
Locality-Aware Consistency Maintenance for Heterogeneous P2P Systems

Abstract

Replication and caching have been deployed widely in

current P2P systems. In update-allowed P2P systems, a
consistency maintenance mechanism is strongly demanded.
Several solutions have been proposed to maintain the
consistency of P2P systems. However, they either use too
much redundant update messages, or ignore the
heterogeneity nature of P2P systems. Moreover, they
propagate updated contents on a locality-ignorant
structure, which could consume unnecessary backbone
bandwidth and delay the convergence of consistency
maintenance. This paper presents a locality-aware
consistency maintenance scheme for heterogeneous P2P
systems. Taking the heterogeneity nature, we form the
replica nodes into a locality-aware hierarchical structure:
the upper layer is DHT-based and a node in the lower
layer attaches to a physically close node in the upper layer.
An efficient update tree is built dynamically upon the upper
layer to propagate the updated contents. Theoretical
analyses and simulation results demonstrate the
effectiveness of our scheme. Specially, experiment results
show that, compared with gossip-based scheme, our
approach reduces the cost by about one order of
magnitude.

1 Introduction

In P2P systems, shared resources are replicated on
several nodes to improve system reliability and availability.
In addition, query results are always cached along the
query path to reduce the response time of subsequence
queries. Hence, replication and caching are such two
common ways to improve system performance that they
have been widely deployed in current P2P systems.
However, existing works mainly focus on replica creation,
paying little attention on the consistency maintenance.
Although data objects in P2P file sharing systems, such as
Gnutella [2] and KaZaA [3], are always consistent, some

P2P systems, such as OceanStore [6] and Publius [1], allow
users to modify their own data, which causes replicas of
modified data inconsistent. On the other hand, with the
rapid evolution in P2P-based applications, P2P systems
will support frequent updates for contents, such as online
auction, trust management [8] and remote collaboration.
Inconsistency in these systems would deteriorate the
system performance, or even attaint the systems. Thus, a
cost-effective consistency maintenance mechanism with
less convergence time is highly demanded by P2P systems.

In P2P systems, we call the node having a replica of the
data indexed by key k as a replica node of k. These replica
nodes constitute a group called group_k. When the data are
modified legally on a replica node, the updated content
should be delivered to all the members in group_k as soon
as possible. The group management protocol used here
should have three characteristics: 1) supporting nodes
churn; 2) fault tolerance; 3) scalable. And the update
method based on this protocol should satisfy following
terms: 1) guaranteeing strong consistency; 2) propagating
updated contents as fast as possible, or with shorter
convergence time; 3) cost-effective, or with less overhead.

Centralized scheme is a straightforward way to maintain
replica consistency. However, it suffers from notorious
scalability and brings a single point of failure problem.
Gossip-based scheme has a good quality of scalability and
fault tolerance. However, it can only offer probabilistic
consistency and bring a lot of redundant update messages.
Another feasible way is tree-based scheme. This method
has shorter convergence time and less redundant update
messages. How to maintain the tree structure and improve
the fault tolerance are the two most important problems in
this scheme.

While all the existing works [13, 14, 15] may partially
solve the consistency problem in P2P systems, in our
opinion, they have one or all of the following limitations: 1)
They use a lot of redundant update messages; 2) they
propagate updated contents on a locality-ignorant structure;
3) They assume a homogeneous environment. Thus, these
methods always have longer convergence time and
consume lots of unnecessary bandwidth (e.g., bisection

Zhenyu Li1,2, Gaogang Xie1,3, Zhongcheng Li1

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100080, China
2Graduate School of the Chinese Academy of Sciences, Beijing, 100080, China

3INRIA-Rocquencourt, Domaine de Voluceau, 78153 Le Chesnay, France
{zyli, xie, zcli}@ict.ac.cn

1-4244-0910-1/07/$20.00 ©2007 IEEE

backbone bandwidth). In this paper, we propose a scalable,
locality-aware consistency maintenance method for
heterogeneous P2P systems. Replica nodes of key k are
organized in a two-layer fashion: the upper layer is DHT
(Distributed Hash Table) based, and a replica node in the
second layer attaches to a physically close node in the
upper level. An update tree is built dynamically on top of
the upper layer by partitioning the identifier space and the
updated content is propagated along this tree. In particular,
we make the following contributions:
1) Relying on the efficient update tree based on DHT and

with the aid of a scalable failure recovery method,
replica consistency is achieved by propagating updated
contents along the tree with less redundant update
messages.

2) Taking network locality information and the
heterogeneity of node capacity into consideration, our
method not only has shorter convergence time but also
reduces the bandwidth consumption.

3) Simulation experiments show that, compared with
gossip based scheme, our approach reduces the update
cost by about one order of magnitude.

The rest of the paper is organized as follows. Section 2
provides a survey of related work. Section 3 gives an
overview of our scheme, followed by a detailed description
of its design in section 4. In section 5, we analyze the
performance of our scheme theoretically. And in section 6,
we evaluate our scheme through extensive simulations.
Finally, we conclude our work in section 7.

