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Abstract

Our goal is to save energy in wireless sensor networks
(WSNs) by periodic duty-cycling of sensor nodes. We sched-
ule sensor nodes between active (transmit or receive) and
sleep modes while bounding packet latency in the presence
of collisions. In order to support a dynamic WSN topology,
we focus on topology-transparent approaches to schedul-
ing; these are independent of detailed topology informa-
tion. Much work has been done on topology-transparent
scheduling in which all nodes are active. In this work, we
examine the connection between topology-transparent duty-
cycling and such non-sleeping schedules. This suggests a
way to construct topology-transparent duty-cycling sched-
ules. We analyse the performance of topology-transparent
schedules with a focus on throughput in the worst case.
A construction of topology-transparent duty-cycling sched-
ules based on a topology-transparent non-sleeping schedule
is proposed. The constructed schedule achieves the maxi-
mum average throughput in the worst case if the given non-
sleeping schedule satisfies certain properties.

1 Introduction

Wireless sensor networking has been a growing research
area for the last years. It has a wide range of poten-
tial applications, such as environment monitoring, smart
spaces, medical systems and robotic exploration. In sen-
sor networks, sensor nodes are normally battery-operated
and energy efficiency has become one of the most im-
portant constraints on sensor networks [1, 12]. Studies
have identified that idle listening is a significant consumer
of power [17, 14, 24, 21, 26, 15]. Previous works (e.g.,
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[24, 25, 4, 15]) show that, in networks where the traffic load
is light most of the time, energy efficiency can be achieved
by periodic duty cycling of sensor nodes, that is, scheduling
sensor nodes between active and sleep mode.

An efficient synchronization mechanism is required by
most duty cycling schemes (e.g., [24, 15]). Compared to
a TDMA scheme, duty cycling schemes require a much
looser synchronization. This low precision requirement en-
ables us to save energy by reducing message exchanges for
synchronization. Efficient synchronization protocols have
been proposed for sensor networks (e.g., [8, 11, 20, 23, 10]);
in particular, works have been done on synchronization for
duty cycling (e.g., [23, 10]). In this work, we assume an ef-
ficient synchronization scheme is available and we describe
system behavior in terms of time slots.

Although light traffic networks are the scenarios for
which duty cycling schemes are primarily considered, it
does not mean collision is no longer a concern. Consider
a network in which each node is scheduled to be awake
in one of k slots. Since a node has to wait until the re-
ceiver wakes up before it can forward the packet, transmis-
sions from neighbors, which were distributed in k slots, now
happen in one slot, making a collision very likely. In this
work, we aim to save energy by scheduling periodic nodes’
duty cycles while preserving communication connectivity
and bounding packet latency in the presence of collisions.

In order to handle dynamic topology, we focus on
topology-transparent approaches that are independent of
topology changes. Given a set of networks N , we say a
schedule is topology-transparent with respect to N if, for
any network in N , it allows each node to transmit with-
out collisions to each neighbor node infinitely often; the
range of N represents the level of transparency. Such an
approach tolerates topology changes since for every possi-
ble topology, given the same topology-transparent schedule,
connectivity of each link is guaranteed. As existing works
on topology-transparent schedules [2, 13, 3, 6], our work
focuses on topology-transparency in networks where the
number of nodes and node degrees are no more than given



bounds. Research has been done on topology-transparent
schedules where no node is scheduled to sleep [2, 13, 3];
we refer to such schedules as non-sleeping schedules.

In this work, we consider duty cycling of sensor nodes
which aims to save energy by switching nodes between ac-
tive and sleep mode. Letting αT and αR be parameters that
capture applications’ requirement on energy efficiency, we
focus on schedules in which the number of nodes that are al-
lowed to transmit (receive resp.) per slot is no more than αT

(αR resp.); we call such a schedule an (αT , αR)-schedule.
Such schedules have been considered in [6], where the
requirements on topology-transparent (αT , αR)-schedules
are described by a general combinatorial model and a graph
construction algorithm is examined with the focus on a spe-
cial type of schedules in which the number of nodes trans-
mitting and receiving per slot are equal. Different from [6],
our work focuses on general schedules and has three main
contributions.

First, we examine in section 4 the connection between
topology-transparent (αT , αR)-schedules and non-sleeping
schedules. Our analysis indicates that, given bounds on
the number of nodes and node degrees, a necessary con-
dition for the existence of a topology-transparent (αT , αR)-
schedule, for any αT and αR, is the existence of a topology-
transparent non-sleeping schedule; furthermore, any con-
struction of a topology-transparent (αT , αR)-schedule in-
volves the construction of a topology-transparent non-
sleeping schedule.

Secondly, we present our analyses in section 5 on sched-
ules’ performance; as most works on topology-transparent
schedules (e.g., [13, 3]), we consider throughput in the
worst case, that is, each node has the maximum degree
and each neighbor has a packet to transmit. We show that
the average throughput in the worst case only depends on
the number of nodes that are allowed to transmit and re-
ceive per slot. An upper bound on the average throughput,
together with the optimal numbers of transmitters and re-
ceivers per slot to achieve this upper bound, is given for
both general schedules and (αT , αR)-schedules for given
αT and αR. Our analyses indicate that a necessary condi-
tion for the existence of a topology-transparent (αT , αR)-
schedule to achieve this upper bound is the existence of a
topology-transparent non-sleeping schedule that has certain
properties.

Thirdly, we investigate in section 6 whether a topology-
transparent non-sleeping schedule (that has the appropri-
ate properties) can be converted to a topology-transparent
(αT , αR)-schedule (that has good performance). This is
motivated by our observation in sections 4 and 5 that a nec-
essary condition of the existence of a topology-transparent
(αT , αR)-schedule (that has good performance) is the ex-
istence of a non-sleeping topology-transparent schedule
(that satisfies certain properties), and any construction of a

topology-transparent (αT , αR)-schedule involves the con-
struction of a topology-transparent non-sleeping schedule.
Our answer to this question is positive and we present a con-
struction of an (αT , αR)-schedule based on a non-sleeping
schedule. Such a conversion is feasible since much work
has been done on the construction of topology-transparent
non-sleeping schedules (e.g. [2, 13, 22, 3]), and it has
been pointed out in [22, 3] that topology-transparent non-
sleeping schedules can be constructed by cover-free fam-
ilies, which have been well investigated by numerous re-
searchers (e.g., [9, 7, 16, 19, 18, 5]).

