

A Semi-Distributed Axiomatic Game Theoretical Mechanism for Replicating
Data Objects in Large Distributed Computing Systems

Samee Ullah Khan and Ishfaq Ahmad

Department of Computer Science and Engineering
University of Texas, Arlington, TX 76019, U.S.A.

{sakhan, iahmad}@cse.uta.edu

Abstract

Replicating data objects onto servers across a system
can alleviate access delays. The selection of data objects
and servers requires solving a constraint optimization
problem, which is NP-complete in general. A majority of
conventional replica placement techniques falter on
issues of scalability or solution quality. To counteract
such issues, we propose a game theoretical replica
placement technique, in which computational agents
compete for the allocation or reallocation of replicas
onto their servers in order to reduce the user perceived
access delays. The technique is based upon six well-
defined axioms, each guaranteeing certain basic game
theoretical properties. This eccentric method of designing
game theoretical techniques using axioms is unique in the
literature and takes away from the designers the
cumbersome mathematical details of game theory. The
distinctive feature of these axioms is that when amassed
together, their individual properties constrict into one
system-wide performance enhancement property, which
in our case is the reduction of access time. The control of
the proposed technique is “semi-distributed” in nature,
wherein all the heavy processing is done on the servers of
the distributed system and the central body is only
required to take a binary decision: (0) not to replicate or
(1) to replicate. This semi-distributed approach makes the
technique scalable and helps solutions to converge in a
fast turn-around time without loosing much of the
solution quality. Experimental comparisons are made
against: 1) branch and bound, 2) greedy, 3) genetic, 4)
Dutch auction, and 5) English auction. As attested by the
results, the proposed technique maintains superior
solution quality in terms of lower communication cost
and reduced execution time.

1. Introduction

Numerous methods have been proposed that address

1-4244-0910-1/07/$20.00 ©2007 IEEE.

the data object replication problem in large distributed
computing systems. (For a recent survey see [20].)
However, all of the reported methods operate under the
generic assumption that the servers cooperate with each
other in order to attain system-wide benefits. For instance,
in a content distribution network (CDN) the distribution
system moves contents to the replica servers [12], [13],
 [14]. This distribution system acts as a centralized
decision making body, and makes decisions on where and
what to replicate by observing the system’s parameters
such as server load, storage capacity, communication
latencies, etc. Although the Internet encourages
distributed control, it requires that the overall system
performance criteria be met. Managing a large distributed
system, such as the Internet, through a single entity would
require huge amounts of data processing in order to find a
feasible replica schema and would be vulnerable to
system failures [6]. Consequently, we propose a “semi-
distributed” [1] (a hybrid of both the centralized and
decentralized approaches) replication technique, by which
all the heavy processing is done on the servers of the
distributed system and the central body is only required to
take a binary decision: (0) not to replicate or (1) to
replicate. This leads to a simple yet an efficient scheme
with enhanced scalability and low complexity that grows
in proportion to the number of servers in the system.

For the proposed semi-distributed replica allocation
technique, we abstract the Internet as an agent based
model wherein agents continuously compete for
allocation and reallocation of data objects. An agent is a
computational entity that is capable of autonomous
behaviour in the sense of being aware of the options
available to it when faced with a decision making task
related to its domain of interest [28]. In such a
competitive model, there is no a-priori motivation for
cooperation and the agents due to their localized view of
the problem domain are encouraged to take decisions
individually that are beneficial only to themselves. To
cope with such individualism and localized optimization,
new mechanisms based on novel oracles need to be
derived. The objective of the mechanisms should be to
allow the agents to take decisions that are based on their

local information, which essentially translate into the
overall system performance enhancement.

This paper aims to formally specify a semi-
distributed game theoretical replica allocation
mechanism, in which autonomous agents compete to
replicate data objects in a non-cooperative game. Briefly,
the mechanism works as follows. It first asks all the
agents to provide a list of objects that are beneficial for
replication onto their servers. Having obtained this data,
the mechanism makes the allocation and informs the
agents. For every allocation the mechanism makes a
payment to each agent (to compensate for hosting
object(s)). Each agent’s goal is to provide the mechanism
with a list of objects that maximize its benefit. The
mechanism on the other hand, is designed such that, the
agents maximize their benefit only if the reported list
contains objects that when replicated, brings the overall
system communication cost to the minimum. Thus, the
agents which are competing against each other in a non-
cooperative game collaborate unknowingly to optimize
the overall system goal.

The major contributions of this paper are as follows:
1. We derive a general purpose axiomatic game

theoretical mechanism. This mechanism ensures that
although, the agents use self-beneficial strategies, yet
the effect is translated into a global optimization.

2. The essence of this mechanism is captured in six
well-defined axioms that exhibit properties of global
optimality, truthfulness, and utilitarianism.

3. The distinctive feature of these axioms is that when
amassed together, their individual properties constrict
into one system-wide performance enhancement
property.

4. We use these axioms to obtain an efficient algorithm
for the data replication problem.
The remainder of this paper is organized as follows.

In Section 2 we present a formal description of the data
replication problem. Section 3 focuses on describing the
generalized axiomatic game theoretical mechanism along
with its properties. Section 4 concentrates on modeling
the mechanism for the data replication problem. The
experimental results, related work, and concluding
remarks are provided in Sections 5, 6, and 7, respectively.

2. The Data Replication Problem

Consider a distributed system comprising M servers,

with each server having its own processing power,
memory (primary storage) and media (secondary storage).
Let Si and si be the name and the total storage capacity (in
simple data units e.g. blocks), respectively, of server i
where 1 ≤ i ≤ M. The M servers of the system are
connected by a communication network. A link between
two servers Si and Sj (if it exists) has a positive integer
c(i,j) associated with it, giving the communication cost

for transferring a data unit between servers Si and Sj. If
the two servers are not directly connected by a
communication link then the above cost is given by the
sum of the costs of all the links in a chosen path from
server Si to the server Sj. Without the loss of generality we
assume that c(i,j) = c(j,i). Let there be N objects, each
identifiable by a unique name Ok and size in simple data
unites ok where 1 ≤ k ≤ N. Let rk

i and wk
i be the total

number of reads and writes, respectively, initiated from Si
for Ok.