2 Related Work

Replication and caching have been adequately deployed

in distributed systems. In Gnutella [2], query results are
cached on the nodes along the query path to reduce
response time of subsequence queries of similar objects. In
CFS [10], in order to increase availability, a data block is
replicated on k nodes. And in CAN [7], the popular data
objects are replicated on the neighborhood nodes to
achieve a load balancing. All these systems resort to a
naive centralized method to maintain consistency. The
consistency of web proxy caching is studied in [4] and [5].
However, in their context, the proxies are always available.
Therefore, these methods are not applicable for dynamic
environment, which is a prominent characteristic of P2P
systems.

A. Datta et al propose a hybrid push and pull consistency
maintenance scheme for highly unreliable P2P systems
[13]. They take advantage of gossip as a group
management protocol and update messages are rumored to
other replica nodes. This is called push. And when a new
replica node joins, it fetches the latest content from other
nodes actively. This is called pull. While suitable for
unreliable P2P systems, this method only offers
probabilistic guarantee of replica consistency. In addition,

it is locality ignorant and brings a large number of
redundant update messages. In [14], a flooding based
scheme is proposed for Gnutella-like file sharing systems.
Compared with [13], this approach uses even more
redundant update messages.

SCOPE, proposed in [11], is a scalable scheme for
structured P2P systems. Each key is associated with a
replica-partition-tree (RPT) for updated content delivering.
Update operation can be completed in)(log2 NO hops,
and a node stores)(log NO partition vectors for a single
key. In SCOPE, a node (e.g., the root node) may reside at
several levels in RPT, which would make this node
overloaded or vulnerable. Moreover, SCOPE is also
locality ignorant. In addition, the maintenance cost of RPT
is non-negligible. Our method is similar to SCOPE in tree
building (i.e. by partitioning the identifier space). However,
in our scheme, a replica node only appears once in the
update tree and the tree is built only when an update
operation is needed.

Hierarchical architecture has been implemented in
Gnutella [2] and also used in [12] and [16]. In Gnutella,
nodes with higher reliability and capacity are elected as
super nodes. In [12], super nodes in Gnutella are organized
into a structured P2P fashion to increase the hit rates of rare
data objects. However, they mainly focus on locating rare
data items and ignore the network locality. Cluster based
scheme are proposed in [16]. However, both the upper
layer and second layer are organized in a structured P2P
way. And the performance of their method under node
failure is not analyzed or simulated.

S. Tewari et al. [17] analyses the benefits of proportional
replication in P2P networks. They focus on replica creation.
In [18], a distributed membership management service is
proposed for QoS sensitive P2P applications. In [15], we
propose a distributed load balancing algorithm for
structured P2P systems. These works are largely
complementary to the work presented in this paper.

3 Overview

In this section we present a brief overview of our
solution, deferring a detailed description to the next
section.

In the following parts, we use Chord [9] as a
representative DHT protocol for analysis and description,
but it is straightforward for other DHT protocols.

Fig.1 captures the hierarchical model in our scheme.
Replica nodes are organized in a two-layer architecture.
The upper layer is Chord-based and consists of more
reliable and powerful nodes. We call the replica nodes in
the upper layer as Chord Replica Nodes (CRNs). Each node
at the second (lower) layer attaches to a physically close
CRN, and nodes at this layer are denoted as Ordinary
Replica Nodes (ORNs).

An update operation initiated by an ORN is first
submitted to its corresponding CRN through an update
request message. When the CRN receives the update
request message or initiates an update operation by itself, it
dynamically builds an update tree on the upper layer,
rooted by the CRN itself, by partitioning the Chord
identifier space. Then updated content is delivered along
this update tree in a top-down fashion. In addition to
transferring the updated content to the child replica nodes
on the update tree, a CRN also delivers the updated content
to the ORNs attached to it. Since CRNs are physically
close to the ORNs attached to it, this enables fast
convergence on consistency maintenance and saves the
bandwidth consumption, or our scheme is locality aware.
After the update operation completes, the update tree is
destroyed in a bottom-up fashion.

From above description, we find that the two key issues
of our scheme are: 1) how to generate locality information
and how to use this information to cluster replica nodes; 2)
how to build an efficient update tree and how to recover
from a failure. Some notations used in later sections are
showed in Table I.

4 Design

In this section we describe the detail of our consistency

maintenance scheme. We begin with locality information
generation and hierarchy architecture construction based
on this locality information. Then we describe how to build
the update tree and how to propagate updated content. We
end this section with the maintenance and failure recovery
mechanism of our scheme.

4.1 Generating locality information

We take advantage of landmark clustering scheme [19]

to generate locality information. In this algorithm, m nodes
are picked up randomly from the Internet as landmark

nodes. A replica node measures the distance to these
landmark nodes and obtains a landmark vector

>< mddd ,...,, 21 . Replica nodes use their landmark vectors
as coordinates in an m-dimension Cartesian space, which is
called landmark space. The intuition behind is that
physically close replica nodes are likely to have similar or
close landmark vectors, and thus close to each other in the
landmark space. As pointed out in [19], landmark
clustering is a coarse-grain approximation and not very
effective in differentiating nodes within close distance.
However, we just simply use landmark clustering in our
scheme. This is mainly because coarse-grain information is
adequate for our scheme and the simulation experiments
also show that approximate information works well.