Our construction is very straightforward and it shows
good properties. We prove that given any topology-
transparent non-sleeping schedule, a topology-transparent
(αT , αR)-schedule can be constructed by our approach for
any αT and αR. The performance of the constructed sched-
ule depends on the number of transmitters per slot in the
non-sleeping schedule — given n and D, the constructed
schedule is optimal in terms of average worst-case through-
put if the number of transmitters per slot in the non-sleeping
schedule is at least min{αT ,

⌈
n−D

D

⌉
}, otherwise the larger

is the minimum number of transmitters per slot, the better
average throughput can be achieved. We also give a lower
bound on the minimum throughput.

2 Related work

Research has been done on topology-transparent non-
sleeping schedules [2, 13, 22, 3]. These works aim to guar-
antee communication between any pair of adjacent nodes in
the presence of collisions. It is pointed out in [22, 3] that
topology-transparent non-sleeping schedules can be con-
structed by a cover-free family, and the constructions in
[2, 13] are indeed to construct a cover-free family using
an orthogonal array. Cover-free families were first intro-
duced in [9] and have been considered in different subjects
such as information theory, combinatorics and group test-
ing by numerous researchers (e.g., [7, 16, 19, 18, 5]). All
these research results provide a strong base for the con-
struction of a topology-transparent duty cycling based on
a topology-transparent non-sleeping schedule. The details
of how to construct non-sleeping schedules and cover-free
families are out of the scope of this paper; see [3, 5] for
more information.

Topology-transparent duty cycling which aims to
achieve energy efficiency by scheduling nodes to sleep was
first considered in [6], in which a general combinatorial
model is described. In [6], a graph construction algorithm
is examined with the focus on a special type of schedules in
which the number of nodes transmitting and receiving per
slot are equal. Note such schedules are optimal when the
cost to transmit and receive are the same order of magni-
tude; furthermore, the number of interferences is bounded



in the constructed schedules. In this work, we focus on gen-
eral cases and a different construction is considered.

Throughput in the worst case has been investigated in
[13, 3] for topology-transparent non-sleeping schedules that
are constructed in certain ways. The focus in [13] is on
schedules constructed using polynomial functions of degree
k mod p; note polynomial function is only one of the stan-
dard constructions of cover-free family based on orthog-
onal arrays. The focus in [3] are on schedules based on
cover-free families constructed from orthogonal arrays and
Steiner systems. Different from these works, we consider
throughput for general schedules; by saying general sched-
ules, we mean there is no constraint on how schedules are
constructed, schedules can be topology-transparent or not,
and schedules can be non-sleeping or not.

3 System model

We assume time is structured into discrete units called
slots. A schedule of node activities is represented by a pair
〈T, R〉, where T and R are two disjoint arrays with the same
length, say L, such that ∀i ∈ [0, L − 1], T [i] ⊆ V and
R[i] ⊆ V ; T [i] and R[i] are the sets of nodes that are el-
igible to transmit and receive respectively in slots i + Ll,
l = 0, 1, . . ., while other nodes turn off their radio and stay
in sleep mode. We say T is the transmission schedule and
R is the reception schedule. We call the L continuous slots
lL, lL + 1, . . . , lL + L − 1, ∀l ≥ 0, a frame, and L is the
frame length. Given a schedule 〈T, R〉 and a node x, we
denote the set of slots in which x is allowed to transmit and
receive by tran〈T,R〉(x) = {i ∈ [0, L − 1]|x ∈ T [i]} and
recv〈T,R〉(x) = {i ∈ [0, L− 1]|x ∈ R[i]} respectively. The
subscript 〈T, R〉 is omitted when it is clear from context.

In this work, our goal is to design a schedule of nodes’
activities where nodes are put into sleep mode to meet appli-
cations’ requirement on energy saving. We use two param-
eters αT and αR to describe applications’ requirement on
energy efficiency: the maximum number of nodes that are
allowed to transmit and receive per slot are no more than
αT and αR respectively. Given αT and αR, we aim to de-
sign a schedule 〈T, R〉 that has the desirable property, that
is, ∀i ∈ [0, L − 1], |T [i]| ≤ αT and |R[i]| ≤ αR, where
L = |T | = |R|; we call such a schedule an (αT , αR)-
schedule. We say a schedule 〈T, R〉 is a non-sleeping sched-
ule if all nodes are active in each slot, that is, ∀i ∈ [0, L−1],
T [i] ∪ R[i] = V . Since such a schedule can be completely
decided by T , we abbreviate the representation 〈T, R〉 to
〈T 〉.

Our focus is on topology-transparent scheduling. Given
a set N of networks, a schedule is topology-transparent for
networks in N if it ensures that, for any network in N , each
node is guaranteed to successfully transmit a packet to each
adjacent node in at least one slot of each frame. In practice,

packet transmissions might fail due to many reasons. We
restrict our attention to failures caused by collisions — by
saying node x is guaranteed to successfully transmit to node
y in some slot, we mean in this slot y is eligible to receive
and x is the only node in y’s neighborhood that is allowed
to transmit. Given two adjacent nodes x and y, if there exist
slots in which node x is guaranteed to successfully transmit
to node y, we say the connectivity from node x to y is guar-
anteed. As most works on topology-transparency, given two
parameters n and D, 2 ≤ D ≤ n, we consider a class of
networks, denote by ND

n , that consist of at most n nodes,
denoted by Vn, and in which node degrees are no more than
D.

4 Requirements on topology-transparency

In this section we consider the requirements on
topology-transparent schedules. Informally, a schedule is
topology-transparent if the connectivity between any pair
of adjacent nodes is guaranteed in any network where the
number of nodes and node degrees are bounded by given
values. The requirement on topology-transparent duty cy-
cling has been proposed in [6]. Here we give an equiv-
alent requirement which presents a connection between
topology-transparent (αT , αR)-schedules and non-sleeping
schedules. This connection implies that any construction of
a topology-transparent (αT , αR)-schedule involves the con-
struction of a topology-transparent non-sleeping schedule.
It also suggests a way to construct a topology-transparent
(αT , αR)-schedule based on a topology-transparent non-
sleeping schedule.

