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Abstract
1

Biological processes occurring inside cell involve multiple 

scales of time and length; many popular theoretical and 

computational multi-scale techniques utilize biomolecular 

simulations based on molecular dynamics. Till recently, the 

computing power required for simulating the relevant scales was 

even beyond the reach of fastest supercomputers. The availability 

of petaFLOPS-scale computing power in near future holds great 

promise. Unfortunately, the bio-simulations software technology 

has not kept up with the changes in hardware. In particular, with 

the introduction of multi-core processing technologies in systems 

with tens of thousands of processing cores, it is unclear whether 

the existing biomolecular simulation frameworks will be able to 

scale and to utilize these resources effectively. While the multi-

core processing systems provide higher processing capabilities, 

their memory and IO subsystems are posing new challenges to 

application and system software developers. In this preliminary 

study, we attempt to characterize computation, communication 

and memory efficiencies of bio-molecular simulations on a Cray 

XT3 system, which has recently been upgraded to dual-core 

Opteron processors. We identify that the application efficiencies 

using the multi-core processors reduce with the increase of the 

simulated system size. Further, we measure the communication 

overhead of using both cores in the processor simultaneously 

and identify that the MPI communication performance can be as 

low as 50% as compared to the single-core execution times. We 

conclude that not only the biomolecular simulations need to be 

aware of the underlying multi-core hardware in order to achieve 

maximum performance but also the system software needs to 

provide processor and memory placement features in the high-

end systems. Our results on a stand-alone dual-core AMD system 

confirm that combinations of processor and memory affinity 

schemes can result in over 12% performance gains.  

1 Introduction 

A better knowledge of biomolecules is the key to 
understanding mechanistic details of the various 
biochemical processes that occur in all living cells. The 
biomolecular structure, dynamics and function span 
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multiple scales of time and length [4,5,6,7]. In the past, 
experimental techniques have provided a wealth of 
information into the working of biomolecules; more 
recently theoretical and computational multi-scale 
modeling techniques based upon biomolecular simulations 
continue to provide novel insights [7]. Till recently, the 
computing power required for simulating the length and 
time scales relevant to biomolecules were beyond the 
reach of even the fastest supercomputers. In particular, the 
dynamics and functions of biomolecules span more than 
15 orders of magnitude in time; the computing power falls
short by 4-6 orders of magnitude in its ability to simulate 
the desired time-scales [8]. The availability of 
petaFLOPS-scale computing power in near future holds 
great promise for this area. Many of the popular 
biomolecular simulations codes in use today were 
designed several decades ago based on a different 
programming paradigm in mind. Unfortunately, it is now 
becoming evident that the bio-simulations software 
technology has not kept up with the change in hardware. 
In particular, with the introduction of multi-core 
processing technologies in systems with tens to hundreds 
of thousands of processing cores, it is unclear whether the 
existing biomolecular simulation frameworks will be able 
to scale and to utilize these resources effectively. 

Microprocessor vendors today have ability to produce 
chips with an ever-increasing number of transistors, 
therefore, the approach of duplicating existing cores is a 
straightforward way to address problems related to 
physical and power constraints and limited instruction-
level parallelism. However, because all cores of a 
processor share the link between the processor’s resources 
including memory, IO links and off-node communication 
contention for these resources can limit the achievable 
performance when using more than one core per 
processor. Applications, such as biomolecular simulations, 
can perform well on systems with these multi-core 
processors, but only if they expose enough parallelism to 
use the multiple cores within their collective memory 
bandwidth limitations [11]. 
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The fundamental question for biomolecular 
simulation frameworks is whether multiple cores per 
processor can provide performance commensurate with 
initial expectations.  The shared memory and I/O 
(network) bandwidth of multiple cores in a socket draws 
into question both how efficiently an application can use 
multiple cores and what methods provide the highest 
efficiency. In this preliminary study, we characterize 
computation, communication and memory efficiencies of a 
scalable bio-molecular simulation framework called 
LAMMPS [19] on a Cray XT3 system, which has recently 
been upgraded to dual-core Opteron processors. The early 
evaluation, dual-core Cray XT3 system at the Oak Ridge 
National Laboratory has over 10,000 processor cores with 
54 teraFLOPS peak processing power. We identify that the 
performance gap between single and dual core execution 
times depends on the problem size as well as the size of 
the target system. In addition, we evaluated a number of 
processor affinity techniques for managing memory 
placement on multi-core systems. Our experiments on a 
stand-alone dual-core system show that an appropriate 
selection of MPI task and memory placement schemes can 
result in over 12% performance improvement for our 
target test cases. 

