
On the Path to Enable Multi-scale Biomolecular Simulations on PetaFLOPS

Supercomputer with Multi-core Processors

Sadaf R. Alam and Pratul K. Agarwal

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA 37831
alamsr,agarwalpk@ornl.gov

Abstract
1

Biological processes occurring inside cell involve multiple

scales of time and length; many popular theoretical and

computational multi-scale techniques utilize biomolecular

simulations based on molecular dynamics. Till recently, the

computing power required for simulating the relevant scales was

even beyond the reach of fastest supercomputers. The availability

of petaFLOPS-scale computing power in near future holds great

promise. Unfortunately, the bio-simulations software technology

has not kept up with the changes in hardware. In particular, with

the introduction of multi-core processing technologies in systems

with tens of thousands of processing cores, it is unclear whether

the existing biomolecular simulation frameworks will be able to

scale and to utilize these resources effectively. While the multi-

core processing systems provide higher processing capabilities,

their memory and IO subsystems are posing new challenges to

application and system software developers. In this preliminary

study, we attempt to characterize computation, communication

and memory efficiencies of bio-molecular simulations on a Cray

XT3 system, which has recently been upgraded to dual-core

Opteron processors. We identify that the application efficiencies

using the multi-core processors reduce with the increase of the

simulated system size. Further, we measure the communication

overhead of using both cores in the processor simultaneously

and identify that the MPI communication performance can be as

low as 50% as compared to the single-core execution times. We

conclude that not only the biomolecular simulations need to be

aware of the underlying multi-core hardware in order to achieve

maximum performance but also the system software needs to

provide processor and memory placement features in the high-

end systems. Our results on a stand-alone dual-core AMD system

confirm that combinations of processor and memory affinity

schemes can result in over 12% performance gains.

1 Introduction

A better knowledge of biomolecules is the key to
understanding mechanistic details of the various
biochemical processes that occur in all living cells. The
biomolecular structure, dynamics and function span

1-4244-0910-1/07/$20.00 ©2007 IEEE.

multiple scales of time and length [4,5,6,7]. In the past,
experimental techniques have provided a wealth of
information into the working of biomolecules; more
recently theoretical and computational multi-scale
modeling techniques based upon biomolecular simulations
continue to provide novel insights [7]. Till recently, the
computing power required for simulating the length and
time scales relevant to biomolecules were beyond the
reach of even the fastest supercomputers. In particular, the
dynamics and functions of biomolecules span more than
15 orders of magnitude in time; the computing power falls
short by 4-6 orders of magnitude in its ability to simulate
the desired time-scales [8]. The availability of
petaFLOPS-scale computing power in near future holds
great promise for this area. Many of the popular
biomolecular simulations codes in use today were
designed several decades ago based on a different
programming paradigm in mind. Unfortunately, it is now
becoming evident that the bio-simulations software
technology has not kept up with the change in hardware.
In particular, with the introduction of multi-core
processing technologies in systems with tens to hundreds
of thousands of processing cores, it is unclear whether the
existing biomolecular simulation frameworks will be able
to scale and to utilize these resources effectively.

Microprocessor vendors today have ability to produce
chips with an ever-increasing number of transistors,
therefore, the approach of duplicating existing cores is a
straightforward way to address problems related to
physical and power constraints and limited instruction-
level parallelism. However, because all cores of a
processor share the link between the processor’s resources
including memory, IO links and off-node communication
contention for these resources can limit the achievable
performance when using more than one core per
processor. Applications, such as biomolecular simulations,
can perform well on systems with these multi-core
processors, but only if they expose enough parallelism to
use the multiple cores within their collective memory
bandwidth limitations [11].

 - 2 -

The fundamental question for biomolecular
simulation frameworks is whether multiple cores per
processor can provide performance commensurate with
initial expectations. The shared memory and I/O
(network) bandwidth of multiple cores in a socket draws
into question both how efficiently an application can use
multiple cores and what methods provide the highest
efficiency. In this preliminary study, we characterize
computation, communication and memory efficiencies of a
scalable bio-molecular simulation framework called
LAMMPS [19] on a Cray XT3 system, which has recently
been upgraded to dual-core Opteron processors. The early
evaluation, dual-core Cray XT3 system at the Oak Ridge
National Laboratory has over 10,000 processor cores with
54 teraFLOPS peak processing power. We identify that the
performance gap between single and dual core execution
times depends on the problem size as well as the size of
the target system. In addition, we evaluated a number of
processor affinity techniques for managing memory
placement on multi-core systems. Our experiments on a
stand-alone dual-core system show that an appropriate
selection of MPI task and memory placement schemes can
result in over 12% performance improvement for our
target test cases.