Since our construction is based on a topology-
transparent non-sleeping schedule, we present in Require-
ment 1 the requirement proposed in [3] on topology-
transparent non-sleeping schedules. Given a schedule
〈T, R〉, a node x and a set Y of nodes, we define a denota-
tion to represent the set of slots in which node x is guaran-
teed to successfully transmit to a node y ∈ Y whose neigh-
borhood is Y − {y} ∪ {x}. Intuitively, in each of these
slots, x is the only node that is allowed to transmit among
the neighbors of y.

freeSlots〈T,R〉(x, Y ) ≡ tran〈T,R〉(x) −
⋃
y∈Y

tran〈T,R〉(y)

Note given any two nodes x, y and any set S ⊆ Vn −
{x, y} of D − 1 nodes, there exists network in ND

n such
that x and y are adjacent and y’s neighborhood is {x} ∪
S. Thus a topology-transparent schedule should guaran-
tee ∀x, ∀y, ∀ S ⊆ Vn − {x, y} such that |S| = D − 1,
freeSlots(x, S ∪ {y}) 	= ∅, which is equivalent to ∀x, ∀
Y ⊆Vn − {x} such that |Y | = D, freeSlots(x, Y ) 	= ∅.
On the other hand, if this condition is true, for any network



in ND
n , given any two adjacent nodes x and y, denoting y’s

neighborhood by S ∪ {x}, we have freeSlots(x, S ∪ {y})
⊆ freeSlots(x, Y ) 	= ∅, where Y is some set of D nodes
such that S ∪ {y} ⊆ Y , thus the connectivity from x to y is
guaranteed. This requirement is formally addressed below.

Requirement 1 [3] A non-sleeping schedule 〈T 〉 ensures a
successful transmission in each frame between any pair of
adjacent nodes in any network in ND

n provided that

• ∀x ∈ Vn, ∀ set Y ⊆ Vn − {x} of D nodes,

freeSlots〈T 〉(x, Y ) �= ∅

We give in Requirement 2 the requirements proposed in
[6] on topology-transparent schedules where nodes might
switch to sleep mode. Intuitively, σ(x, y) denotes the set of
slots in which node x can successfully transmit to node y.
It is required at least one slot in σ(x, y) is collision-free for
any two nodes x and y under any possible neighborhood of
y.

Requirement 2 [6] A schedule 〈T, R〉 ensures a successful
transmission in each frame between any pair of adjacent
nodes in any network in ND

n provided that

• ∀x, y ∈ V , x �= y, and ∀ set of d ≤ D − 1 nodes
{y1, . . . , yd} ⊆ Vn − {x, y},

d⋃
i=1

σ〈T,R〉(yi, y) �⊇ σ〈T,R〉(x, y)

where, letting L = |T | = |R|, we define

σ〈T,R〉(a, b) ≡ {j ∈ [0, L − 1]|a ∈ T [j] ∧ b ∈ R[j]}
= tran〈T,R〉(a) ∩ recv〈T,R〉(b)

Since much work has been done on topology-transparent
non-sleeping schedule, here we examine the connection
between topology-transparent non-sleeping schedules and
duty cycling. We propose a requirement equivalent to Re-
quirement 2. Intuitively, given any node x and any set Y of
D nodes, for any yk ∈ Y , condition (1) requires the exis-
tence of slots in which x is the only node in yk’s neighbor-
hood that is allowed to transmit and condition (2) requires
yk is eligible to receive in at least one of these slots. Note
condition (1) is implied by condition (2); we write it sep-
arately to emphasize that condition (1) states that the non-
sleeping schedule 〈T 〉 should be topology-transparent.

Requirement 3 A schedule 〈T, R〉 ensures a successful
transmission in each frame between any pair of adjacent
nodes in any network in ND

n provided that

• ∀ x ∈ Vn and ∀ set of D nodes Y = {y0, . . . , yD−1} ⊆
Vn − {x},

freeSlots〈T,R〉(x, Y ) �= ∅ (1)

∀k∈[0,D−1], recv〈T,R〉(yk) ∩ freeSlots〈T,R〉(x, Y ) �= ∅ (2)

Theorem 1 Requirement 2 and Requirement 3 are equiva-
lent.

Proof. We first prove if a schedule satisfies Requirement 2,
then it satisfies Requirement 3; we only need to prove con-
dition (2) of Requirement 3, which implies condition (1).
Assume in contradiction that condition (2) is not true, that
is, ∃ node x and D nodes y0, . . . , yD−1, and k ∈ [0, D−1],
such that recv(yk) ∩ freeSlots(x, {y0, . . . , yD−1}) = ∅.
By the definition of freeSlots, we have recv(yk)
∩

(
tran(x) − ∪D−1

i=0 tran(yi)
)

= ∅, which implies
recv(yk) ∩ tran(x) ⊆ ∪D−1

i=0 tran(yi), that is, σ(x, yk)
⊆ ∪D−1

i=0 tran(yi). Now for any t ∈ σ(x, yk), we prove
∃k′ ∈ [0, D−1], k′ 	= k, such that t ∈ σ(yk′ , yk) as follows:
since σ(x, yk)∩tran(yk) = tran(x)∩recv(yk)∩tran(yk)
= ∅ and σ(x, yk) ⊆ ∪D−1

i=0 tran(yi), we have
∃k′ ∈ [0, D − 1], k′ 	= k, such that t ∈ tran(yk′ );
since t ∈ recv(yk), we have t ∈ σ(yk′ , yk). Thus we
prove ∪D−1

i�=k,i=0σ(yi, yk) ⊇ σ(x, yk), which contradicts to
Requirement 2.

Now we prove if a schedule satisfies Requirement 3,
then it satisfies Requirement 2. Consider ∀x, y ∈ V ,
x 	= y, and d ≤ D − 1 nodes y1, . . . , yd ∈ Vn −
{x, y}. By condition (2) of Requirement 3, we have
recv(y) ∩ freeSlots(x, {y1, . . . , yd}) 	= ∅, which implies
σ(x, y) ∩ (tran(x) − ∪d

i=1tran(yi)) 	= ∅. Letting t be
a slot in σ(x, y) ∩ (tran(x) − ∪d

i=1tran(yi)), we have
t 	∈ ∪d

i=1tran(yi). Thus ∀i ∈ [1, d], t 	∈ σ(yi, y) and we
prove ∪d

i=1σ(yi, y) 	⊇ σ(x, y).