Our replication policy assumes the existence of one
primary copy for each object in the network. Let Pk, be
the server which holds the primary copy of Ok, i.e., the
only copy in the network that cannot be de-allocated,
hence referred to as primary server of the k-th object.
Each primary server Pk, contains information about the
whole replication scheme Rk of Ok. This can be done by
maintaining a list of the servers where the k-th object is
replicated at, called from now on the replicators of Ok.
Moreover, every server Si stores a two-field record for
each object. The first field is its primary server Pk and the
second the nearest neighborhood server NNk

i of server Si
which holds a replica of object k. In other words, NNk

i is
the server for which the reads from Si for Ok, if served
there, would incur the minimum possible communication
cost. It is possible that NNk

i = Si, if Si is a replicator or the
primary server of Ok. Another possibility is that NNk

i = Pk,
if the primary server is the closest one holding a replica of
Ok. When a server Si reads an object, it does so by
addressing the request to the corresponding NNk

i. For the
updates we assume that every server can update every
object. Updates of an object Ok are performed by sending
the updated version to its primary server Pk, which
afterwards broadcasts it to every server in Rk.

For the data replication problem (DRP) under
consideration, we are interested in minimizing the total
Object Transfer Cost (OTC) due to object movement.
There are two components affecting OTC. The first
component of OTC is due to the read requests. Let Rk

i
denote the total OTC, due to Sis’ reading requests for
object Ok, addressed to the nearest server NNk

i. This cost
is given by:

(),i i i
k k k kR r o c i NN= , (1)

where NNk
i = {Server j | j∈Rk ^ min c(i,j)}. The second

component of OTC is the cost arising due to the writes.
Let Wk

i be the total OTC, due to Sis’ writing requests for
object Ok, addressed to the primary server Pk. This cost is
given by the following equation:

() ()
,

, ,i i
k k k k k

j R j ik
W w o c i P c P j

∀∈ ≠

= + ∑ . (2)

Here, we made the indirect assumption that in order to
perform a write we need to ship the whole updated
version of the object. This of course is not always the

case, as we can move only the updated parts of it
(modeling such policies can also be done using our
framework). The cumulative OTC, denoted as Coverall, due
to reads and writes is given by:

 ()1 1
M N i i

overall k ki kC R W= == +∑ ∑ . (3)

Let Xik = 1 if Si holds a replica of object Ok, and 0
otherwise. Xiks define an M×N replication matrix, named
X, with boolean elements. Equation 3 is now refined to:

() (){ }

() () ()1

1 1

1 min , | 1

, ,

i
ik k k jk

Mi x
k k k ik k k kx

M N
i k

X r o c i j X

w o c i P X w o c i P
X

=

= =

 − =

+ +

=
∑

∑ ∑ . (4)

Servers which are not the replicators of object Ok
create OTC equal to the communication cost of their
reads from the nearest replicator, plus that of sending
their writes to the primary server of Ok . Servers
belonging to the replication scheme of Ok, are associated
with the cost of sending/receiving all the updated versions
of it. Using the above formulation, the DRP can be
defined as: “Find the assignment of 0, 1 values in the X
matrix that minimizes Coverall, subject to the storage
capacity constraint: 1 (1)N

iik kk X o s i M= ≤ ∀ ≤ ≤∑ , and subject to
the primary copies policy: 1 (1)P kk

X k N= ∀ ≤ ≤ .”

3. Axiomatic Game Theoretical Mechanism

In this section we use various building blocks to

construct a generalized axiomatic game theoretical
mechanism. We begin by defining a mechanism [3],
which has two components: a) the algorithmic output, and
b) the agents’ valuation functions.

Definition 1 ([3]): A mechanism is in which:
1. The system consists of M agents. Each agent i

has some private data ti∈ℜ . This is termed as
the agent’s true data or true value. Everything
else in the mechanism is public knowledge.

2. The algorithmic output maps to each true data
vector t = t1…tM a set of allowed outputs x∈X,
where x = x1…xM.

3. Each agent i’s preferences are given by a real
valued function vi(ti,x) called valuation.

Remarks: The valuation of an agent represents the
quantification of its value from the output x, when its true
data is ti in terms of some predefined currency. For
example, if the output of the mechanism is x and it hands
the agent pi amount of payment, then its utility becomes:
ui = pi + vi(ti,x).

We now focus on identifying a mechanism that
allows the algorithmic output to optimize a given
objective function. Below we give a refined definition of
an optimization (minimization in our case) oriented
mechanism.

Definition 2 ([3]): An optimization oriented
mechanism is one where:

1. The algorithmic output is given by a positive real
valued objective function g(t,x), and

2. a set of feasible outputs X.
Thus, we require an output x∈X that minimizes g,

such that for any other output x’∈X, g(t,x) ≤ g(t,x’). This
is fine as long as we can find a mechanism that can solve
a given problem by assuring that the required algorithmic
output occurs, when all the agents choose strategies that
maximize their utility functions (a min-max procedure).
Let a-i denote a vector of strategies, not including agent i,
i.e, a-i = (a1,…,ai-1,ai+1,…,aM). We can define a
mechanism that is able to solve a utilitarian based
minimization problem as:

Definition 3 ([24]): A mechanism (m = (x(·),p(·))) is
composed of a) an algorithmic output function x(·), and b)
the payment function p(·). The mechanism should have
the following properties:

1. The mechanism allows for each agent i a set of
strategies Ai. It is up to the agent what strategy
(ai∈Ai) to adopt in order to have its utility
function optimized.

2. The mechanism should provide an algorithmic
output x derived from the output function, i.e., x
= x(ai…aM).

3. In order to motivate the agents, the mechanism
should provide a payment pi = pi(a1…aM) to each
of the M agents.

Remarks: Recall that x = x1…xM. It is then not
difficult to see that agent i’s algorithmic output can easily
be obtained once the mechanism identifies the output x. It
is possible that agents due to their selfish nature may alter
the output of the algorithm in order to fervently gather
more resources. Hence, we are required to enforce the
mechanism to handle the special case of selfish agents by
adding the following property to Definition 3.