As described later, we only need a one dimension key to
represent node’s position in the landmark space. This key is
denoted as landmark number. Thus, another challenge is
related to map m-dimension landmark vectors to one
dimension landmark numbers while preserving the network
locality. Space-filling curves [20] are good choices for this
problem. Space-filling curves map an m-dimension point to
a one-dimension point without loss of proximity, or points
that are close in m-dimension space are also close in
one-dimension space. One example of space-filling curves
is Hilbert curve.

We partition the landmark space into mx2 smaller grids
with equal size, where x is the order of Hilbert curve and
controls the number of grids used to partition the landmark
space. Then we fit a Hilbert curve on the landmark space to

Fig.1: Hierarchical structure. Powerful replica
nodes, labeled as CRNs (Chord Replica Nodes), are
organized in a Chord ring. Ordinary replica nodes
(ORNs) attach to physically close CRNs.

TABLE I NOTATIONS

CRN Chord Replica Nodes, replica nodes in the upper

layer.

ORN Ordinary Replica Nodes, replica nodes in the

second layer.

d Average out degree of CRN in the update tree.

nC Capacity of node n, defined as the maximum

number of replica nodes to which n is able to

send updated content concurrently.

nl Landmark number of replica node n.

CS The maximum number of ORNs that a CRN can

be attached to, or the maximum cluster size.

w The number of backup CRNs stored on a ORN

0R The basic search radius for locating nearby CRNs

N Total number of replica nodes of key k

CRNN Number of Chord replica nodes of key k

h Height of an update tree.

number each grid. Replica node whose landmark number
falls into grid l has the landmark number as l. Due to the
proximity preserving property of Hilbert curve, closeness
in landmark number indicates physical closeness.

4.2 Constructing Hierarchical Architecture

Each CRN publishes its landmark number on the upper
layer, based on Chord protocol. That is to say the
information of a CRN and its landmark number l is stored
on the successor of identifier l. Recall that, in a DHT, if
two objects have similar/close DHT keys, then these two
objects will be stored close to each other in the DHT
overlay. Therefore, thanks to the proximity preserving
property of Hilbert curve, the information of two
physically close nodes is stored closely in the Chord ring.

As in [9], we assume replica nodes learn the information
of an existing CRN (denoted as n0) in the upper layer by
some external mechanism. And replica nodes can evaluate
their capacities by their selves. When joining existing

group, a new replica node of key k first tries to find a close
CRN to attach, or become an ORN. If this operation fails,
it then joins as a CRN. In detail, each new replica node
runs the routine join_group() as described in Fig.2.

To find nearby replica nodes, a new joining replica node
search a range, through a well-known replica node 0n ,
with its landmark number as centre and T as radius. And

∞
≥×

=
otherwise

dcc
R

T
α0

 (1)

where 0R is the basic search radius, α is a design
parameter and c is the capacity of the new join node. In
practice, α can be set as the expectation value of node
capacity. The intuition behind formula (1) is that the bigger
a node’s capacity is, the higher probability it is a CRN.
Recall that node capacity is measured by the maximum
number of replica nodes to which it is able to send updated
content concurrently, and a replica node at least should
propagate updated content to d (on average) child replica
nodes along the update tree. Thus, when a node’s capacity

Fig.2: New replica node joining algorithm

rn.join_group()
1: rn measures the distance to landmark nodes, and computes its landmark number lrn
2:)(_.0 lsuccessorfindncrn = /* find_successor is provided by Chord[9]*/

3: vector v_CRN ← crn.GetCRNs(lrn, Crn)
4: while(!v_CRN.empty())
5: crn1 ← the node with landmark number closest to lrn
6: if(crn1.Can_Attach())
7: rn attaches to crn1 and selects other w CRNs randomly from v_CRN as backup CRNs
8: return
9: else
10: v_CRN.erase(crn1)
11: end while
12: if(v_CRN.empty()) /*join as an CRN*/
13: rn joins the upper layer as a CRN based on Chord protocol and publishes its landmark number.

crn.GetCRNs(landmark_number l, capacity c)

1:

∞
≥×

=
otherwise

dcc
R

T
α0

2: crn finds the CRNs whose landmark number is in the range }:{ TlrrR <−= , and pushes these CRNs back to the vector

v_CRN
3: return v_CRN

crn.Can_Attach()
1: if (the number of ORNs attached to crn < CS and (d + the number of ORNs attached to crn) < crnC)
2: return 1
3: else
4: return 0

is smaller than d, it is not capable for a CRN. We achieve
this by having the search range infinite. Since each CRN in
the Chord ring maintains a continuous identifier space and
the information of CRNs with close landmark numbers is
stored closely in Chord ring, finding nearby CRNs should
be fast. Note that although we only use capacity as a metric
for replica node joining, it is easy to combine history
uptime and other metrics.