Given any topology-transparent schedule 〈T, R〉, Re-
quirement 3 states that the non-sleeping schedule 〈T 〉 is also
topology-transparent, which implies that any construction
of a topology-transparent (αT , αR)-schedule involves the
construction of a topology-transparent non-sleeping sched-
ule. Furthermore, condition (2) of Requirement 3 indi-
cates that given a non-sleeping schedule, as far as con-
nectivity is concerned, it is not necessary to keep all the
non-transmitting nodes active; instead, nodes can be sched-
uled to sleep provided that they are active in at least one of
the free slots. Based on this observation, we consider con-
structing a topology-transparent schedule in two steps: we
first construct a topology-transparent non-sleeping sched-
ule, and then reduce the numbers of nodes transmitting
and receiving per slot without violating the topology-
transparency requirement. In the sequel, we discuss in sec-
tion 5 the throughput achievable in networks with the num-
ber of nodes and node degrees less than given bounds; then
we propose our construction in section 6, with the focus on
the second step since much work has been done on con-
structing topology-transparent non-sleeping schedules,



5 Upper bounds on throughput in ND
n

In this section, we discuss the throughput of general
schedules and general (αT , αR)-schedules for networks in
ND

n . Our focus is on throughput in the worst case, that is,
each node has D neighbors and each neighbor has a packet
to transmit in each of the slots in which it is allowed to trans-
mit. We first give the definitions of the minimum throughput
in the worst case and the average throughput in the worst
case, then we present our analyses on the average through-
put. We give upper bounds on the average throughput that
can be achieved by general schedules and general (αT , αR)-
schedules in the worst case, as well as the condition for a
schedule to achieve the upper bound.

Given any pair of adjacent nodes x, y, we consider the
number of guaranteed successful transmissions from x to y.
Letting S be the set of y’s neighbors other than x, we de-
fine T〈T,R〉(x, y, S) as the set of slots in which transmissions
from x to y are guaranteed to be successful under schedule
〈T, R〉:

T〈T,R〉(x, y, S) ≡ recv〈T,R〉(y) ∩ freeSlots〈T,R〉(x, {y} ∪ S)

Note T〈T,R〉(x, y, S) ⊇ T〈T,R〉(x, y, S′) if S ⊆ S′. Since
we focus on throughput in the worst case, in our definition
of the minimum throughput, we only need to consider S
such that |S| = D − 1.

Definition 1 Given a schedule 〈T, R〉, its minimum worst-
case throughput Thrmin

〈T,R〉 in ND
n is defined below, where

L = |T | = |R|:

Thrmin

〈T,R〉 ≡ min
∀x,y∈Vn,S⊆Vn−{x,y},|S|=D−1

{ |T〈T,R〉(x, y, S)|
L

}

It is easy to see the average value of |T〈T,R〉(x, y, S′)|
over all the S′ such that |S′| ≤ D−1 is no less than
the average value of |T〈T,R〉(x, y, S)| over all S such that
|S| = D−1. So the number of guaranteed successful trans-
missions in each frame from x to y averaged over all the
possible y’s neighborhoods in ND

n is at least:

tx〈T,R〉(x, y) ≡
∑

S⊆Vn−{x,y},|S|=D−1
|T〈T,R〉(x, y, S)|(

n−2
D−1

)

We define the average worst-case throughput Thrave
〈T,R〉

of a schedule 〈T, R〉 in ND
n as the ratio of the average num-

ber of tx〈T,R〉(x, y) over all pairs of nodes x and y to the
frame length.

Definition 2 Given a schedule 〈T, R〉, its average worst-
case throughput Thrave

〈T,R〉 in networks in ND
n is defined be-

low, where L = |T | = |R|:

Thrave

〈T,R〉 ≡
∑

∀x,y∈Vn
tx〈T,R〉(x, y)

n(n − 1)L
=

F〈T,R〉

n(n − 1)
(

n−2
D−1

)
L

where

F〈T,R〉 ≡
∑

x,y∈Vn

∑
S⊆Vn−{x,y},|S|=D−1

|T〈T,R〉(x, y, S)|

Since our focus is on throughput in the worst case, in
the sequel we abbreviate “throughput in the worst case” to
“throughput” for presentation simplicity. Note Thrmin

〈T,R〉
and Thrave

〈T,R〉 are not defined particularly for topology-
transparent schedules. A schedule 〈T, R〉 is topology-
transparent if and only if Thrmin

〈T,R〉>0. If a schedule 〈T, R〉
is not topology-transparent, we have Thrmin

〈T,R〉=0, that is,
there exists two nodes x, y and y’s neighborhood S such
that no slot exists in which the transmissions from x to
y is guaranteed to be successful; the average throughput
Thrave

〈T,R〉 can still be computed according to Definition 2.
Requirements 2 and 3 show whether a schedule is

topology-transparent depends on how nodes are scheduled
to transmit and receive. The theorem below states that the
average throughput only depends on the number of trans-
mitters and receivers per slot; furthermore, higher aver-
age throughput can be achieved by allowing more nodes
to receive. So if there is no constraint on the numbers
of receivers and transmitters, the maximum throughput is
achieved by a non-sleeping schedule. Note it is not neces-
sary true if only specific topologes are considered, as shown
by an example presented later in section 5.2.

Theorem 2 Given a schedule 〈T, R〉, we denote L = |T | =
|R|. The average throughput Thrave

〈T,R〉 of 〈T, R〉 in net-

works ND
n is

Thrave
〈T,R〉 =

∑L−1
i=0 |T [i]| · |R[i]|

(
n−|T [i]|−1
D−1

)
n(n − 1)

(
n−2
D−1

)
L

Proof. We define C〈T,R〉(i) as the set of tuples 〈x, y, S〉
such that i ∈ T〈T,R〉(x, y, S), where x, y are two different
nodes and S is any set of D − 1 nodes other than x and y.
Formally,

C〈T,R〉(i) ≡ {〈x, y, S〉 |i ∈ T〈T,R〉(x, y, S), where x, y ∈ Vn,

x �= y, S ⊆ Vn − {x, y}, |S| = D − 1}

We have F〈T,R〉 =
∑

i∈[0,L−1] |C〈T,R〉(i)|. Since given i,
for x,y and S such that i ∈ T〈T,R〉(x, y, S), x can be any
node in T [i], y can be any node in R[i], and S can be any
D − 1 nodes of those other than nodes in T [i] and y, we

have
∣∣C〈T,R〉(i)

∣∣ = |T [i]| · |R[i]|
(

n−|T [i]|−1
D−1

)
and the theorem

is proved.