The paper organization is as follows: In section 2, we
provide a brief introduction to the bio-molecular
simulations, the LAMMPS framework, our test cases, and
the architecture and programming environment of our
target Cray XT3 system. An overview of the related
research efforts in the area of biomolecular simulation
frameworks on high end supercomputers is presented in
section 3. Performance evaluation and data collection
experiments and results are presented in section 4.
Conclusions and future plans are outlined in section 5.

2 Background

2.1 Molecular Dynamics Simulations

Numerous applications use molecular dynamics (MD)
for biomolecular simulations. MD and related techniques
can be defined as computer simulation methodology where
the time evolution of a set of interacting particles is
modeled by integrating the equation of motion. The
underlying MD technique is based on the law of classical
mechanics—most notably Newton’s law, F = ma. The
MD steps performed in LAMMPS or other MD engines
consist of three calculations: determining energy of a
system and forces on atoms centers, moving the atoms
according to forces, and adjusting temperature and
pressure. A typical bimolecular simulation contains atoms
for solute, ions, and solvent molecules. The force on each
atom is represented as the combination of the contribution
from forces due to atoms that are chemically bonded to it
and non-bond forces due to all other atoms.

MD simulations enable the study of complex,
dynamic processes that occur in biological systems. MD
methods are now routinely used to investigate the
structure, dynamics, functions, and thermodynamics of
biological molecules and their complexes. The types of
biological activity that have been investigated using MD
simulations include protein folding, enzyme catalysis,
conformational changes associated with bimolecular
function, and molecular recognition of proteins, DNA, and
biological membrane complexes. Biological molecules
exhibit a wide range of time and length scales over which
specific processes occur, hence the computational
complexity of an MD simulation depends greatly on the
time and length scales considered. With an explicit
solvation model, typical system sizes of interest range
from 20,000 atoms to more than 1 million atoms; if the
solvation is implicit, sizes range from a few thousand
atoms to about 100,000. The simulation time period can
range from pico-seconds (10-12 seconds) to a few micro-
seconds or longer (>10-6 seconds) on contemporary
platforms.

2.1.1 LAMMPS

Several commercial and open source MD software
frameworks are in use by a large community of biologists,
including AMBER, CHARMM, LAMMPS and NAMD.
These packages differ in the form of their potential
function and also in their force-field parameters. Some of
them are able to use force-fields from other packages as
well. AMBER provides a wide range of MD algorithms.
The version of LAMMPS used (released 12 Apr 2006) in
our evaluation does not use the energy minimization
technique. A more recent version (released 1 Oct 2006)
has introduced this functionality.

LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) [19] is a classical MD code. LAMMPS
models an ensemble of particles in a liquid, solid or
gaseous state and can be used to model atomic, polymeric,
biological, metallic or granular systems. For better
efficiency on parallel systems, LAMMPS uses spatial-
decomposition techniques by partition the simulation
domain into small 3D sub-domains, one of which is
assigned to each processor. Processors communicate and
store "ghost" atom information for atoms that border their
sub-domain. The version we used for our experiments is
written in C++ and MPI. It is the only framework that is
reported to scale to 64K Blue Gene/L processors.
However, the scaling numbers are reported in the weak
scaling mode, i.e. not for a fixed-size problem.

2.1.2 Test cases

The bio-molecular systems used for our experiments
were designed to represent the variety of complexes
routinely investigated by computational biologists.