Following above joining mechanism, a more powerful
node still has a probability to become an ORN of a close
CRN with less capacity. To this end, each ORN
periodically evaluates itself to decide if it should become a
CRN based on some criterions, such as CPU speed,
bandwidth and uptime. If an ORN is CRN capable, it
rejoins as a CRN.

Intuitively, a bigger cluster size (CS) will help the nearby
replica nodes being grouped into one cluster with higher
probability. However, a bigger cluster size may also
increase the number of ORNs attached to a CRN. This not
only overloads the CRN, but also increases the cost of
recovering from a failure of the CRN. Thus, we need a
compromise here. Another thing worth pointing out is that
when a new replica node joins as an ORN, it stores other w
close CRNs as backup CRNs. This is used for increasing
the system fault tolerance. We defer the detail in later
sections. Maintenance and failure recovery of this
hierarchical structure are described later as well.

4.3 Propagating Updated content

As mentioned before, an ORN submits the update

operation to its corresponding CRN. When a CRN receives
an update request message or initiates an update operation
by itself, it dynamically builds an update tree on the upper
layer, rooted by the CRN itself, by partitioning the Chord
identifier space. Initially, the CRN, crni, holds the whole
identifier space. This identifier space is partitioned into d
parts with equal size. We choose the first CRN of each part
as the representative node to hold the identifier space of
this part and set these d representative CRNs as the
children of crni. Each part is further partitioned into d parts
with equal size, and so on, until there is only one CRN in
this identifier part. The pseudo code is listed in Fig.3. The
function find_successor(id), provided by the Chord
protocol, is used to find the successor node with the id. The
function of get_rpn(region) is to get the representative
node of region.

In Fig.4, we show a Chord ring consisting of 10 CRNs
and the corresponding update tree.

After building the update tree on top of the Chord ring,
updated content is propagated along this tree in a top-down
fashion. In addition to transferring the updated content to
the child replica nodes on the update tree, a CRN also
delivers the updated content to the ORNs attached to it.
When receiving a latest updated content, a replica node

checks and verifies the data, updates its content and
forwards the updated content if necessary. Due to the tree
structure, each replica nodes will receive)1(O update
messages. Moreover, since CRNs are physically close to
the ORNs attached to it, consistency maintenance
converges fast and bandwidth is greatly saved. After the
update operation completes, the update tree is destroyed in
a bottom-up fashion. Failure recovery mechanism during
the update period is detailed later.

The reason why we build the update tree dynamically
and destroy it after the update operation is that, to fully
take advantage the system resources, we should use
multiple update trees to propagate updated contents.

X.region_partition(region_x)

1: if (X.id + 1 > region_x.end)

/*There is only one node (say X) in this region.*/

2: return;

/*There is no node between [regon_x.start, X.id).

 And we prune node X from further partition */

3: region←(X.id + 1, region_x.end);

4: Split region into d partitions with equal size

5: for i=1 to d{

6: region[i]←the i-th partition;
7:])[(_.][iregionrpngetXRPN iregion = ;

8: if (NULLRPN iregion =!][){

9:
][.. iregionRPNchildrenXchildrenX ∪= ;

10:][iregionRPN .region_partition (][iregion);

11: }

12: } /* end of for i=1… */

X.get_rpn(region)
1: id←first ID of this region;
2: node←X.find_successor (id);
3: if (node.id ∉ region)
4: return NULL;
5: return node;
Fig. 3: Algorithm for building update tree

Fig.4 Chord ring and a update tree built based on this
ring

Otherwise, if we use only one update tree, most nodes are
leaf nodes which would make no contribute for content
delivering. In our opinion, the maintenance cost of multiple
update trees is larger than the cost of building an update
tree while necessary, especially in dynamic P2P systems.

4.4 Maintenance of Hierarchical Structure

If a replica node joins after a period of leaving, it may

miss updated contents during this period. As in [13], we
use a pull scheme: after rejoining the hierarchical structure,
CRNs ask its successor for latest content and ORNs ask its
CRN for latest content.

When a replica node does not need to keep the replica up
to date any more, it leaves. Leaving mechanism for ORNs
is really simple: just sends a Leave Message to the
corresponding CRN, and then leaves. When receiving the
Leave Message from the ORN attached to it, the CRN
deletes the stored information for this ORN. If a CRN
leaves, it selects the most reliable, powerful replica node
from its ORNs to replace itself. The selected ORN rejoins
as a CRN and takes over other ORNs attached to the
leaving CRN. If there is no ORN powerful enough to
replace the leaving CRN, the cluster is split into several
small groups and powerful nodes are chosen from each
group to act as CRNs for these groups. Then the leaving
CRN leaves the upper layer based on the Chord protocol
and unsubscribe its landmark number information.