In the rest of this section, we examine the maximum av-
erage throughput in ND

n that can be achieved by general
schedules and by general (αT , αR)-schedules for given αT



and αR. Before that, we present two properties of func-

tion gn,D(x) =
x
(

n−x
D

)
n
(

n−1
D

) for integer x. These properties will

be used in our proofs and x will represent the number of
nodes that are allowed to transmit in a slot. Intuitively,
gn,D (x) represents the throughput of a non-sleeping sched-
ule in which the number of transmitters per slot is fixed at
x.

(1) ∀x ∈ [0, n− 1], g
n,D

(x) ≤ nDD

(n−D)(D+1)D+1 .

(2) ∃x0 ∈
{⌊

n−D
D+1

⌋
,
⌈

n−D
D+1

⌉}
, such that g

n,D
(x0) ≥

gn,D(x), ∀ x ∈ [0, n−1].

Property (1) is true since g
n,D

(x) = x (n−x)
n

(n−1−x)
n−1

. . .

(n−(D−1)−x)
n−(D−1)

1
n−D

= x
(
1 − x

n

) (
1 − x

n−1

)
. . .

(
1 − x

n−(D−1)

)
(

1
n−D

)
≤ x

(
1 − x

n

)D(
1

n−D

)
≤ nDD

(n−D)(D+1)D+1 . Property
(2) can be proved by showing the following properties for
x ≤ n − (D − 1): (a) g

n,D
(x) is monotonically increasing

up to some point and then monotonically decreasing, and
(b) g

n,D
(x) ≥ gn,D(x + 1) if and only x ≥ n−D

D+1 since
g

n,D
(x)

gn,D(x+1) = x(n−x)
(x+1)(n−D−x) .

5.1 An upper bound on average through-
put

In this section, we consider the average throughput that
can be achieved in networks in ND

n by general schedules,
where there is no constraint on the numbers of transmitters
and receivers per slot. The theorem below presents an upper
bound on the average throughput, as well as the condition
for a schedule to achieve this upper bound: the number of
transmitters in each slot is about n−D

D+1 and the number of

receivers in each slot is about n − n−D
D+1 .

Theorem 3 (An Upper Bound on Average Throughput of
General Schedules in ND

n ) Given any schedule 〈T, R〉, let-
ting Thrave

〈T,R〉 be its average throughput in networks in ND
n ,

we have

Thrave

〈T,R〉 ≤
α�

T

(
n−α�

T
D

)
n

(
n−1
D

) ≤ nDD

(n − D)(D + 1)(D+1)

where

α�
T =




⌊
n−D
D+1

⌋
, if

⌊
n−D
D+1

⌋(
n−

⌊
n−D
D+1

⌋
D

)
≥

⌈
n−D
D+1

⌉(
n−

⌈
n−D
D+1

⌉
D

)
⌈

n−D
D+1

⌉
, otherwise

Furthermore, defining Thr� ≡
α�

T

(
n−α�

T
D

)
n(n−1

D )
, we have

Thrave
〈T,R〉 = Thr� if and only if 〈T, R〉 is a non-sleeping

schedule such that ∀i ∈ [0, L − 1], |T [i]| = α�
T and

|R[i]| = n − α�
T , where L = |T | = |R|.

Proof. Given any schedule 〈T, R〉, we have |R[i]| ≤ n −
|T [i]|, ∀i ∈ [0, L − 1]. By Theorem 2, we have

Thrave

〈T,R〉 =

∑L−1

i=0
|T [i]||R[i]|

(
n−|T [i]|−1
D−1

)
n(n − 1)

(
n−2
D−1

)
L

≤

∑L−1

i=0
|T [i]|(n − |T [i]|)

(
n−|T [i]|−1
D−1

)
n(n − 1)

(
n−2
D−1

)
L

=

∑L−1

i=0
|T [i]|

(
n−|T [i]|
D

)
n

(
n−1
D

)
L

=
1

L

L−1∑
i=0

gn,D(|T [i]|)

Note |T [i]| ∈ [1, n − 1]. By property of function gn,D(x),
we have Thrave

〈T,R〉 ≤ nDD

(n−D)(D+1)D+1 . In order to max-
imize Thrave

〈T,R〉 , gn,D(|T [i]|) should be maximum for all
i ∈ [0, L − 1]. By property of gn,D(x), the maximum
gn,D(|T [i]|) is achieved when |T [i]|∈

{⌊
n−D
D+1

⌋
,
⌈

n−D
D+1

⌉}
.

Theorem 3 indicates only schedules in which all the
nodes are active can achieve the proposed upper bound.
Since the number of transmitters and receivers might be
constrained due to energy efficiency, we consider in the next
section the throughput of schedules with bounded numbers
of transmitters and receivers.

5.2 An upper bound on average through-
put of (αT , αR)-schedules

When only connectivity between any pair of adjacent
nodes is considered, Requirement 3 shows it is not nec-
essary to keep all the nodes active. However, Theorem 2
indicates that, the performance is affected by putting nodes
into sleep mode if we focus on the average throughput be-
tween all pairs of nodes for all the networks in ND

n . It is
worth pointing out that, if only a specific topology is con-
sidered, it is possible to save energy by scheduling nodes to
sleep while preserving the same throughput. An example is
given in Figure 1, where nodes are denoted by the numbers
in circles and arrays T and R are given. We consider two
schedules 〈T 〉 and 〈T, R〉: schedule 〈T 〉 is a non-sleeping
schedule and in schedule 〈T, R〉 some nodes are scheduled
to sleep. It is easy to see these two schedules have the same
throughput.

Now we consider the average throughput Thrave
〈T,R〉

of an (αT , αR)-schedule 〈T, R〉 in ND
n . By Theo-

rem 2, we have Thrave
〈T,R〉 =

∑
L−1

i=0
|T [i]|·|R[i]|

(
n−|T [i]|−1
D−1

)
n(n−1)

(
n−2
D−1

)
L

≤ αR

∑
L−1

i=0
|T [i]|

(
n−1−|T [i]|
D−1

)
n(n−1)

(
n−2
D−1

)
L

= αR

nL

∑L−1
i=0 gn−1,D−1(|T [i]|).