 - 3 -

The HhaI system is a model for protein-DNA
complex (enzyme m5C-methyltransferase M. HhaI with
its target DNA sequence), in explicit solvent and counter-
ions to allow the system to be charge neutral. This model
consists of 61,641 atoms with explicit treatment of solvent
using TIP3P water model. AMBER’s tleap module was
used for system preparation and the AMBER parm98
force-field was used. The long range forces are calculated
using PPPM (particle-particle-particle mesh) method,
which is similar to the more commonly known particle
mesh Ewald (PME) method. The system was simulated
under periodic boundary conditions with a cuboid box
with dimensions of 84 x 80 x 93 Å. For calculations of
Lennard-Jones interactions inner and outer cut-offs of 10
and 11 Å respectively were used. For electrostatic
interactions computed using the PPPM method a global
cut-off of 11 Å was used for calculation of the direct sums.
The system was equilibrated before benchmarking runs
and the time-step is 1 femto-seconds (10-15 seconds) for
the benchmarking runs.

The second system we considered the RuBisCO
enzyme based on the crystal structure 1RCX. The RAQ

system that is a model on the enzyme RuBisCO in explicit
solvent similar and was prepared in a way similar to HhaI

system, as described above. This model consists of
290,220 atoms with explicit treatment of solvent. The
dimensions of the simulation box are 150 x 150 x 135 Å
approximately. Cut-off values mentioned above for the
HhaI system were used (both for Lennard-Jones and
electrostatic interactions) and the time-step during MD
runs is 1 femto-seconds.

We are currently considering a larger system for our
performance evaluation and studies, which models
cellulose degrading enzyme cellulase complex. The JSC

test system represents cellulose fiber in crystalline I form
and cellulase CelE4 from Thermomonospora fusca (crystal
structure code 1JS4), which shows endo/exo cellulase
activity. The model was prepared in a way similar to
above two systems using AMBER and parm98 (for
protein, solvent and counter-ions) and GLYCAM (for
cellulose) force-fields. The system consists of 311,459
atoms with explicit solvent. The time-step during MD runs
was also 1 femto-seconds.

2.2 Target Dual-core Platforms

2.2.1 Dual-core Cray XT3 at ORNL

The XT3 installed at ORNL presently uses a dual-core
Opteron processor node, or processing element (PE). The
XT3 connects these processors with a custom interconnect
managed by a Cray-designed Application-Specific
Integrated Circuit (ASIC) called SeaStar.

Each XT3 PE has a 2.4 GHz dual-core AMD Opteron
processor with its own dedicated memory and
communication resource (see Figure 1). The peak
performance per node is over 10 gigaFLOPS considering
both cores. The XT3 has two types of PEs: compute PEs
and service PEs. The compute PEs are optimized for
application performance and run a lightweight operating
system kernel called Catamount. The service PEs run
SuSE Linux and are configured for I/O, login, or other
system functions. The memory controller and the
Hypertransport links are shared among the two cores of
the dual-core Opteron processor. The Opteron processor is
directly connected to the XT3 interconnect via a Cray
SeaStar chip (Figure 1). This SeaStar chip is a routing and
communications chip and acts as the gateway to the XT3’s
high-bandwidth, low-latency interconnect. In the XT3, the
interconnect carries all message passing traffic as well as
I/O traffic to the system’s Lustre parallel file system.

The XT3 uses the Portals data movement layer for
flexible, low-overhead inter-node communication. Portals
provide connectionless, reliable, in-order delivery of
messages between processes. Cray provides a Message
Passing Interface (MPI) communication based on MPICH
version 1.2 that uses Portals for data transfer. Details of
the system can be found in [12].

2.2.2 Dual-core Test System with Linux

The Linux operating system provides a number of
features to control processor and memory placements. In
order to study impact of these options, we targeted a dual-
core Opteron system with a standard Linux installation.
This test system is a cluster of four nodes, each consisting
of two dual core AMD 2.2 GHz Opteron 275 processors
and 4 GBytes of shared memory, running Red Hat
Enterprise Linux 4 update 3. The nodes are not connected
by a high performance network, so we limit our
experiments to a single node. All code was compiled using
GNU v4 compilers.

A full evaluation of multi-core processors requires the
use of processor affinity, the capability to specify that
processes run only on a specific core or set of cores [11].

Figure 1: Cray XT3 Architecture (Image courtesy of Cray).