Failure of an ORN can be detected by its corresponding
CRN and this has little effect on the structure. When a
CRN fails, we resort to Chord protocol to recover the upper
layer. Failures of CRNs can also be detected by their ORNs
by periodically message exchanging. The ORNs previously
attached to the failing CRN first try to attach to one of its
backup CRNs. If all the backup CRNs of an ORN fail, the
ORN rejoins the hierarchical structure. Note that if the
failures of CRNs are independent, this scenario is rare. It is
worth pointing out that attaching to a backup CRN may
impair the proximity effect as the new CRN may not be the
closest CRN in the upper layer. However, the simulation
results show that this has little effect and our scheme is as
effective as usual.

To ensure that the backup CRNs are always the available
ones in the upper layer, ORNs checks the availability of
their backup CRNs periodically. If 2/w its backup CRNs
are not available any more, an ORN sends a Backup CRNs
Query Message through its CRN to find nearby CRNs
filling up its backup CRNs list. This query message is
similar to the joining message in terms of locating nearby
CRNs.

4.5 Maintenance when Propagating Updated
Content

Recall that the update tree is built dynamically when
there is an updated content needed to be disseminated, and
this update tree is destroyed when the update operation
completes. Although the convergence time of our scheme
is really short, it still has a probability that a replica node
leaves and fails during this short period. Because ORNs are
not in the update tree, leaving and failing of ORNs have no
effect on propagating updated content. When a CRN in an
update tree leaves, in addition to leaving the group
according to the leaving scheme, it asks its parent to
rebuild the sub tree rooted by the leaving CRN and leaves
according the leaving mechanism introduced earlier. Given
that CRNs have a good quality of availability and the
convergence time of our scheme is short, we think our
leaving scheme is reasonable.

To improve the fault resilience of our scheme, we use an
acknowledgement scheme. A CRN acknowledges its parent
CRN as soon as it has received acknowledgements from all
its children CRNs. When receiving an acknowledgement
from a child CRN, the parent CRN deletes the information
(e.g. ID, address and region information) related to this
child CRN. This is a recursive process from bottom to top.
And the leaf nodes acknowledge their parents as soon as
sending the updated content to their ORNs. To ensure a
strong consistency, each CRN in the update tree sets a
timeout when it forwards the updated content to their child
CRN. If a CRN does not receive all the acknowledgements
when the timeout expires, it rebuilds the sub tree rooted by
the failure child node and retransmits the updated content
along that sub tree.

To isolate node faults, the timeout intervals of CRNs
decrease exponentially with the increasing of the level at
which the CRNs reside.

crnlevel
crn eTtimeout −×= 0 , hlevelcrn ≤≤0 , (2)

where h is the height of update tree and 0T is a design
parameter. In this way, a CRN failure is restricted to the
sub tree rooted by the parent of failure CRN with high
probability.

We can deduce that CRNs’ leavings, especially failures,
cost more than the ORNs’ as it plays a more important role.
Therefore, CRNs must be not only more powerful but also
more available.

5 Analysis

In this section, we analyze the performance of our

scheme from several perspectives, such as the maintenance
cost, the performance and cost of update tree and the
efficiency of failure recovery mechanism.

5.1 Analysis of Replica Nodes Joining and
Leaving

When a new replica node joins, to search the close
CRNs on the upper level,)(log CRNNO Chord query
messages are required. If the new node joins as a CRN,
another)(log2

CRNNO Chord joining messages are required.
Thus, when a new replica node joins, on average,

CRNCRNCRNjoin NpNMsg 2loglog# ×+= (3)
messages are required, where CRNp is the probability that
a new replica node joins as an CRN.

According to the leaving mechanism mentioned before,
an ORN leaving only uses)1(O message (i.e. notifying its
CRN). Suppose that a CRN leaving causes its cluster split
into s smaller group, then a CRN leaving
uses)(log2

CRNNO Chord leaving messages and causes s
nodes to rejoin as CRNs. The average number of messages
used by a replica node leaving is

[]1log)1(1

)log(log1

#

2

22

−+×+=

×+×+−×=

CRN
CRN

CRNCRN
CRNCRN

leaving

Ns
N

N
NsN

N
N

N
NN

Msg

 (4)

5.2 Analysis of Update tree

In our scheme, to propagate the updated content to all

the alive replica nodes, an update tree should be built first,
and then the updated content is disseminated along with the
update tree. Thus, the update time needed by an update
operation consists of two parts: the time for building
update tree and the time for propagating updated content.

Theorem 1: The average height of a d-ary update tree is
)(log CRNd NO , and a CRN resides only in one level on the

update tree.
proof: Suppose the identifier length is v, that is to say the

whole identifier space is v2 . Each partition generates d
smaller equally-sized regions, each with size of 1/d of the
previous partition region. After CRNd Nlog time partition,
the generated region is reduced to CRN

vNv Nd CRNd /2/2 log = .
In Chord, nodes are distributed on the ring randomly. Thus,
the average number of nodes in the region with size of

CRN
v N/2 is 1. This is the termination condition of our

partition method. So, the average height of Chord tree is
CRNd Nlog .