Property 4: The mechanism should be a
representation of dominant strategies, and this is possible
if for each agent i and each ti there exists a dominant
strategy (ai∈Ai), such that for all possible strategies of
the other agents a-i, ai maximizes agent i’s utility.

Remarks: Literature survey reveals that the simplest
of all the mechanisms that exhibits dominant strategies is
the one where the agents’ strategies are to report their true
data. Such types of mechanisms are called truthful
mechanisms, and they are based on the revelation
principle [11]. This principle reports that for a given
optimization problem, if there exists a truthful mechanism
then pareto-optimality is guaranteed (by default). To
align ourselves with Property 4 of Definition 3, we show
that truth-telling is indeed a dominating strategy.

Lemma 1: For agents to report their type (truth-
telling) is a dominating strategy.

Proof: Let (ai,a-i) denote a vector of strategies of all
the M agents, i.e., (ai,a-i) = (a1…aM). Truth-telling would
mean that ai = ti. Then, for every ai’∈Ai, if we define x =

x(ai,a-i), x’ = x(ai’,a-i), pi = pi(ai,a-i), and pi’ = pi’(ai’,a-i),
then pi+vi(ti,x) ≥ pi’+vi(ti,x’), i.e., ui ≥ ui’. ■

We can use this result to couple it with a useful
theorem reported in [23]. This will characterize the
mechanism as truthful. Below we state the theorem.

Theorem 1 ([23]): A mechanism that implements a
given problem with dominant strategies is truthful. ■

In Definition 3 we stated (Property 1) that a
mechanism m = (x(·),p(·)) allows the agents to maximize
their utilities. Since utilities enable the agents to express
their preferences, it is important to identify an oracle that
does exactly that. Literature survey revealed the following
result, which we append as property 5 to the property list
of Definition 3.

Theorem 2 ([24]): A mechanism is called utilitarian
if its objective function satisfies g(x,t) = ∑ivi(ti,x). ■

Property 5: The mechanism should have an
objective function that satisfies g(x,t) = ∑ivi(ti,x).

The above property is so useful that it can help us
identify the two important components of a game
theoretical mechanism. We state:

Theorem 3 ([10]): A truthful mechanism m =
(x(t),p(t)) belongs to the class of minimization utilitarian
mechanisms if and only if:

1. x(t) ∈ argminx(∑ivi(ti,x).
2. pi(t) = ∑j≠ivj(tj,x(t)) + hi(t-i), where hi(·) is an

arbitrary function of t-i. ■
Remarks: Note that conditions 1 and 2 of Theorem 3

are the exact mathematical derivations of Properties 2 and
3 of Definition 3, respectively. Moreover, the mechanism
stated in Theorem 3 takes in as argument t for both the
algorithmic output and the payment function, i.e., m =
(x(·),p(·)) is now written as m = (x(t),p(t)). This is because
of the mergence of Theorems 1 and 2. For convenience
we shall now state the truthful mechanism in the
axiomatic form (Figure 1).

We aim to use the above (discussed) axiomatic game
theoretical mechanism to find solutions for the data
replication problem (Section 3). The six axioms defined
above will act as a cast for the data replication problem.
In essence, we want a replica allocation mechanism that
solves the data replication problem with the properties
guaranteed by the six axioms.

4. Axiomatic Game Theoretical Replica
Allocation Mechanism (AGT-RAM)

The directions laid down in Section 3 will be used to

apply the axiomatic game theoretical mechanism to the
data replication problem.

Ingredients (Axiom 1): The distributed system
describe in Section 2 is considered and it consists of M
agents. That is, each server is represented by an agent.

Assume for the time being that the feasible output (of the
algorithm exists, and) are all partitions x = x1…xM of the
objects to the agents, where xi is the set of objects
allocated to agent i. Also assume that each agent i’s utility
function ui exists. (In the subsequent text it will be clear
what exactly x and ui are.)

Agent disposition (Axiom 2): An agent holds two
key elements of data a) the available server capacity bi,
and b) the cost of replication or valuation (CoRk

i) of
object Ok to the agent’s server i. There are three possible
cases:

1. DRP [π]: Each agent i holds the cost to replicate
CoRk

i=ti associated with each object Ok, where as
the available server capacity and everything else
is public knowledge.

2. DRP [σ]: Each agent i holds the available server
capacity bi=ti, where as CoRk

i and everything
else is public knowledge.

3. DRP [π,σ]: Each agent i holds both the cost of
replication and the server capacity {CoRk

i,bi} =
ti, where as everything else is public knowledge.

Remarks: Intuitively, if agents know the available
server capacities of other agents, that gives them no
advantage whatsoever. However, if they come about to
know their CoRk

i then they can modify their valuations
and alter the algorithmic output. Note that an agent can
only calculate CoRk

i via the frequency of read and writes.
Everything else such as the network topology, latency on
communication lines, and even the server capacities can
be public knowledge. Therefore, DRP[π] is the only
natural choice.

Description of valuation (CoRk
i): We can write

CoRk
i as follows:

Axiomatic Game Theoretical Mechanism

Axiom 1 (Ingredients): A mechanism should have a) an algorithmic
output specification, and b) agents’ utility functions.

Axiom 2 (Agent disposition): Every agent has a private value termed
as true data, everything else is public knowledge. This value along
with a valuation function should reveal the preferences of the agent.

Axiom 3 (Truthful): The mechanism should have agents that project
their dominant strategies.

Axiom 4 (Utilitarian): The mechanism’s objective function should be
to sum the agents’ valuations.

Axiom 5 (Motivation): The mechanism should reward the agents with
a payment. These payments are made in accordance to a specified
function based on the algorithmic output.

Axiom 6 (Algorithmic output): The mechanism’s algorithmic output
should be a function that aids the agents to execute their preferences.