 - 4 -

Each of our test systems runs the Linux operating system,
which provides a few mechanisms for controlling
processor affinity. On systems with Non-Uniform
Memory Access (NUMA) architectures, such as our AMD
Opteron test system, the numactl command controls
processor affinity for a process and all of its children
processes. It can also be used to control the operating
system’s memory page placement policy to ensure, for
example, that a process’ memory pages are always
allocated in the memory that is directly attached to the
socket that is running the process. Recent Linux kernels
(version 2.6 and newer, and even some 2.4 versions) also
contain system calls such as sched_setaffinity to
set processor affinity. In our experiments, we used the
numactl command to control processor and memory
affinities.

3 Related Research

Qbox, is a first principle molecular dynamics (FPMD)
code which has been shown to scale to relatively high
number of processors [14]. FPMD differs from classical
MD code, in its capability to combines a quantum
mechanical description of electrons with a classical
description of atomic nuclei. Qbox is a parallel
implementation of the FPMD method designed
specifically for large parallel platforms, including
BlueGene/L. Simulations have been performed using up to
32,768 processors and performance measurements of
strong scaling showed that an 86% parallel efficiency is
obtained between 1k and 32k CPUs. Floating point
operation counts measured with hardware performance
counters show that 36% of peak performance is attained
when using 4k CPUs. Qbox is limited to only a small
number of atoms (~1000 atoms) due to the quantum
mechanical description of electrons, while the
biomolecular systems of interest can have 100,000 to > 1
million atoms.

NAMD is a C++ based parallel program,
implemented using the Charm++ parallel programming
system [16,18]. It uses object based decomposition and
measurement based dynamic load balancing to achieve its
high performance. NAMD uses a combination of spatial
decomposition and force decomposition techniques to
generate a high degree of parallelism. The developers of
NAMD have claimed that it is one of the fastest and most
scalable program for biomolecular simulations that is
routinely used in published simulations. In a recent
publication the NAMD developers described several
techniques to scale NAMD to 8,192 processors of Blue
Gene/L [18]. These include topology specific
optimizations, new messaging protocols, load-balancing,
and overlap of computation and communication. It was

possible to achieve 1.2 TF of peak performance for cutoff
simulations and 0.99 TF with PPPM method.

LAMMPS is a general purpose MD simulator and not
restricted to biomolecules, has been shown to scale to 64K
processors of Blue Gene/L. It has achieved parallel
efficiency of >85% on simulating atomic fluid with
Lennard-Jones potentials with 1-100 billion atoms [20].

In another related effort, our group is also working on
exploring the performance of MD codes on multi-
paradigm hardware including the FPGA (Field
Programmable Gate Arrays) cards and the 256 gigaFLOPS
IBM Cell system. We recently described a study where the
MD code AMBER was ported on an SRC Computers, Inc
platform using its high-level (Fortran 90), native
programming interface [10]. Using the accurate
performance models of our implementation, we
demonstrate that the current generation FPGA devices can
result in as high an order of 15x performance improvement
over the current generation host processor for single-
precision implementation. We are also investigating the
mapping of LAMMPS on the Cell system, which is a
heterogeneous multi-core processor [1].

4 Experiments and Results

We performed three set of experiments to collect and
to analyze runtime and performance data. First, we
collected runtime scaling data on the XT3 platforms in
single and dual core mode and measured the impact of a
runtime option called small_pages. Second, we
instrumented the code with TAU (Tools and Analysis
Utilities) [3] and gathered hardware counter and MPI
performance data. Finally, on our dual-core system with
Linux operating system, we measured the impact of
different processor and memory affinity and placement
schemes.

4.1 Impact on Code Scalability

Figure 2 and Figure 3 show performance of the HhaI

and RAQ simulation experiments respectively on the dual-
core XT3 system. SN represents the runs in the single-core
mode and VN represents the run in the dual-core (virtual)
mode in which two MPI tasks are assigned to a single
processor. The performance of the simulation is
represented in pico-seconds per day (psec/day). A higher
psec/day is desirable. In addition the impact of small pages
(w/ small_pages) option, which is selected at runtime is
shown in the figures. The small pages option impacts the
TLB usage and can therefore result in performance
improvement and degradation depending on the
characteristics of an application.