Note that current node ID is excluded from the region
for further partition (line 3 in function region_partition
illustrated in Fig.3). Thus, every node resides at only one
level in the updating tree.■

Note that a CRN delivers the updated data to its child
CRNs and its ORNs concurrently. Therefore, after building
the update tree, updated content can be propagated to all
the replica nodes in)(log CRNd NO .

Lemma 1: If an M-node Chord ring is partitioned into r

regions with equal size, then the successor of the first ID of
the partitioned region can find the successor of a key in this

region in)(log
r

MO logical hops, on average.

proof: Suppose the identifier length is v, that is to say the
whole identifier space is v2 and node in is successor of
the first ID region ir . Now, we analyze the logical hops
required to find the successor of key k, where k is in region

ir and ink > . According to the Chord protocol, each hop
halves the distance from the query node to the successor of

k. Thus, after
r

Mlog hops, the distance between the query

node to the successor of k is at most Mr v
rM

v

/2
2

/2
)/log(= . Due

to the random distribution of nodes in the Chord ring, the
average number of nodes in the region with size of Mv /2
is 1. Thus, in has found the successor of key k.■

Theorem 2: A d-ary update tree can be built in
)(log2

CRNNO logical hops, on average.
proof: See [22] for details. ■

Thus, an update operation completes in
)log(log2

CRNNNO CRN + time. Noting that CRNN is much
smaller than the total number of replica nodes, we think
our scheme is time-effective and have a good quality of
scalability as well.

Now, we analysis the Chord query messages used by
building an update tree.

Theorem 3: With CRNN Chord replica nodes, to build a
d-ary update tree,)log(dNO CRN × Chord query messages
will be used.
 proof: See [22] for details. ■

From Theorem 3, the average number of query messages
per CRN to build a d-ary update tree is)(log dO .
Therefore, a smaller d is preferred. However, from
Theorem 1 and Theorem 2, decreasing d will increase the
convergence time of the update operation. We need a
trade-off on the selecting of d.

5.3 Analysis of Failure Recovery

Theorem 4: If failures of replica nodes are independent
and random, then a failure of a replica node would cause

)(log CRNNO redundant updated messages at most, on
average.

proof: A failure of an ORN does not cause redundant
updated messages. If a CRN fails, we should rebuild the
sub tree and retransmit the updated content. In the worst
case, all the descendant CRNs of the failing CRN and their
ORNs have received updated content before, thus all the
retransmitted messages are redundant. Suppose that there

are
CRNN
NN CRN− ORNs attached to a CRN on average, and

the failure CRN resides in the i-th level in the updating tree

with probability of
CRN

i

i N
dp = . Then, on average, the total

number of redundant updated messages caused by a failure
of a replica node is rdtMsg# at most.

[]

[]

)1(log
)1(log

1

1
1

1
1

1
1

)1(#

1

1

1

1

1

1

1

1
1

−≈
−×

−
=

××
−

<

−××
−

=

−
−×=

 ×−+××=

∑

∑

∑

∑ ∑

−

=

−

=

−

=

−

−

=

−

=

CRNd

CRNd

h

i

h

CRN

h

i

ih

CRN

h

i

ih

CRN

i

h

i

ih

j
j

CRN

CRN
i

CRN
rdt

NO
N

d
d

d
Nd

d

dd
Nd

d
d
dd

N
d

d
N

NNp
N

NMsg

 ■

Thus, our failure recovery scheme also has a good
quality in terms of scalability.

6 Performance Evaluation

We evaluate our consistency maintenance method by

extensive simulation experiments. In the simulations, we
randomly choose 15 landmark nodes from the internet
topology. Node capacities are generated using a Pareto
distribution with the shape parameter 2=a and the scale
parameter 16=b . Thus, the expectation value of node
capacity is 32 and the standard deviation is infinite. The
basic search radius for locating nearby CRNs (R0) is set to
20 and the design parameter α is set to 32. The number
of backup CRNs of a ORN is 4, or 4=w . Finally, we set
the average out degree of the update tree to 8, or 8=d ,
and the size of update message is set to 1K bytes by
default.

In our simulations, if an ORN is two times more
powerful than its CRN, it is promoted as a CRN. And each
ORN determines if it is CRN capable every 10 unit time. In
practice, we should take uptime and other metrics into
consideration.

To evaluate the efficacy of our proximity-aware scheme,
two different transit-stub topologies are generated by
GT-ITM [21]. Both topologies have about 2,500 nodes. We
set the number of nodes in the P2P system as 2,400, and
replica nodes are chosen randomly from these nodes.
− ts2.5k-small: 4 transit domains each with 4 transit

nodes, 5 stub domains attached to each transit node,
and 30 nodes in each stub domain on average.

− ts2.5k-large: 70 transit domains each with 4 transit
nodes, 4 stub domains attached to each transit node,
and 2 nodes in each stub domain on average.