Figure 1: Axiomatic Game Theoretical Mechanism.

()()

() ()()

1

0

,
,

, ,

i
k iXk

iXk

k
i k kk j R i jk

k k k
i i ik k kk

CoR w o c P j

r o c i NN w o c i P

=

=

∈
∀∈ ≠

∈

=

+ +

∑ ∑

∑

, (5)

which implies that if an agent replicates Ok (denoted in
Equation 5 as k∈Xi

k=1), then the cost incurred due to
reads is 0 = ri

kokc(i,NNi
k) since NNi

k = i. The cost incurred
due to local writes (or updates) is equal to zero since the
copy resides locally, but whenever Ok is updated
anywhere in the network, agent i has to continuously
update Ok’s contents locally as well. Therefore, the
aggregate cost of writes is equivalent to wi

kok Σ∀(j∈Rk), i≠j
c(Pk,j). On the other hand if an agent does not replicate Ok
(denoted in Equation 5 as k ∈ Xi

k=0), then the cost
incurred due to reads is equal to ri

kokc(i,NNi
k), and the

cost incurred due to writes is equal to wi
kokc(i,Pk) since it

only has to send the update to the primary server which
then broadcasts the update based on Rk to the agents who
have replicated the object.

Remarks: Equation 5 (above) captures the dilemma
faced by an agent i when considering replicating Ok. If i
replicates Ok then it brings down the read cost to zero, but
now it has to keep the contents of Ok up to date. If i does
not replicate Ok, then it reduces the overhead of keeping
the contents up to date, but now it has to redirect the read
requests to the nearest neighborhood server which holds a
copy of Ok.

Truthful (Axiom 3): From Lemma 1, we know that
truth-telling is a dominate strategy. From Axiom 2
(above) we know that ti = CoRk

i.
Utilitarian (Axiom 4): We proceed in two steps.
1. Let y = {xi,o} and y’ = {xi,o’}. In the context of

the data replication problem, the valuation of an
agent is give as vi(x,ti) = ∑k∈xiCoRk

i. This means
that when an agent i is asked to express its
preference over two objects o and o’, it can do so
by calculating the object impact factor, i.e., the
agent expresses its preference as min {∑k∈yCoRk

i
, ∑k∈y’CoRk

i }.
2. A utilitarian mechanism is one that has an

objective function that is the sum of all agents’
valuations, i.e., g(x,t) = ∑ivi(x,ti) = ∑i∑k∈xiCoRk

i.
We can see that Axiom 4 (Step 2) represents the data

replication problem in its exact form as described in
Equation 4. For a minute, let us ponder over both the
representations. Equation 4 expresses the fact that in the
data replication problem we have to find object
allocations such that the object transfer cost (OTC) is
minimized. Step 2 (in conjunction with Step 1) of Axiom
4 does exactly the same, i.e., find the object allocations xi
such that the total cost of replication CoRk

i is minimized
Motivation (Axiom 5): The motivational payment

for each agent i is defined as pi(t) = ∑k∈xi(t)mini’≠iti’=

∑k∈xi(t)mini’≠iCoRk
i’, i.e., for each object allocated to it, the

agent is given payment equal to the overall second best
cost of replication of any object to any server (a very
strong incentive). The payment procedure also answers
one of the pending questions of Axiom 1 (utility
function), i.e., ui = ∑k∈xi(t)mini’≠iti’+vi(ti,x).

Remarks: This motivational payment is need by the
agents to cover the cost of hosting the object onto their
server. This payment also ensures that the agents do
indeed report true data. We justify this payment by
analyzing the following cases:

1. Over projection: Agents in anticipation of more
revenue over project their true data, but this does
not help, as the agent who is allocated the object
gets the second best payment.

2. Under projection: If every agent under projects
their true data, that does not help either as the
revenue would drop in proportion to the under
projection.

3. Random projection: In this case the deserving
agent would be at loss. Therefore, it is unlikely
that a selfish agent would agree to project
random true data.

For more details on the optimality of such type of
payment procedure see [27]. In that paper, the authors
have identified many such scenarios, but all fail to exploit
this payment option.

Algorithmic output (Axiom 6): We now define an
algorithm that actually aids the agents to execute their
preferences. In the context of the data replication
problem, the mechanism after gathering the true data from
every agent, decides which object to be allocated to
which agent. The mechanism is described in Figure 2.
This also answers the pending question of Axiom 1
(algorithmic output function). Before we describe the
algorithm, the data replication problem in the axiomatic
game theoretical mechanism form is given as follows:

Find all the feasible outputs of the mechanism which
are all the partitions x={x1…xM}, where x is the entire
replica allocation of the distributed system, and xi is the
set of replicas allocated to server i.

1. The objective function of the mechanism is g(x,t)
= ∑ivi(x,ti).

2. Agent i’s valuation is vi(x,ti) = ∑k∈xiti.
3. Agent i’s true data is ti = CoRk

i.
4. Agent i’s payment is pi(t) = ∑k∈xi(t)mini’≠iti’.
5. Agent i’s utility function is ui = pi + vi(ti,x).
Remarks: In the above problem formulation we did

not mention that: 1) the agent i’s valuation is actually to
obtain the object impact (minimum cost of replication), 2)
the agent i’s server capacity constraint, and 3) the primary
object constraints (both 2 and 3 are captured by xi), but it
is to be understood that they are indirectly embedded into
the problem formulation.

Description of Algorithm: We maintain a list Li at

each server. This list contains all the objects that can be
replicated by agent i onto server Si. We can obtain this list
by examining the two constraints of the DRP. List Li
would contain all the objects that have their size less then
the total available space bi. Moreover, if server Si is the
primary host of some object k’, then k’ should not be in
Li. We also maintain a list LS containing all servers that
can replicate an object, i.e., Si∈LS if Li≠NULL. The
algorithm works iteratively. In each step the mechanism
asks all the agents to send their preferences (first
PARFOR loop). Each agent i recursively calculates the
true data of every object in list Li. Each agent then reports
the dominant true data (line 08) to the mechanism. The
mechanism receives all the corresponding entries, and
then chooses the best dominant true data. This is
broadcasted to all the agents, so that they can update their
nearest neighbor table NNk

i, which is shown in Line 20
(NNi

OMAX). The object is replicated and payments made to
the agent. The mechanism progresses forward till there
are no more agents interested in acquiring any data for
replication.