By properties of gn−1,D−1(x), we have Thrave
〈T,R〉 ≤ αR

n
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Figure 1. An example of networks in which
throughput can be preserved when nodes are
scheduled to sleep

(n−1)(D−1)D−1

(n−D)DD , and the maximum of g
n−1,D−1(|T [i]|) is

achieved when |T [i]| ∈
{⌊

n−D
D

⌋
,
⌈

n−D
D

⌉}
. Since |T [i]|

is constrained by the requirement that |T [i]| ≤ αT , we
have the following theorem on the average throughput of
an (αT , αR)-schedule in ND

n networks. This theorem im-
plies, in order to achieve the best average throughput, the
number of receivers in each slot should be as large as possi-
ble, while the number of transmitters should be as close to
n−D

D as possible.

Theorem 4 (An Upper Bound on Average Throughput of
(αT , αR)-schedules in ND

n ). Given any (αT , αR)-schedule
〈T, R〉, letting Thrave

〈T,R〉 be its average throughput in net-

works in ND
n , we have

Thrave

〈T,R〉 ≤
αRα�

T

(
n−α�

T −1

D−1

)
n(n − 1)

(
n−2
D−1

) ≤ αR(n − 1)(D − 1)D−1

n(n − D)DD

where α�
T = min{αT , α}, and

α≡



⌊

n−D
D

⌋
if

⌊
n−D

D

⌋(
n−�n−D

D �−1

D−1

)
≥

⌈
n−D

D

⌉(
n−�n−D

D �−1

D−1

)
⌈

n−D
D

⌉
otherwise

Furthermore, defining Thr�
αR,αT

≡
αR·α�

T

(
n−α�

T
−1

D−1

)
n(n−1)(n−2

D−1)
, we

have Thrave
〈T,R〉 = Thr�

αR,αT
if and only if ∀i ∈ [0, L − 1],

|R[i]| = αR and |T [i]| = α�
T .

Theorem 4 presents an upper bound on the throughput
that is achievable by an (αT , αR)-schedule in ND

n net-
works. An interesting question is whether there exists a
topology-transparent (αT , αR)-schedule that achieves this
upper bound. Requirement 3 indicates, given any topology-
transparent (αT , αR)-schedule 〈T, R〉, 〈T 〉 is a topology-
transparent non-sleeping schedule, and Theorem 4 states,
in order to achieve the maximum average throughput, it is
required |T [i]|=α�

T , ∀i ∈ [0, |T |−1]. Thus a necessary con-
dition for the existence of a topology-transparent (αT , αR)-
schedule that achieves this upper bound is the existence of
a non-sleeping topology-transparent schedule such that the

number of transmitters in each slot is at least α�
T . Our con-

struction indicates such a condition is also a sufficient con-
dition.

6 Our construction of topology-transparent
(αT , αR)-schedules

In this section, we present our construction of topology-
transparent (αT , αR)-schedules. Given a topology-
transparent non-sleeping schedule, our goal is to reduce the
number of nodes that are allowed to transmit and receive
in each slot, while preserving the connectivity between any
pair of adjacent nodes.

In our construction, we first compute the optimal number
α�

T of transmitters per slot, then we construct an (α�
T , αR)-

schedule by calling function Construct(α�
T , αR, 〈T 〉). In

this function, for each slot i, we divide T [i] into sub-
sets T [i] = T0 ∪ . . . ∪ TkT −1 and V − T [i] into sub-
sets Vn − T [i] = R0 ∪ . . . ∪ RkR−1. Note subsets in
{Ti|i ∈ [0, kT − 1]} (subsets in {Ri|i ∈ [0, kR − 1]}
resp.) are not necessarily disjoint. Instead, in order to
achieve maximal throughput, we require each |Ti| to be as
close to α�

T as possible, and each |Ri| to be as close to αR

as possible. In the constructed schedule 〈T̄ , R̄〉, we add
kT kR entries to guarantee that each subset of T [i] trans-
mits to each subset of Vn − T [i]; in particular, we require
∀it ∈ [0, kT − 1] and ∀ir ∈ [0, kR − 1], ∃k such that
T̄ [k] = Tit and R̄[k] ⊆ Rir . If |Rir | < αR, we add
nodes in Vn − Tit to R[k] to get |R̄[k]| = αR, which is
feasible since Tit ≤ αT and αT + αR ≤ n. Note the way
to divide T [i] (line 3) and R[i] (line 4) and the way to add
nodes in Vn − Tit to Rir (line 8) are not unique, and the
specific way they are computed will not affect the correct-
ness, frame length and average worst-case throughput of the
constructed schedule, as we show in Theorem 6, Theorem 7
and Theorem 8 respectively. The code is given in Figure 2.

7 Correctness and performance analyses

In this section, we present correctness proofs and perfor-
mance analyses of our construction. Given any topology-
transparent non-sleeping schedule 〈T 〉, we first show the
correctness of the schedule constructed by the algorithm in
Figure 2. Then we discuss the frame length and through-
put of the constructed schedule. We show that the con-
structed schedule is optimal in terms of average throughput
if the topology-transparent non-sleeping schedule 〈T 〉 sat-
isfies ∀i ∈ [0, L − 1], |T [i]| ≥ min

{
αT ,

⌈
n−D

D

⌉}
.

We first consider the correctness of our construction. In
the following lemma, we show that the constructed schedule
is topology-transparent.



Input: integers n, D, αT , αR, and schedule 〈T 〉, such that n ≥ D ≥ 2,
αT + αR ≤ n, and 〈T 〉 is topology-transparent for networks in ND

n .
Output: An (αT , αR)-schedule 〈T̄ , R̄〉 that is topology-transparent in
networks in ND

n .
Main Program:
• Let α�

T be the optimal number of transmitters per slot computed as in
Theorem 4.

• 〈T̄ , R̄〉=Construct (α�
T , αR, 〈T 〉) ;

• return 〈T̄ , R̄〉;

Function Construct (α�
T , αR, 〈T 〉)

Input: integers α�
T , αR and a non-sleeping schedule 〈T 〉

Output: 〈T̄ , R̄〉
1 k=0;

2 for i = 0; i < |T |; i + +

3 Divide T [i] into kT =

⌈
|T [i]|
α�

T

⌉
subsets T [i] = T0 ∪ . . .∪TkT −1,

such that |Ti| = min{α�
T , |T [i]|},∀i ∈ [0, kT − 1];

4 Divide R[i] = V − T [i] into kR =
⌈ |R[i]|

αR

⌉
subsets R[i] = R0 ∪

. . .∪RkR−1, such that |Ri| = min{αR, |R[i]|},∀i ∈ [0, kR−1];

5 for it = 0; it < kT ; it + +

6 for ir = 0; ir < kR; ir + +

7 T̄ [k] = Tit , R̄[k] = Rir , k + +;

8 if |Rir |<αR then Add αR−|Rir | nodes in

Vn−T̄ [k] to R̄[k];

9 endfor
10 endfor

11 endfor

Figure 2. The code of constructing a
topology-transparent (αT , αR)-schedule
based on a topology-transparent non-
sleeping schedule

Lemma 5 If 〈T 〉 is a topology-transparent non-sleeping
schedule for networks in ND

n , then the schedule 〈T̄ , R̄〉 con-
structed by function Construct(〈T 〉, α�

T , αR) in Figure 2 is
a schedule that is topology-transparent for networks in ND

n .