Intuitively, “ts2.5k-large” has a larger backbone and

sparser edge network (stub) than “ts2.5k-small”. And
“ts2.5k-large” represents a situation in which the replica
nodes scattered in the entire Internet. We assign different
distance to the edge according to the edge type: the
distance of intra-domain edge is 1 hop of unit of latency;
the distance of the edge between transit and stub domain is
5 hops of units of latency; and the distance of inter-transit
edge is 25 hops of units of latency.

We also compare our scheme with the gossip-based
hybrid push and pull scheme [13]. To achieve a fair
comparison, the node fanout in gossip-scheme is set to 8,
and updated content stop rumoring when 95% replica
nodes have received updated content. And the last thing
worth pointing out is that each data point in our plots
represents the average value of 10 trials.

6.1 Number of Chord replica nodes

The number of Chord replica nodes determines the

convergence time and failure recovery cost of an update
operation. Intuitively, increasing max cluster size (CS) will
increase the number of ORNs attached to a CRN and
decrease the number of CRNs. When CS is equal to 0, the
number of CRNs is equal to the number of total replica
nodes. Fig.5 illustrates the number of Chord replica nodes
while varying CS. The number of CRNs (CRNN) decreases
with the increasing of CS. However, increasing CS from 16
to 32 has little effect on CRNN . This is mainly because
there are not enough replica nodes to be grouped in one
cluster. We also see CRNN is about one order of magnitude
less than the total replica nodes and increases slowly with
the total number of replica nodes of a key. By default, in
our experiments, CS is set to 16.

6.2 Number of Messages for an update operation

Fig.6 shows the average number of messages per replica

node used for an update operation. For gossip-based
scheme, only the update messages are counted in. While
for our scheme, the Chord query messages for building the
update tree is also included. The gossip-based scheme uses
about 5.5 update messages per node, because a replica
node may receive update messages from several other
replica nodes. When CS is 0, or without hierarchical
structure, the number of messages used is about 3.5 on
average, two times more than the number of messages used
in our hierarchy scheme, which uses only about 1.5 on
average. This is mainly because much more Chord query
messages are used for building the update tree when CS is
0. Thus, our locality-aware scheme is more efficient than
gossip-base scheme in terms of the number of messages
used for an update operation.

6.3 Cost for an update operation

Fig.7 and Fig.8 illustrate the average cost per replica

node for an update operation in “ts2.5k-small” and
“ts2.5k-large”, respectively. The cost of an update
operation Cost(update) is defined as follows:

∑ =
×= u

i dstmessagesizeofupdateCost 1)()(,
where u is the number of messages for an update operation
and dst denotes message delivered at the distance of dst
hops. We set the size of update message as 1k and the size
of query message as 27 bytes (20 bytes for querying ID, 6
bytes for address information of source node and 1 byte for
marking). For our scheme, the Chord query messages for
building the update tree are also included when computing
the cost. We can see that for both schemes, the average cost
per replica node is almost unchanged for different scales.

Compared with gossip-based scheme, our locality-aware
scheme (16=CS) reduces the average cost per node by
about one order of magnitude, for both “ts2.5k-small” and
“ts2.5k-large”. When considering the scheme without
hierarchical structure (0=CS), the locality-aware scheme
(16=CS) is also more effective in terms of the update cost.
However, the cost reduction in “ts2.5k-large” is not as
significant as in “ts2.5k-small”. This is explained by the
fact that nodes are scattered in the entire network in
“ts2.5k-large”, and the number of replica nodes belonging
to the same domain is relatively small.

6.4 Fault Tolerance

When a CRN fails, we need to retransmit the updated
content. This may bring some redundant update messages.
From Fig.9, we see that the number of update messages
increases proportionally with the percentage of failed
replica nodes. Although the failures of replica nodes have a
relative small effect on the gossip-based scheme, the
number of update messages used by their scheme is still
two times more than ours, even when 20% replica nodes
fail.

6.5 Impact of replica node churn

In this set of experiments, we evaluate our scheme under

churn. First, there is no node failure. Then, we have 10%
replica nodes fail. Finally, we have some other replica
nodes join and the number of joining replica nodes is the
same as the number of failing replica nodes. For each
circumstance, the costs of update operations are computed
and the average values are plotted in Fig.10. We see that
after 10% replica nodes failing, the cost per replica node is
slightly higher than the cost in other two cases. This is
mainly because, when a CRN fails, its ORNs select other
CRNs as their new CRNs, and the new CRN is always
farther away than the original CRN. After replica nodes

Fig.5: CRNN with different scale and
different max cluster size.

Fig.6: Average number of messages
for an update operation. Including
the Chord query messages for
building the update tree.

Fig.7: Average cost per replica node
for an update operation in
“ts2.5k-small” (byte*hop)

Fig.8: Average cost per replica node for
an update operation in “ts2.5k-large”
(byte*hop)

Fig.9: Number of update messages
per node for an update operation
with 1000 replica nodes

Fig.10: Cost per replica node for an
update operation under churn
(16=CS)

rejoin, the cost per node drops back, even smaller than the
case without any failure. We can deduce that our scheme is
resilient to replica nodes churn.