The paper organization is as follows: In section 2, we 
provide a brief introduction to the bio-molecular 
simulations, the LAMMPS framework, our test cases, and 
the architecture and programming environment of our 
target Cray XT3 system. An overview of the related 
research efforts in the area of biomolecular simulation 
frameworks on high end supercomputers is presented in 
section 3. Performance evaluation and data collection 
experiments and results are presented in section 4. 
Conclusions and future plans are outlined in section 5. 

2 Background

2.1 Molecular Dynamics Simulations 

Numerous applications use molecular dynamics (MD) 
for biomolecular simulations. MD and related techniques 
can be defined as computer simulation methodology where 
the time evolution of a set of interacting particles is 
modeled by integrating the equation of motion. The 
underlying MD technique is based on the law of classical 
mechanics—most notably Newton’s law, F = ma. The 
MD steps performed in LAMMPS or other MD engines 
consist of three calculations: determining energy of a 
system and forces on atoms centers, moving the atoms 
according to forces, and adjusting temperature and 
pressure. A typical bimolecular simulation contains atoms 
for solute, ions, and solvent molecules. The force on each 
atom is represented as the combination of the contribution 
from forces due to atoms that are chemically bonded to it 
and non-bond forces due to all other atoms.  

MD simulations enable the study of complex, 
dynamic processes that occur in biological systems. MD 
methods are now routinely used to investigate the 
structure, dynamics, functions, and thermodynamics of 
biological molecules and their complexes. The types of 
biological activity that have been investigated using MD 
simulations include protein folding, enzyme catalysis, 
conformational changes associated with bimolecular 
function, and molecular recognition of proteins, DNA, and 
biological membrane complexes. Biological molecules 
exhibit a wide range of time and length scales over which 
specific processes occur, hence the computational 
complexity of an MD simulation depends greatly on the 
time and length scales considered. With an explicit 
solvation model, typical system sizes of interest range 
from 20,000 atoms to more than 1 million atoms; if the 
solvation is implicit, sizes range from a few thousand 
atoms to about 100,000. The simulation time period can 
range from pico-seconds (10-12 seconds) to a few micro-
seconds or longer (>10-6 seconds) on contemporary 
platforms. 

2.1.1 LAMMPS

Several commercial and open source MD software 
frameworks are in use by a large community of biologists, 
including AMBER, CHARMM, LAMMPS and NAMD. 
These packages differ in the form of their potential 
function and also in their force-field parameters. Some of 
them are able to use force-fields from other packages as 
well. AMBER provides a wide range of MD algorithms. 
The version of LAMMPS used (released 12 Apr 2006) in 
our evaluation does not use the energy minimization 
technique.  A more recent version (released 1 Oct 2006) 
has introduced this functionality. 

LAMMPS (Large-scale Atomic/Molecular Massively 
Parallel Simulator) [19] is a classical MD code. LAMMPS 
models an ensemble of particles in a liquid, solid or 
gaseous state and can be used to model atomic, polymeric, 
biological, metallic or granular systems. For better 
efficiency on parallel systems, LAMMPS uses spatial-
decomposition techniques by partition the simulation 
domain into small 3D sub-domains, one of which is 
assigned to each processor. Processors communicate and 
store "ghost" atom information for atoms that border their 
sub-domain. The version we used for our experiments is 
written in C++ and MPI. It is the only framework that is 
reported to scale to 64K Blue Gene/L processors. 
However, the scaling numbers are reported in the weak 
scaling mode, i.e. not for a fixed-size problem. 