The above discussion allows us to deduce the
following two results about the mechanism.

Theorem 4: In the worst case AGT-RAM takes
O(MN2) time.

Proof: The worst case scenario is when each server
has sufficient capacity to store all objects. In that case, the
while loop (Line 01) performs MN iterations. The time
complexity for each iteration is governed by the two
PARFOR loops (Lines 03 and 19). The first loop uses at
most N iterations, while the send loop performs the
update in constant time. Hence, we conclude that the
worst case running time of the mechanism is O(MN2). ■

Theorem 5: AGT-RAM is a truthful mechanism.
Proof: The algorithmic output is an allocation that

minimizes the utilitarian function ∑ivi(x,ti). Let h-I be
∑kmini’≠iti’, then ∑i’≠ivi’(x,ti’)+h-i is exactly the
mechanism’s payment function. It is also evident that
truth-telling is the only dominate strategy. For simplicity
let us consider the case for only one object. The argument
for k>1 is similar. Let d denote the declarations and t their
real types. Consider the case where di≠ti (i=1,2). If di>ti,
then for d3-i such that di>d3-i>ti, the utility for agent i is ti-
di<0, which should have been zero in the case of truth-
telling. ■

5. Experiments, Results and Discussions

We performed experiments on a 440MHz Ultra 10

machine with 512MB memory. The experimental
evaluations were targeted to benchmark the placement

Axiomatic Game Theoretical Replica Allocation Mechanism (AGT-RAM)

Initialize:
LS, Li, Tk

i, Mech, MT

01 WHILE LS ≠ NULL DO
02 OMAX = NULL; MT = NULL; Pi = NULL;
03 PARFOR each Si∈LS DO
04 FOR each Ok∈ Li DO
05 Tk

i = compute (tk
i); /*compute the valuation corresponding to the desired object*/

06 ENDFOR
07 tk

i = argmaxk(Tk
i);

08 SEND tk
i to Mech; RECEIVE at Mech tk

i in MT;
09 ENDPARFOR
10 OMAX = argmaxk(MT); /*Choose the global dominate valuation*/
11 DELETE k from MT;
12 Pi = argmaxk(MT); /*Calculate the payment*/
13 BROADCAST OMAX;
14 SEND Pi to Si; /*Send payments to the agent who is allocate the object OMAX*/
15 Replicate OOMAX;
16 bi=bi - ok; /*Update capacity*/
17 Li = Li - Ok; /*Update the list*/
18 IF Li = NULL THEN SEND info to Mech to update LS = LS - Si; /*Update mechanism players*/
19 PARFOR each Si∈LS DO
20 Update NNi

OMAX /*Update the nearest neighbor list*/
21 ENDPARFOR /*Get ready for the next round*/
22 ENDWHILE

Figure 2: Pseudo-Code for Axiomatic Game Theoretical Replica Allocation Mechanism (AGT-RAM).

policies. AGT-RAM was implemented using Ada and
Ada GNAT’s distributed systems annex GLADE [25].

To establish diversity in our experimental setups, the
network connectively was changed considerably. We
used GT-ITM [2] for the network topologies, the
procedure for which is as follows: A random graph
G(M,P(edge = p)) with 0 ≤ p ≤ 1 contains all graphs with
nodes (servers) M in which the edges are chosen
independently and with a probability p. The pure random
topologies were obtained with p = {0.4, 0.5, 0.6, 0.7,
0.8}. In each of these topologies the distance between two
serves was reversed mapped to the communication cost of
transmitting a 1kB of data and the latency on a link was
assumed to be 2.8×10-8 m/s (copper wire).

To evaluate the replica allocation methods under
realistic traffic patterns, we used the access logs collected
at the Soccer World Cup 1998 web server [2]. Each
experimental setup was evaluated thirteen times, i.e., only
the Friday (24 hours) logs from May 1, 1998 to July 24,
1998. (The Friday logs have the heaviest traffic compared
to any other day of the week.) To process the logs, we
wrote a script that returned: only those objects which
were present in all the logs (25,000 in our case), the total
number of requests from a particular client for an object,
the average and the variance of the object size. From this
log we chose the top five hundred clients (maximum
experimental setup). A random mapping was then
performed of the clients to the nodes of the topologies.
Note that this mapping is not 1-1, rather 1-M. This gave
us enough skewed workload to mimic real world
scenarios. It is also worthwhile to mention that the total
amount of requests entertained for each problem instance
was in the range of 1-2 million. The primary replicas’
original server was mimicked by choosing random
locations. The capacities of the servers C% were
generated randomly with range from Total Primary
Object Sizes/2 to 1.5×Total Primary Object Sizes. The
variance in the object size collected from the access logs
helped to instill enough miscellanies to benchmark object
updates. The updates were randomly pushed onto
different servers, and the total system update load was
measured in terms of the percentage update requests U%
compared that to the initial network with no updates.

Since the access logs are of the year 1998, we first
use Inet [5] topology generator to estimate the number of
nodes in the network. This number came up to be 3718,
i.e., there were 3718 AS-level nodes in the Internet at the
time when the Soccer World Cup 1998 was being played.
Therefore, we set the upper bound on the number of
servers in the system at M = 3718.