Proof. We consider any node x ∈ Vn and any set Y ⊆
Vn−{x} of D nodes y0, . . ., yD−1. Since 〈T 〉 is a topology-
transparent non-sleeping schedule, there exists t ∈ [0, |T |−
1], such that t ∈ freeSlots〈T 〉(x, Y ). That is, x ∈ T [t] and
∀i ∈ [0, D − 1], yi 	∈ T [t].

We consider yk, ∀k ∈ [0, D − 1]. Let Tit be the sub-
set of T [t] such that x ∈ Tit in line 3 of Figure 2, and
Rit be the subset of R[t] = V − T [t] such that yk ∈
Rit in line 4 of Figure 2. Let t′ be an index such that
T̄ [t′] = Tit and R̄[t′] ⊇ Rir . Given ∀i = [0, D − 1], since
yi 	∈ T [t] and T̄ [t′] = Tit ⊆ T [t], we have yi 	∈ T̄ [t′],
that is, t′ 	∈ tran〈T̄ ,R̄〉(yi). Since x ∈ Tit = T̄ [t′],
we have t′ ∈ tran〈T̄ ,R̄〉(x). So t′ ∈ tran〈T̄ ,R̄〉(x) −⋃D−1

i=0 tran〈T̄ ,R̄〉(yi) = freeSlots〈T̄ ,R̄〉(x, Y ). Since

yk ∈ Rir ⊆ R̄[t′], we have t′ ∈ recv〈T̄ ,R̄〉(yk).
So t′ ∈ recv〈T̄ ,R̄〉(yk) ∩ freeSlots〈T̄ ,R̄〉(x, Y ), that is,
recv〈T̄ ,R̄〉(yk) ∩ freeSlots〈T̄ ,R̄〉(x, Y ) 	= ∅. Thus by Re-
quirement 3, we prove 〈T̄ , R̄〉 is a topology-transparent
schedule for ND

n .

It is easy to see the number of transmitters in each slot is
no more than α�

T ≤ αT and the number of receivers in each
slot is no more than αR. Thus we prove the correctness of
our construction.

Theorem 6 (Correctness). The schedule constructed by
the algorithm in Figure 2 is an (αT , αR)-schedule that is
topology-transparent for networks in ND

n .

Our construction also indicates that, given any α′
T , α′

R,
α′

T +α′
R ≤ n, if a topology-transparent non-sleeping sched-

ule 〈T 〉 such that |T [i]| ≥ α′
T , ∀i ∈ [0, |T |− 1] is available,

then a topology-transparent schedule such that the number
of transmitters in each slot is exactly α′

T and the number of
receivers in each slot is exactly α′

R can be constructed by
calling function Construct(α′

T , α′
R, 〈T 〉).

The frame length of the constructed schedule can be ob-
tained directly from the code.

Theorem 7 (Frame Length). The frame length of the
schedule constructed by the algorithm in Figure 2 is∑L−1

i=0

(⌈
|T [i]|
α�

T

⌉ ⌈
n−|T [i]|

αR

⌉)
≤

⌈
Max

α�
T

⌉ ⌈
n−Min

αR

⌉
L, where

L = |T |, Max = max{|T [i]|, ∀i ∈ [0, L − 1]} and Min =
min{|T [i]|, ∀i ∈ [0, L − 1]}.

In order to compare the average throughput of the con-
structed (αT , αR)-schedule in ND

n networks to the maxi-
mum average throughput, we define function

r(x) ≡
(

x

α�
T

) D−1∏
i=1

(
n − i − x

n − i − α�
T

)

where α�
T is computed as in Theorem 4. Note α�

T ≈ min
{αT , n−D

D } only relies on n, D and αT . Given an (αT , αT )-
schedule 〈T, R〉 such that the number of receivers per slot is
αR, the optimality of 〈T, R〉 in terms of average throughput
can be represented as follows:

Thrave
〈T,R〉

Thr�
αR,αT

=
1

L

L−1∑
i=0

r(|T [i]|)

where Thr�
αR,αT

is the maximum average throughput that
is achievable by an (αT , αR)-schedule (see Theorem 4).
The average throughput of our construction can be com-
puted by Theorem 2. We present below a lower bound on
the ratio of our average throughput to the maximum aver-
age throughput, which indicates the constructed schedule



is optimal in terms of average throughput if the number
of transmitters per slot in the non-sleeping schedule is at
least min

{
αT ,

⌈
n−D

D

⌉}
, otherwise the larger is the min-

imum number of transmitters per slot, the better average
throughput can be achieved.

Theorem 8 (Average Throughput and Optimality). Con-
sider the construction in Figure 2. We have the follow-
ing lower bound on the ratio of the average throughput
Thrave

〈T̄ ,R̄〉 of 〈T̄ , R̄〉 to the maximum average throughput

Thr�
αT ,αR

that is achievable by (αT , αR)-schedules in ND
n

(see Theorem 4).

Thrave
〈T̄ ,R̄〉

Thr�
αT ,αR

≥ r(Min)|A1| + c|A2|
|A1| + c|A2|

where

• Min = min{|T [i]|, i ∈ [0, L − 1]}, where L = |T |,
• A1 = {i | |T [i]|<α�

T} and A2 = {i | |T [i]|≥α�
T},

• c =
⌈

n
αm

⌉
−1⌈

n−Min
αR

⌉ , where αm = max{α�
T , αR}.

In particular, Thr〈T̄ ,R̄〉 = Thr�
αT ,αR

if Min ≥ α�
T .