2.1.2 Test cases 

The bio-molecular systems used for our experiments 
were designed to represent the variety of complexes 
routinely investigated by computational biologists.  
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The HhaI system is a model for protein-DNA 
complex (enzyme m5C-methyltransferase M. HhaI with 
its target DNA sequence), in explicit solvent and counter-
ions to allow the system to be charge neutral. This model 
consists of 61,641 atoms with explicit treatment of solvent 
using TIP3P water model. AMBER’s tleap module was 
used for system preparation and the AMBER parm98 
force-field was used. The long range forces are calculated 
using PPPM (particle-particle-particle mesh) method, 
which is similar to the more commonly known particle 
mesh Ewald (PME) method. The system was simulated 
under periodic boundary conditions with a cuboid box 
with dimensions of 84 x 80 x 93 Å. For calculations of 
Lennard-Jones interactions inner and outer cut-offs of 10 
and 11 Å respectively were used. For electrostatic 
interactions computed using the PPPM method a global 
cut-off of 11 Å was used for calculation of the direct sums. 
The system was equilibrated before benchmarking runs 
and the time-step is 1 femto-seconds (10-15 seconds) for 
the benchmarking runs.  

The second system we considered the RuBisCO 
enzyme based on the crystal structure 1RCX. The RAQ

system that is a model on the enzyme RuBisCO in explicit 
solvent similar and was prepared in a way similar to HhaI

system, as described above. This model consists of 
290,220 atoms with explicit treatment of solvent. The 
dimensions of the simulation box are 150 x 150 x 135 Å 
approximately. Cut-off values mentioned above for the 
HhaI system were used (both for Lennard-Jones and 
electrostatic interactions) and the time-step during MD 
runs is 1 femto-seconds. 

We are currently considering a larger system for our 
performance evaluation and  studies, which models 
cellulose degrading enzyme cellulase complex. The JSC

test system represents cellulose fiber in crystalline I  form 
and cellulase CelE4 from Thermomonospora fusca (crystal 
structure code 1JS4), which shows endo/exo cellulase 
activity. The  model was prepared in a way similar to 
above two systems using AMBER and parm98 (for 
protein, solvent and counter-ions) and GLYCAM (for 
cellulose) force-fields. The system consists of 311,459 
atoms with explicit solvent. The time-step during MD runs 
was also 1 femto-seconds. 

2.2 Target Dual-core Platforms 

2.2.1 Dual-core Cray XT3 at ORNL 

The XT3 installed at ORNL presently uses a dual-core 
Opteron processor node, or processing element (PE). The 
XT3 connects these processors with a custom interconnect 
managed by a Cray-designed Application-Specific 
Integrated Circuit (ASIC) called SeaStar. 

Each XT3 PE has a 2.4 GHz dual-core AMD Opteron 
processor with its own dedicated memory and 
communication resource (see Figure 1). The peak 
performance per node is over 10 gigaFLOPS considering 
both cores. The XT3 has two types of PEs: compute PEs 
and service PEs. The compute PEs are optimized for 
application performance and run a lightweight operating 
system kernel called Catamount. The service PEs run 
SuSE Linux and are configured for I/O, login, or other 
system functions. The memory controller and the 
Hypertransport links are shared among the two cores of 
the dual-core Opteron processor. The Opteron processor is 
directly connected to the XT3 interconnect via a Cray 
SeaStar chip (Figure 1). This SeaStar chip is a routing and 
communications chip and acts as the gateway to the XT3’s 
high-bandwidth, low-latency interconnect. In the XT3, the 
interconnect carries all message passing traffic as well as 
I/O traffic to the system’s Lustre parallel file system.  

The XT3 uses the Portals data movement layer for 
flexible, low-overhead inter-node communication. Portals 
provide connectionless, reliable, in-order delivery of 
messages between processes. Cray provides a Message 
Passing Interface (MPI) communication based on MPICH  
version 1.2 that uses Portals for data transfer. Details of 
the system can be found in [12]. 

2.2.2 Dual-core Test System with Linux 

The Linux operating system provides a number of 
features to control processor and memory placements. In 
order to study impact of these options, we targeted a dual-
core Opteron system with a standard Linux installation. 
This test system is a cluster of four nodes, each consisting 
of two dual core AMD 2.2 GHz Opteron 275 processors 
and 4 GBytes of shared memory, running Red Hat 
Enterprise Linux 4 update 3. The nodes are not connected 
by a high performance network, so we limit our 
experiments to a single node. All code was compiled using 
GNU v4 compilers. 

A full evaluation of multi-core processors requires the 
use of processor affinity, the capability to specify that 
processes run only on a specific core or set of cores [11]. 