Comparative algorithms: For comparison, we
selected five various types of replica placement
techniques. To provide a fair comparison, the
assumptions and system parameters were kept the same in
all the approaches. For fine-grained replication, the

algorithms proposed in [15], [16], [19], [21], and [26] are
the only ones that address the problem domain similar to
ours. We select from [26] the greedy approach (Greedy)
for comparison because it is shown to be the best
compared with 4 other approaches (including the
proposed technique in [19]); thus, we indirectly compare
with 4 additional approaches as well. Algorithms reported
in [16] (the efficient branch and bound based technique
Aε-Star), [15] (Dutch (DA) and English auctions (EA))
and [21] (Genetic based algorithm (GRA)) are also
among the chosen techniques for comparisons.
Unfortunately, space limitations do no permit us to
provide the detailed workings of these algorithms;
however, we encourage the readers to obtain an insight on
the comparative techniques from the referenced papers.

Performance metric: The solution quality was
measured in terms of network communication cost (OTC
percentage) that was saved under the replica scheme
found by the replica allocation methods, compared to the
initial one, i.e., when only primary copies exists.

Comparative analysis: We observe the effects of
increase in storage capacity. An increase in the storage
capacity means that a large number of objects can be
replicated. Replicating an object that is already
extensively replicated, is unlikely to result in significant
traffic savings as only a small portion of the servers will
be affected overall. Moreover, since objects are not
equally read intensive, increase in the storage capacity
would have a great impact at the beginning (initial
increase in capacity), but has little effect after a certain
point, where the most beneficial ones are already
replicated. This is observable in Figure 3, which shows
the performance of the algorithms. GRA once again
performed the worst. The gap between all other
approaches was reduced to within 15% of each other.
AGT-RAM and Greedy showed an immediate initial
increase (the point after which further replicating objects
is inefficient) in its OTC savings, but afterward showed a
near constant performance. GRA although performed the
worst, but observably gained the most OTC savings
(49%) followed by Greedy with 44%. Further
experiments with various update ratios (5%, 10%, and
20%) showed similar plot trends. It is also noteworthy
(plots not shown in this paper due to space restrictions)
that the increase in capacity from 10% to 18%, resulted in
4 times (on average) more replicas for all the algorithms.

Next, we observe the effects of increase in the read
and write frequencies. Since these two parameters are
complementary to each other, we describe them together.
To observe the system utilization with varying read/write
frequencies, we kept the number of servers and objects
constant. Increase in the number of reads in the system
would mean that there is a need to replicate as many
object as possible (closer to the users). However, the
increase in the number of updates in the system requires

the replicas be placed as close as to the primary server as
possible (to reduce the update broadcast). This
phenomenon is also interrelated with the system capacity,
as the update ratio sets an upper bound on the possible
traffic reduction through replication. Thus, if we consider
a system with unlimited capacity, the “replicate
everywhere anything” policy is strictly inadequate. The
read and update parameters indeed help in drawing a line
between good and marginal algorithms. The plot in
Figure 4 shows the results of read/write ratio against the
OTC savings. A clear classification can be made between
the algorithms. AGT-RAM and Greedy incorporate the

increase in the number of reads by replicating more
objects and thus savings increased up to 88%, while GRA
gained the least of the OTC savings of up to 42%. To
understand why there is such a gap in the performance
between the algorithms, we should recall that GRA
specifically depends on the initial selection of gene
population (for details see [21]). Moreover, GRA
maintains a localized network perception. Increase in
updates result in objects having decreased local
significance (unless the vicinity is in close proximity to
the primary location). On the other hand, AGT-RAM,
DA, EA, Aε-Star and Greedy never tend to deviate from

Increase in Server Capacity

O
TC

 S
av

in
gs

 (%
)

M=3718; N=25,000; R/W=0.95

10% 15% 20% 25% 30% 35% 40%
0

5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%

Legend
GRA
Aε-Star
Greedy
AGT-RAM
DA
EA

R/W (Ratio)

O
TC

 S
av

in
gs

 (%
)

M=3718; N=25,000; C=45%

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

Legend
GRA
Aε-Star
Greedy
AGT-RAM
DA
EA

Figure 3: OTC savings versus server capacity. Figure 4: OTC savings versus read/write ratio.

Table 1: Running time of the replica placement methods in seconds [C=45%, R/W=0.85].
Problem Size Greedy GRA Aε-Star AGT-RAM DA EA Improvement brought by AGT-RAM (%)

M=2500, N=15,000 310.14 491.00 399.63 186.12 345.14 356.44 39.98 [=((310.14-186.12)/310.14)×100]
M=2500, N=20,000 330.75 563.25 442.66 202.85 354.94 368.94 38.67 [=((330.75-202.85)/330.75)×100]
M=2500, N=25,000 357.74 570.02 465.52 242.23 368.43 394.57 32.29 [=((357.74-242.23)/357.74)×100]
M=3000, N=15,000 452.22 671.68 494.60 285.43 475.60 489.76 36.88 [=((452.22-285.43)/452.22)×100]
M=3000, N=20,000 467.65 726.75 498.66 286.75 492.69 531.45 38.68 [=((467.65-286.75)/467.65)×100]
M=3000, N=25,000 469.86 791.26 537.56 305.64 501.51 543.08 34.95 [=((469.86-305.64)/469.86)×100]
M=3718, N=15,000 613.27 883.71 753.87 370.43 668.25 678.61 39.59 [=((613.27-370.43)/613.27)×100]
M=3718, N=20,000 630.39 904.20 774.31 398.87 694.68 702.15 36.72 [=((630.39-398.87)/630.39)×100]
M=3718, N=25,000 646.98 932.38 882.43 405.76 715.02 745.92 37.28 [=((646.98-405.76)/646.98)×100]

Table 2: Average OTC (%) savings under some randomly chosen problem instances.