 - 5 -

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

16 32 64 128 256 512 1024

Number of cores

p
s
e
c
/d

a
y

SN

SN w/ small pages

VN

VN with small pages

Figure 2: Performance of simulation with the HhaI system (61,641 atoms)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

16 32 64 128 256 512 1024 2048 4096

Number of cores

p
s
e
c
/d

a
y

SN

SN w/ small pages

VN

VN with small pages

Figure 3: Performance of simulation with the RAQ system (290,220 atoms)

As shown in Figure 2 and Figure 3, performance in
the SN mode is consistently higher than the dual-core
performance. At the same time, the performance
differences appear to be increasing with the increase in the
number of MPI tasks. An interesting finding is that the
performance of 2,048 tasks in the single core mode
exceeds performance of 4,096 tasks in the dual core mode.
Note here that no multi-core optimization techniques have
been applied to the LAMMPS code for these performance
runs. The aim of this study is to characterize performance
of LAMMPS in dual-core mode and to subsequently
identify factors that will enable performance
improvements in multi-core execution modes.

Since we observed performance differences in the
single (SN) and dual core (VN) modes of execution, we
attempt to quantify the slowdown in the dual core mode
with respect to the single core execution times. Figure 4
and Figure 5 show the percentage slowdown for the HhaI

and RAQ tests respectively. Percentage slowdown is
measured as:

SN

SNVN

Time
TimeTime

slowdown
100*)(%

The figures show that the rate of the slowdown
increases with the increase in the number of MPI tasks,
which points to a possible impact of two cores sharing
Hypertransport resources for message-passing MPI
operations. Also, the slowdown percentage is higher for
larger systems (systems with large number of atoms). This
could be an influence of higher memory and data transfer
requirements on the shared memory controller. We also
observe the impact of small pages on the performance
differences, which is in most cases not consistent. We are
currently investigating this behavior.

4.2 Analysis of Performance Data

We instrumented the LAMMPS application with TAU
(Tools and Analysis Utilities) in order to collect profile
data. We collected PAPI (Performance API) [2] hardware
counter information and time spent in MPI operations for
single-core and dual-core runs with 8, 32, 128 and 512
MPI tasks using the HhaI system.

 - 6 -

-5%

0%

5%

10%

15%

20%

25%

16 32 64 128 256 512 1024

Number of cores

S
lo

w
d

o
w

n
 w

it
h

 r
e
s
p

e
c
t

to
 s

in
g

le
-c

o
re

m
o

d
e Without small_pages

With small_pages

Figure 4: Percentage slowdown in the dual-core mode for the HhaI system (61,641 atoms)

-10%

0%

10%

20%

30%

40%

50%

60%

16 32 64 128 256 512 1024 2048 4096

Number of cores

S
lo

w
d

o
w

n
 w

it
h

 r
e
s
p

e
c
t

to
 s

in
g

le
-c

o
re

m
o

d
e Without small_pages

With small_pages

Figure 5: Percentage slowdown in the dual-core mode for the RAQ system (290,220 atoms)

Three PAPI counters are collected: total cycles,
number of floating-point operations and level 1 data cache
misses. We instrumented individual functions, which
introduce some overheads. As a result, we did not observe
significant differences in the three hardware counter
values that we collected. For example, the number of total
clock cycles in the single-core and dual-core execution
modes is marginally different, while the runtimes are
significantly different for benchmark runs.

Figure 6 shows the time spent in MPI operations with
the HhaI experiment. We notice that the performance is
comparable in the single-core and dual-core execution
modes. However, there are consistent differences in
performance for the MPI_Bcast, MPI_Irecv and
MPI_Send operations. We also note that the runtime is
distributed among different MPI operations. We conclude
that the overall performance difference is due to an

aggregated impact of various operations. In other words a
single operation or hardware feature is not responsible for
slowdown we noted in performance runs that are presented
in the previous section.

4.3 Evaluation of Memory and Processor

Affinity Schemes

In order to get an insight into the impact of different
architectural features of multi-core devices on
performance of our test cases using LAMMPS, we
conducted experiments on a dual-core Opteron system that
allows Linux non-uniform memory access options
(numactl) on multi-core processors. Note that these
options are not available on the XT3 system because it
runs a light-weigth operating system.