Figure 1: Cray XT3 Architecture (Image courtesy of Cray).
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Each of our test systems runs the Linux operating system, 
which provides a few mechanisms for controlling 
processor affinity. On systems with Non-Uniform 
Memory Access (NUMA) architectures, such as our AMD 
Opteron test system, the numactl command controls 
processor affinity for a process and all of its children 
processes. It can also be used to control the operating 
system’s memory page placement policy to ensure, for 
example, that a process’ memory pages are always 
allocated in the memory that is directly attached to the 
socket that is running the process. Recent Linux kernels 
(version 2.6 and newer, and even some 2.4 versions) also 
contain system calls such as sched_setaffinity to 
set processor affinity. In our experiments, we used the
numactl command to control processor and memory 
affinities. 

3 Related Research 

Qbox, is a first principle molecular dynamics (FPMD) 
code which has been shown to scale to relatively high 
number of processors [14]. FPMD differs from classical 
MD code, in its capability to combines a quantum 
mechanical description of electrons with a classical 
description of atomic nuclei. Qbox is a parallel 
implementation of the FPMD method designed 
specifically for large parallel platforms, including 
BlueGene/L. Simulations have been performed using up to 
32,768 processors and performance measurements of 
strong scaling showed that an 86% parallel efficiency is 
obtained between 1k and 32k CPUs. Floating point 
operation counts measured with hardware performance 
counters show that 36% of peak performance is attained 
when using 4k CPUs. Qbox is limited to only a small 
number of atoms (~1000 atoms) due to the quantum 
mechanical description of electrons, while the 
biomolecular systems of interest can have 100,000 to > 1 
million atoms.  

NAMD is a C++ based parallel program, 
implemented using the Charm++ parallel programming 
system [16,18]. It uses object based decomposition and 
measurement based dynamic load balancing to achieve its 
high performance. NAMD uses a combination of spatial 
decomposition and force decomposition techniques to 
generate a high degree of parallelism. The developers of 
NAMD have claimed that it is one of the fastest and most 
scalable program for biomolecular simulations that is 
routinely used in published simulations. In a recent 
publication the NAMD developers described several 
techniques to scale NAMD to 8,192 processors of Blue 
Gene/L [18]. These include topology specific 
optimizations, new messaging protocols, load-balancing, 
and overlap of computation and communication. It was 

possible to achieve 1.2 TF of peak performance for cutoff 
simulations and 0.99 TF with PPPM method. 

LAMMPS is a general purpose MD simulator and not 
restricted to biomolecules, has been shown to scale to 64K 
processors of Blue Gene/L. It has achieved parallel 
efficiency of >85% on simulating atomic fluid with 
Lennard-Jones potentials with 1-100 billion atoms [20]. 

In another related effort, our group is also working on 
exploring the performance of MD codes on multi-
paradigm hardware including the FPGA (Field 
Programmable Gate Arrays) cards and the 256 gigaFLOPS 
IBM Cell system. We recently described a study where the 
MD code AMBER was ported on an SRC Computers, Inc 
platform using its high-level (Fortran 90), native 
programming interface [10]. Using the accurate 
performance models of our implementation, we 
demonstrate that the current generation FPGA devices can 
result in as high an order of 15x performance improvement 
over the current generation host processor for single-
precision implementation. We are also investigating the 
mapping of LAMMPS on the Cell system, which is a 
heterogeneous multi-core processor [1]. 

4 Experiments and Results 

We performed three set of experiments to collect and 
to analyze runtime and performance data. First, we 
collected runtime scaling data on the XT3 platforms in 
single and dual core mode and measured the impact of a 
runtime option called small_pages. Second, we 
instrumented the code with TAU (Tools and Analysis 
Utilities) [3] and gathered hardware counter and MPI 
performance data. Finally, on our dual-core system with 
Linux operating system, we measured the impact of 
different processor and memory affinity and placement 
schemes. 