Problem Size Greedy GRA Aε-Star AGT-RAM DA EA Improvement brought by AGT-RAM (%)
M=100, N=1000 [C=20%,R/W=0.75] 71.46 85.77 86.28 88.12 73.14 77.56 2.08 [=((88.12-86.28)/88.12)×100]
M=200, N=2000 [C=20%, R/W=0.80] 84.29 78.30 79.02 84.95 73.56 76.15 0.78 [=((84.95-84.29)/84.95)×100]
M=500, N=3000 [C=25%, R/W=0.95] 68.50 70.97 67.53 72.15 70.15 68.14 1.64 [=((72.15-70.97)/72.15)×100]

M=1000, N=5000 [C=35%, R/W=0.95] 88.09 67.56 78.24 88.21 70.86 66.80 0.14 [=((88.21-88.09)/88.21)×100]
M=1500, N=10,000 [C=25%, R/W=0.75] 89.34 52.93 76.11 90.25 62.48 74.13 1.01 [=((90.25-89.34)/90.25)×100]
M=2000, N=15,000 [C=30%, R/W=0.65] 67.93 51.02 52.42 73.25 66.19 63.84 7.26 [=((73.25-67.93)/73.25)×100]
M=2500, N=15,000 [C=25%, R/W=0.85] 77.35 71.75 73.59 83.21 70.36 72.01 7.04 [=((83.21-77.35)/83.21)×100]
M=3000, N=20,000 [C=25%, R/W=0.65] 76.22 65.89 73.04 83.01 72.16 70.53 8.18 [=((83.01-76.22)/83.01)×100]
M=3500, N=25,000 [C=35%, R/W=0.50] 66.04 59.04 67.01 72.15 62.20 63.57 7.12 [=((72.15-67.01)/72.15)×100]
M=3718, N=25,000 [C=10%, R/W=0.40] 76.34 63.19 76.02 77.12 75.91 76.10 1.01 [=((77.12-76.34)/77.12)×100]

their global (or social) view of the problem.
Lastly, we compare the termination time of the

algorithms. Various problem instances were recorded
with C=45% and R/W=0.85. The entries in Table 1 made
bold represent the fastest time recorded over the problem
instance. It is observable that AGT-RAM terminated
faster than all the other techniques, followed by Greedy,
DA, EA, Aε-Star, and GRA.

Table 2 shows the quality of the solution in terms of
OTC percentage for 10 problem instances (randomly
chosen), each being a combination of various numbers of
server and objects, with varying storage capacity and
update ratio. For each row, the best result is indicated in
bold. The proposed AGT-RAM steals the show in the
context of solution quality, but Greedy and Aε-Star do
indeed give a good competition.

In summary, based on the solution quality alone, the
replica allocation methods can be classified into four
categories: 1) High performance: AGT-RAM; 2)
Medium-High performance: Greedy; 3) Medium
performance: Aε-Star and DA; 5) Low performance: EA
and GRA. Considering the execution time, AGT-RAM
and Greedy did extremely well, followed by DA, EA, Aε-
Star and GRA.

6. Related Work

The data replication problem is an extension of the

classical file allocation problem (FAP). Chu [6] studied
the file allocation problem with respect to multiple files in
a multiprocessor system. Casey [3] extended this work by
distinguishing between updates and read file requests.
Eswaran [8] proved that Casey’s formulation was NP-
complete. In [21] Mahmoud et al. provide an iterative
approach that achieves good solution quality when
solving the FAP for infinite server capacities.

Recently, game theory has emerged as a popular tool
to tackle optimization problems especially in the field of
distributed computing. However, in the context of data
replication it has not received much attention. We are
aware of only three major works which directly or
indirectly deal with the data replication problem using
game theoretical techniques. The first work [8] is mainly
on caching and uses an empirical model to derive Nash
equilibrium. The second work [17] focuses on mechanism
design issues and derives an incentive compatible auction
for replicating data on the Web. The third work [18] deals
with identifying Nash strategies derived from synthetic
utility functions. Our work differs from all the game
theoretical techniques in: 1) identifying a non-cooperative
non-priced based replica allocation method to tackle the
data replication problem, 2) using game theoretical
techniques to study an environment where the agents
behave in a self-interested manner, and 3) deriving pure
Nash equilibrium and pure strategies for the agents.

Readers are encouraged to see [20] for a
comprehensive survey on the conventional replica
placement techniques.

7. Conclusions

This paper proposed a semi-distributed axiomatic
game theoretical replica allocation mechanism (AGT-
RAM) for object based data replication in large
distributed computing systems such as the Internet. AGT-
RAM is a protocol for automatic replication and
migration of objects in response to demand changes. It
aims to place objects in the proximity of a majority of
requests while ensuring that no hosts become overloaded.

The infrastructure of AGT-RAM was designed such
that, each server was required to present a list of data
objects that if replicated onto that server would bring the
communication cost to its minimum. These lists were
reviewed at the central decision body which gave the final
decision as to what object are to be replicated onto what
servers. This semi-distributed infrastructure takes away
all the heavy processing from the central decision making
body and gives it to the individual servers. For each
object, the central body is only required to make a binary
decision: (0) not to replicate or (1) to replicate.

To compliment our theoretical results, we compared
AGT-RAM with five conventional replica allocation
methods namely: (1) branch and bound, (2) greedy, (3)
genetic, (4) English, and (5) Dutch auctions. The
experimental setups were designed in such a fashion that
they resembled real world scenarios. We employed GT-
ITM and Inet to gather various Internet topologies and
used the traffic logs collected at the Soccer World Cup
1998 website for mimicking user access requests. The
experimental study revealed that the proposed AGT-RAM
technique improved the performance relative to other
conventional methods in four ways. First, the number of
replicas in a system was controlled to reflect the ratio of
read versus write access. To maintain concurrency
control, when an object is updated, all of its replicas need
to be updated simultaneously. If the write access rate is
high, there should be few replicas to reduce the update
overhead. If the read access rate is overwhelming, there
should be a high number of replicas to satisfy local
accesses. Second, performance was improved by
replicating objects to the servers based on locality of
reference. This increases the probability that requests can
be satisfied either locally or within a desirable amount of
time from a neighboring server. Third, replica allocations
were made in a fast algorithmic turn-around time. Fourth,
the complexity of the data replication problem was
decreased by multifold. AGT-RAM limits the complexity
by partitioning the complex global problem of replica
allocation, into a set of simple independent sub problems.
This approach is well suited to the large distributed

computing systems that are composed of autonomous
agents which do not necessarily cooperate to improve the
system wide goals. All the above improvements were
achieved by a simple, semi-distributed, and autonomous
AGT-RAM.