7 Conclusions

This paper presents a novel, scalable consistency

maintenance scheme for heterogeneous P2P systems.
Replica nodes of a key are organized in a two-layer
locality-aware hierarchy model and the upper layer is
DHT-based. We mainly focus on fast delivering updated
contents to all the replica nodes with low cost consumption.
To achieve these goals, we group nearby replica nodes into
a cluster and build update trees dynamically to propagate
the updated contents. An efficient failure recovery
mechanism is also proposed to improve fault tolerance. On
average, for N replica nodes of a key with CRNN
upper-layer replica nodes, an update operation completes in

)(log2
CRNNO time and only)(NO updated messages are

required. Theoretical analyses and simulation results have
shown that our scheme has a good quality in terms of
scalability and fault tolerance. And specially, compared
with gossip-based scheme, our scheme reduces the cost
consumption by about one order of magnitude.

In future work, we will examine our scheme with other
capacity distributions and do more comparative studies
with other mechanisms.

Acknowledgement

This work is supported by the National Natural Science

Foundation of China under Grant No.60403031 and No.
90604015, by the National High-Tech Research and
Development Plan of China under Grant No.
2005AA121560, and funded by France Telecom R&D and
Research Institute of China Mobile.

References

[1] Waldman M, Rubin AD, Cranor LF. Publius: A robust,

tamper-evident, censorship-resistant, web publishing system.
In Proceedings of the 9th USENIX Security Symposium,
2000.

[2] Gnutella, http://gnutella.wego.com/
[3] KaZaA, http://www.kazaa.com
[4] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive Leases: A

Strong Consistency Mechanism for the World Wide Web. In
Proceedings of the IEEE Infocom 2000.

[5] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache
Consistency in a WAN. In Proceedings of USEITS, 1999.

[6] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H.
Weatherspoon, and J. Kubiatowicz. Maintenance-free global
data storage. IEEE Internet Computing, 5(5), 2001

[7] S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A scal-
able content-addressable network. In Proceedings of SIG-

COMM 2001, pages 161–172, San Diego, CA, USA, August
2001.

[8] K. Aberer and Z. Despotovic. Managing Trust in a
Peer-2-Peer Information System. In CIKM, 2001.

[9] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of SIGCOMM 2001,
pages 149–160, San Deigo, CA, USA, August 2001

[10] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I.
Stoica, Wide-Area Cooperative Storage with CFS, in Proc.
18th ACM Symp. Operating Systems Principles (SOSP), pp.
202-215, Oct. 2001.

[11] X. Chen, S. Ren, H. Wang, X. Zhang, SCOPE: Scalable
consistency maintenance in structured P2P systems. In
Proceedings of the IEEE INFOCOM 2005.

[12] Boon Thau Loo, Ryan Huebsch, Ion Stoica, Joseph M.
Hellerstein. The case for a hybrid P2P search infrastructure.
In Proceedings of the 3rd International Workshop on
Peer-to-Peer Systems (IPTPS04), San Diego, CA, February
2004.

[13] A. Datta, M. Hauswirth, and K. Aberer. Updates in highly
unreliable, replicated peer-to-peer systems. In Proceedings
of IEEE ICDCS’03, Providence, RI, USA, May 2003.

[14] J. Lan, X. Liu, P. Shenoy, and K. Ramamritham.
Consistency maintenance in peer-to-peer file sharing
networks. In Proceedings of IEEE WIAPP’03, San Jose, CA,
USA, June 2003.

[15] Zhenyu Li, Gaogang Xie, "A Distributed Load Balancing
Algorithm for Structured P2P Systems", 11th IEEE
Symposium on Computers and Communications
(ISCC'2006), Italy, June 26-29, 2006.

[16] Ruixiong Tian, Yongqiang Xiong, Qian Zhang, Bo Li, Ben Y.
Zhao and Xing Li. Hybrid Overlay Structure Based on
Random Walk. 4th International Workshop on Peer-To-Peer
Systems. Ithaca, New York, USA. February 2005.

[17] Saurabh Tewari and Leonard Kleinrock. Proportional
Replication in Peer-to-Peer Networks. In Proceedings of
IEEE INFOCOM 2006, April 2006

[18] Jin Liang and Klara Nahrstedt, RandPeer: Membership
Management for QoS Sensitive Peer-to-Peer Applications,
in Proceedings of IEEE Infocom 2006, April, 2006

[19] Z. Xu, C. Tang, and Z. Zhang. Building Topology-Aware
Overlays using Global Soft-State. In ICDSC'2003, May.
2003.

[20] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier,
Space Filling Curves and Their Use in Geometric Data
Structures , Theoretical Computer Science, 181, 1997, pp.
3-15.

[21] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
model an internetwork. In Proceedings of INFOCOM 1996,
volume 2, pages 594–602, San Francisco, CA, USA, March
1996

[22] Zhenyu Li, Gaogang Xie, Zhongcheng Li, Locality-aware
consistency maintenance for heterogeneous P2P systems.
Technical Report, Oct. 2006