 - 7 -

1.0E+00
1.0E+01
1.0E+02

1.0E+03
1.0E+04
1.0E+05
1.0E+06

1.0E+07
1.0E+08
1.0E+09
1.0E+10

1.0E+11
1.0E+12

M
P
I_
A
llr
ed

uc
e

M
P
I_
B
ca

st

M
P
I_
Ire

cv

M
P
I_
S
en

d

M
P
I_
S
en

dr
ec

v

M
P
I_
W

ai
t

M
P
I_
W

ai
ta

ny

N
u

m
b

e
r

o
f

c
lo

c
k
 c

y
c
le

s 8 (single core)

8 (dual core)

32 (single core)

32 (dual core)

128 (single core)

128 (dual core)

512 (single core)

512 (dual core)

Figure 6: Number of cycles spent in MPI tasks for the HhaI system (61,641 atoms)

Name Description

Default Default (no numactl)
One MPI+Local Alloc One MPI task per socket and local allocation policy
One MPI+Membind One MPI task per socket with explicit memory binding per core
Two MPI+Local Alloc Two MPI tasks per socket and local allocation policy
Two MPI+Membind Two MPI tasks per socket with explicit memory binding per core
Interleave Interleaved memory allocation

Table 1: numactl options used for experiments

MPI
tasks

System Default One
MPI +
Local
Alloc

One MPI
+

Membind

Two
MPI +
Local
Alloc

Two MPI
+

Membind

Interleave

2 HhaI 121.574 121.84 125.247 124.585 124.799 125.505
4 HhaI 66.9479 — — 66.8357 70.9545 68.9576
2 RAQ 787.533 787.686 878.659 797.81 802.674 830.71
4 RAQ 387.266 — — 386.632 433.08 407.549

Table 2: Impact of numactl options on runtime (seconds)

Table 1 lists a combination of memory and processor
affinity schemes that are used in running the LAMMPS
experiments. In the default mode, no numactl option is
used; the simulations are run using the standard mpirun
command. The cpubind option is used to a control
placement of MPI tasks onto the cores. Similarly, memory
binding option is used to assign memories to cores.
Additional memory placement schemes, localalloc
and interleave, are also investigated for LAMMPS
runs.

Table 2 lists the runtimes (in seconds) for the two test
cases: HhaI and RAQ. Both experiments are run for 100
simulation time steps. We observe that both the memory

and processor placement options impact performance of
experiments. As we observed in the XT3 experiments, the
slowdown increases with the increase in system size
(number of atoms) and number of MPI tasks. For example,
the difference between the fastest and the slowest runtime
option can be about ~12%. In other words, we can control,
monitor and train biomolecular simulation experiments at
scale if some of these options are available on the future
high-end supercomputing systems with multi-core
processors.

 - 8 -

5 Conclusions and future plans

In this study, we have described performance
characterization of a large scale parallel molecular
dynamics code, LAMMPS, for simulating biologically
relevant systems. The focus of this study is to characterize
the performance on multi-core processors as the upcoming
generations of supercomputers including Cray’s XT3 and
XT4 as well as IBM’s Blue Gene continue to pack
increasingly more computing power through utilization of
multi-core processors. The results on the XT3 system
indicate that the slowdown in performance in the dual-core
Opteron processor due to shared resources depend on the
system size (number of atoms) as well as the number of
MPI tasks. Our investigation of performance data reveals
that a single architectural or application feature is not
responsible for the slowdown. Instead it is cumulative
effect of memory and message passing performance of the
application. Furthermore, we demonstrate that an
appropriate selection of processor and memory placement
scheme can result in over 12% performance gain for bio-
molecular simulation runs using the LAMMPS
framework.

The future plans include assessment of options similar
to numactl on high-end systems, study of additional
hardware counter information, and investigation of
performance features of upcoming quad-core systems. We
also plan to work with biomolecular application
developers to incorporate features that will make these
applications aware of underlying multi-core platforms. In
particular, we are currently investigating hybrid
programming approaches, for instance, (OpenMP + MPI)
for tightly-coupled, homogeneous multi-core processors.
These techniques will enable us to scale MD calculations
to a large-number of cores thereby allowing longer time-
scales to be simulated on supercomputing systems with
multi-core processors.