As future work, we would extend the semi-
distributed model to regional autonomous, self-governed
and self-repairing mechanisms. That is, the current system
model would be broadened to incorporate regional or
hierarchical mechanisms. This would enable the system to
be less vulnerable to the failures of a single mechanism,
and in turn would open the realms of devising
hierarchical games, where in each level either a
cooperative or non-cooperative game could be played to
replicate data objects.

References

[1] I. Ahmad and A. Ghafoor, “Semi-Distributed Load
Balancing for Massively Parallel Multicomputer Systems,”
IEEE Trans. Software Engineering, 17(10), 987-1004, 1991.
[2] M. Arlitt and T. Jin, “Workload Characterization of the
1998 World Cup Web Site,” Tech. report, Hewlett Packard Lab,
Palo Alto, HPL-1999-35(R.1), 1999.
[3] D. Campbell, Resource Allocation Mechanisms, Cambridge
University Press, 1987.
[4] R. Casey, “Allocation of Copies of a File in an Information
Network,” in Proc. Spring Joint Computer Conf., IFIPS, 1972,
pp. 617-625.
[5] H. Chang, R. Govindan, S. Jamin and S. Shenker,
"Towards Capturing Representative AS-Level Internet
Topologies," Computer Networks Journal, 44(6), pp 737-755,
2004.
[6] K. Chandy and J. Hewes, “File Allocation in Distributed
Systems,” in Proc. of the International Symposium on Computer
Performance Modeling, Measurement and Evaluation, 1976, pp.
10-13.
[7] W. Chu, “Optimal File Allocation in a Multiple Computer
System,” in IEEE Trans. on Computers, C-18(10), pp. 885-889,
1969.
[8] B.-G. Chun, K. Chaudhuri, H. Wee, M. Barreno, C.
Papadimitriou and J. Kubiatowicz, “Selfish Caching in
Distributed Systems: A Game-Theoretic Analysis,” in Proc. of
23rd ACM Symposium on Principles of Distributed Computing,
2004, pp. 21-30.
[9] K. Eswaran, “Placement of Records in a File and File
Allocation in a Computer Network,” Information Processing
Letters, pp. 304-307, 1974.
[10] J. Green and J. Laffont, “Characterization of Satisfactory
Mechanisms for the Revelation of Preferences for Public
Goods,” Econometrica, 45(2), pp. 427-438, 1977.
[11] T. Groves, “Incentives in Teams,” Econometrica, vol. 41,
pp. 617-631, 1973.
[12] S. Hakimi, “Optimum Location of Switching Centers and
the Absolute Centers and Medians of a Graph,” Operations

Research, vol. 12, pp. 450–459, 1964.
[13] S. Jamin, C. Jin, Y. Jin, D. Riaz, Y. Shavitt and L. Zhang,
“On the Placement of Internet Instrumentation,” in Proc. of the
IEEE INFOCOM, 2000, pp. 295-304.
[14] M. Karlsson and M. Mahalingam, “Do We Need Replica
Placement Algorithms in Content Delivery Networks?” in Proc.
of Web Caching and Content Distribution Workshop, 2002, pp.
117-128.
[15] S. Khan and I. Ahmad, “Internet Content Replication: A
Solution from Game Theory,” Department of Computer Science
and Engineering, University of Texas at Arlington, Technical
Report, CSE-2004-5, 2004.
[16] S. Khan and I. Ahmad, “Heuristic-based Replication
Schemas for Fast Information Retrieval over the Internet,” in
Proc. of 17th International Conference on Parallel and
Distributed Computing Systems, 2004, pp. 278-283.
[17] S. Khan and I. Ahmad, “A Powerful Direct Mechanism for
Optimal WWW Content Replication,” in Proc. of 19th IEEE
International Parallel and Distributed Processing Symposium,
2005.
[18] N. Laoutaris, O. Telelis, V. Zissimopoulos and I.
Stavrakakis, “Local Utility Aware Content Replication,” to
appear in IFIP Networking Conference, 2005.
[19] B. Li, M. Golin, G. Italiano and X. Deng, “On the Optimal
Placement of Web Proxies in the Internet,” in Proc. of the IEEE
INFOCOM, 2000, pp. 1282-1290.
[20] T. Loukopoulos, D. Papadias and I. Ahmad, "An Overview
of Data Replication on the Internet," in Proc. of International
Symposium on Parallel Architectures, Algorithms and Networks,
2002, pp. 31-38.
[21] T. Loukopoulos, and I. Ahmad, “Static and Adaptive
Distributed Data Replication using Genetic Algorithms,”
Journal of Parallel and Distributed Computing, 64(11), pp.
1270-1285, 2004.
[22] S. Mahmoud and J. Riordon, “Optimal Allocation of
Resources in Distributed Information Networks,” ACM Trans.
on Database Systems, 1(1), pp. 66-78, 1976.
[23] A. Mas-Collel, W. Whinston and J. Green, Microeconomic
Theory, Oxford University Press, 1995.
[24] N. Nisan and A. Ronen, "Algorithmic Mechanism Design,"
in Proc. of 31st ACM Symposium on Theory of Computation,
1999, pp. 129-140.
[25] L. Pautet and S. Tardieu, “GLADE: A Framework for
Building Large Object-Oriented Real-Time Distributed
Systems,” in 3rd International Symposium on Object-Oriented
Real-Time Distributed Systems, 2000, pp. 244-251.
[26] L. Qiu, V. Padmanabhan and G. Voelker, “On the
Placement of Web Server Replicas,” in Proc. of the IEEE
INFOCOM, 2001, pp. 1587-1596.
[27] S. Saurabh and D. Parkes, “Hard-to-Manupilate VCG-
Based Auctions,” Available at: http://www.eecs.harvard.edu/
economics/pubs/hard_ to_manipulate.pdf
[28] L. Tesfatsion, “Agent-based Computational Economics:
Growing Economies from the Bottom Up,” Artificial Life, vol.
8, no. 1, pp. 55-82, 2002.

