2), pp. 164-206, 2003.

[17] R. V. Renesse and A. Bozdog, "Willow: DHT, Aggregation,
and Publish/Subscribe in One Protocol," Proc. of the Int’l
Workshop on Peer-to-Peer Systems (IPTPS '04), Feb. 2004.

[18] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, "Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications," Proc.of SIGCOMM, 2001.

[19] P. Thibodeau, “Planet-Scale grid,” ComputerWorld, October
10, 2005.

[20] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany,
V.Taylor, R. Wolski, "A Grid Monitoring Architecture",
GWDPerf-16–3, Global Grid Forum, August 2002.

[21] P. Yalagandula and M. Dahlin, "A Scalable Distributed
Information Management System," SIGCOMM, 2004.

[22] S. Zanikolas, R. Sakellariou, "A Taxonomy of Grid Moni-
toring Systems", Future Generation Computer Systems, vol.
21, 2005, pp. 163-188.

[23] X. Zhang, J. Freschl, and J. M. Schopf, "A Performance
Study of Monitoring and Information Services for Distrib-
uted Systems," Proc. of HPDC, 2003.

[24] Z. Zhang, S.-M. Shi, and J. Zhu, "SOMO: Self-organized
Metadata Overlay for Resource Management in P2P DHT,"
in Proc. of the Int'l Workshop on Peer-to-Peer Systems, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /FelixTitlingMT
 /FencesPlain
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MSHei
 /MS-Mincho
 /MS-PGothic
 /MS-PMincho
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