Acknowledgements

The authors would like to thank National Center for
Computational Sciences (NCCS) for access to Cray XT3
and support (INCITE award). This research used NCCS at
the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

References

1. The Cell project at IBM research,
http://www.research.ibm.com/cell/

2. Performance API (PAPI), http://icl.cs.utk.edu/papi/
3. Tuning and Analysis Utilities (TAU),

http://www.cs.uoregon.edu/research/tau/
4. P. K. Agarwal, A. Geist, A. Gorin (2004), “Protein

Dynamics and Enzymatic Catalysis: Investigating the
Peptidyl-Prolyl cis/trans Isomerization Activity of
Cyclophilin A”, Biochemistry, 43, 10605-10618.

5. P. K. Agarwal (2004), “Computational studies of the
mechanism of cis/trans isomerization in HIV-1 catalyzed by
cyclophilin A”, Proteins, 56, 449-463.

6. P. K. Agarwal (2005), “Role of Protein Dynamics in
Reaction Rate Enhancement by Enzymes”, J. Am. Chem.

Soc., 127, 15248-15246.
7. P. K. Agarwal (2006), “Enzymes: An integrated view of

structure, dynamics and function”, Microbial Cell

Factories, 5:2.
8. P. K. Agarwal and S. R. Alam (2006), “Biomolecular

simulations on petascale: promises and challenges”, J.

Phys.: Conference Series (SciDAC 2006), 46, 327-333.
9. S. R. Alam, P. K. Agarwal, Al Giest and J. S. Vetter (2006),

“Performance Characterization of Bio-molecular
Simulations using Molecular Dynamics,” ACM Symposium

on Principle and Practices of Parallel Programming

(PPOPP).
10. S. R. Alam, P. K. Agarwal, D. Caliga, M. C. Smith and J. S.

Vetter (2007), “Achieving Supercomputer Performance for
Biomolecular Simulations on Reconfigurable Systems,”
IEEE Computer, Special Issue on High Performance

Reconfigurable Computing (to appear).
11. S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth and J. S.

Vetter (2006), “Characterization of Scientific Workloads on
Systems with Multi-Core Processors,” IEEE International

Symposium on Workload Characterization.
12. S.R. Alam, R.F. Barrett, et. al. (2007), “An Evaluation of

the ORNL Cray XT3,” J. High Performance Computing

Applications (to appear).
13. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States,

S. Swaminathan, and M. Karplus (1983) “CHARMM: A
Program for Macromolecular Energy, Minimization, and
Dynamics Calculations”, J. Comput. Chem., 4, 187-217.

14. F. Gygi, R.K. Yates, J. Lorenz, E.W. Draeger, F. Franchetti,
C.W. Ueberhuber, B.R. de Supinski, S. Kral, J.A. Gunnels,
J.C. Sexton. Large-Scale First-Principles Molecular
Dynamics simulations on the BlueGene/L Platform using
the Qbox code, Supercomputing 05

15. C. Huang, G. Almasi, L.V. Kale, S. Kumar, “Achieving
strong scaling with NAMD on Blue Gene/L”, IEEE Parallel

and Distributed Processing Symposium (IPDPS).

16. L. V. Kal´e. The virtualization model of parallel
programming: Runtime optimizations and the state of art. In
LACSI 2002, Albuquerque, October 2002.

17. D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T.
E. Cheatham, S. Debolt, D. Ferguson, G. Seibel, and P.
Kollman (1995), “AMBER, a package of computer
programs for applying molecular mechanics, normal mode
analysis, molecular dynamics and free energy calculations
to simulate the structural and energetic properties of
molecules”, Comput. Phys. Commun., 91, 1-41.

18. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E.
Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. V. Kale,
and K. Schulten. “Scalable molecular dynamics with
NAMD.” Journal of Computational Chemistry, 26:1781-
1802, 2005.

19. S. J. Plimpton (1995), “Fast Parallel Algorithms for Short-
Range Molecular Dynamics”, J. Comp. Phys., 117, 1-19;
http://www.cs.sandia.gov/~sjplimp/lammps.html

20. LAMMPS benchmarks,
http://lammps.sandia.gov/bench.html