Proof. Given ∀k ∈ [0, L − 1], let Ik be the set of indices

of the
⌈

|T [k]|
α�

T

⌉⌈
n−|T [k]|

αR

⌉
entries in 〈T̄ , R̄〉 that are computed

in lines 5-10 of function Construct() in the k’th iteration of
the for-loop in lines 2-11 in Figure 2. Note Ik is disjoint for
different i and [0, L̄ − 1] =

⋃L−1
i=0 Ik, where L̄=|T̄ |=|R̄|.

Letting Ā1=∪k∈A1Ik and Ā2=∪k∈A2Ik, we have [0, L̄ −
1] = Ā1 ∪ Ā2. Denoting xk = |T [k]|, we have (1) ∀i ∈
[0, L̄ − 1],

∣∣R̄[i]
∣∣ = αR, (2) ∀k ∈ A1 and i ∈ Ik ,

∣∣T̄ [i]
∣∣ =

xk , and (3) ∀k ∈ A2 and i ∈ Ik ,
∣∣T̄ [i]

∣∣ = α�
T . Thus ∀k ∈

A1, ∀i ∈ Ik, r(
∣∣T̄ [i]

∣∣) = r(xk), and ∀k ∈ A2, ∀i ∈ Ik,
r(

∣∣T̄ [i]
∣∣) = 1. So we have

Thrave
〈T̄ ,R̄〉

Thr�
αT ,αR

= 1
L̄

∑L̄−1

i=0
r(

∣∣T̄ [i]
∣∣)

=

∑
k∈A1

∑
i∈Ik

r(
∣

T̄ [i]
∣
)+

∑
k∈A2

∑
i∈Ik

r(
∣
T̄ [i]

∣
)

|Ā1|+|Ā2|

=

∑
k∈A1

r(xk)|Ik|+|Ā2|
|Ā1|+|Ā2| ≥ r(Min)|Ā1|+|Ā2|

|Ā1|+|Ā2|

The theorem can be proved if |Ā2|
|Ā1| ≥ c

|A2|
|A1| , which can be

shown because (1) we have
∣∣Ā1

∣∣ ≤ ⌈
n−Min

αR

⌉
|A1|, since

∀k ∈ A1, |Ik| =
⌈

n−xk

αR

⌉
≤

⌈
n−Min

αR

⌉
; and (2) we have∣∣Ā2

∣∣ ≥ (⌈
n

αm

⌉
− 1

)
|A2|, since ∀k ∈ A2, |Ik| =

⌈
xk

α�
T

⌉
⌈

n−xk

αR

⌉
≥

⌈
xk

αm

⌉ ⌈
n−xk

αm

⌉
≥

⌈
n

αm

⌉
− 1.

We have shown in Section 5 that a necessary condi-
tion for the existence of a topology-transparent (αT , αR)-
schedule that achieves the maximum average throughput
Thr�

αR,αT
is the existence of a non-sleeping topology-

transparent schedule such that the number of transmitters
in each slot is at least α�

T . Theorem 8 indicates such a con-
dition is also a sufficient condition.

Now we discuss the minimum throughput. We give a
lower bound in Theorem 9 on the minimum throughput of
the (αT , αR)-schedule constructed by the algorithm in Fig-
ure 2. In our proof, we consider the number of slots in
which the transmissions from x to y are guaranteed success-
ful for any pair of adjacent nodes x, y and any neighborhood
of y. We prove that the number of such slots in each frame
of the constructed schedule is no less than that of the origi-
nal schedule. The degradation of the minimum throughput
is due to a smaller number of active nodes.

Theorem 9 (Minimum Throughput). Consider the con-
struction in Figure 2. Denoting L = |T | and L̄ =
|T̄ | = |R̄|, we have the following relation on the minimum
throughput Thrmin

〈T〉 of 〈T 〉 and the minimum throughput

Thrmin
〈T̄ ,R̄〉 of 〈T̄ , R̄〉 in networks in ND

n :

Thrmin

〈T̄ ,R̄〉 ≥ L

L̄
Thrmin

〈T〉 ≥
Thrmin

〈T〉⌈
Max
α�

T

⌉⌈
n−Min

αR

⌉
where Max = max {|T [i]|, ∀i ∈ [0, L − 1]} and Min =

min {|T [i]|, ∀i ∈ [0, L − 1]}.

Proof. By Theorem 7 and Definition 9, the theorem can
be proved by showing that ∀x, y, ∀S ⊆ Vn − {x, y} such
that |S| = D − 1, |TT̄ ,R̄(x, y, S)| ≥ |TT,R(x, y, S)|. Given
∀i ∈ TT,R(x, y, S), we have x ∈ T [i], y ∈ Vn − T [i] and
S ⊆ Vn − T [i]. Let Ii be the set of indices of the kTi · kRi

entries in T̄ and R̄ that are computed in lines 5-10 of the
ith iteration of the for-loop in lines 2-11 of Figure 2. Let
Tit be the subset of T [i] such that x ∈ Tit (line 3) and Rir

be the subset of Vn − T [i] such that y ∈ Rir (line 4). Let
t′ ∈ Ii such that T̄ [t′] = Tit and R̄[t′] ⊇ Rir . We have
S ⊆ Vn − T [i] ⊆ Vn − Tit . Thus t′ ∈ TT̄ ,R̄(x, y, S).
Since Ii is disjoint for different i, we prove |TT̄ ,R̄(x, y, S)|
≥ |TT,R(x, y, S)|.

In some scenarios, applications require balanced energy
consumption in the sense that (1) the same number of nodes
are active in each slot, and (2) the percentage of slots in
which node x is active is the same for all x ∈ Vn. It is
easy to verify that if energy consumption is balanced in the
non-sleeping schedule 〈T 〉, then these two properties can be
preserved in the constructed schedule by modifying the di-
vision of T [i] and R[i] (lines 3-4) to satisfy that the number
of subsets Ti (Ri resp.) such that node x ∈ Ti (x ∈ Ri

resp.) is the same for all x ∈ T [i] (x ∈ R[i] resp.); it is easy
to see such divisions exist.



8 Conclusion

We consider topology-transparent duty cycling in wire-
less sensor networks. The connection between topology-
transparent duty cycling and non-sleeping schedules is in-
vestigated and analyses on throughput are presented. We
propose a construction of topology-transparent duty cycling
schedules based on a topology-transparent non-sleeping
schedule. The constructed schedule is optimal in terms
of average throughput if the non-sleeping schedule satisfies
certain conditions.
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