4.1 Impact on Code Scalability 

Figure 2 and Figure 3 show performance of the HhaI

and RAQ simulation experiments respectively on the dual-
core XT3 system. SN represents the runs in the single-core 
mode and VN represents the run in the dual-core (virtual) 
mode in which two MPI tasks are assigned to a single 
processor. The performance of the simulation is 
represented in pico-seconds per day (psec/day). A higher 
psec/day is desirable. In addition the impact of small pages 
(w/ small_pages) option, which is selected at runtime is 
shown in the figures. The small pages option impacts the 
TLB usage and can therefore result in performance 
improvement and degradation depending on the 
characteristics of an application. 
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Figure 2: Performance of simulation with the HhaI system (61,641 atoms) 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

16 32 64 128 256 512 1024 2048 4096

Number of cores

p
s
e
c
/d

a
y

SN

SN w/ small pages

VN

VN with small pages

Figure 3: Performance of simulation with the RAQ system (290,220 atoms) 

As shown in Figure 2 and Figure 3, performance in 
the SN mode is consistently higher than the dual-core 
performance. At the same time, the performance 
differences appear to be increasing with the increase in the 
number of MPI tasks. An interesting finding is that the 
performance of 2,048 tasks in the single core mode 
exceeds performance of 4,096 tasks in the dual core mode. 
Note here that no multi-core optimization techniques have 
been applied to the LAMMPS code for these performance 
runs. The aim of this study is to characterize performance 
of LAMMPS in dual-core mode and to subsequently 
identify factors that will enable performance 
improvements in multi-core execution modes. 

Since we observed performance differences in the 
single (SN) and dual core (VN) modes of execution, we 
attempt to quantify the slowdown in the dual core mode 
with respect to the single core execution times. Figure 4 
and Figure 5 show the percentage slowdown for the HhaI 

and RAQ tests respectively. Percentage slowdown is 
measured as: 

SN

SNVN

Time
TimeTime

slowdown
100*)(%

The figures show that the rate of the slowdown 
increases with the increase in the number of MPI tasks, 
which points to a possible impact of two cores sharing 
Hypertransport resources for message-passing MPI 
operations. Also, the slowdown percentage is higher for 
larger systems (systems with large number of atoms). This 
could be an influence of higher memory and data transfer 
requirements on the shared memory controller. We also 
observe the impact of small pages on the performance 
differences, which is in most cases not consistent. We are 
currently investigating this behavior. 

4.2 Analysis of Performance Data 

We instrumented the LAMMPS application with TAU 
(Tools and Analysis Utilities) in order to collect profile 
data. We collected PAPI (Performance API) [2] hardware 
counter information and time spent in MPI operations for 
single-core and dual-core runs with 8, 32, 128 and 512 
MPI tasks using the HhaI system.  
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Figure 4: Percentage slowdown in the dual-core mode for the HhaI system (61,641 atoms) 
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Figure 5: Percentage slowdown in the dual-core mode for the RAQ system (290,220 atoms) 

Three PAPI counters are collected: total cycles, 
number of floating-point operations and level 1 data cache 
misses. We instrumented individual functions, which 
introduce some overheads. As a result, we did not observe 
significant differences in the three hardware counter 
values that we collected. For example, the number of total 
clock cycles in the single-core and dual-core execution 
modes is marginally different, while the runtimes are 
significantly different for benchmark runs. 

Figure 6 shows the time spent in MPI operations with 
the HhaI experiment. We notice that the performance is 
comparable in the single-core and dual-core execution 
modes. However, there are consistent differences in 
performance for the MPI_Bcast, MPI_Irecv and 
MPI_Send operations. We also note that the runtime is 
distributed among different MPI operations. We conclude 
that the overall performance difference is due to an 

aggregated impact of various operations. In other words a 
single operation or hardware feature is not responsible for 
slowdown we noted in performance runs that are presented 
in the previous section. 

4.3 Evaluation of Memory and Processor 

Affinity Schemes 

In order to get an insight into the impact of different 
architectural features of multi-core devices on 
performance of our test cases using LAMMPS, we 
conducted experiments on a dual-core Opteron system that 
allows Linux non-uniform memory access options 
(numactl) on multi-core processors. Note that these 
options are not available on the XT3 system because it 
runs a light-weigth operating system. 
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Name Description 

Default Default (no numactl)  
One MPI+Local Alloc One MPI task per socket and local allocation policy 
One MPI+Membind One MPI task per socket with explicit memory binding per core 
Two MPI+Local Alloc Two MPI tasks per socket and local allocation policy 
Two MPI+Membind Two MPI tasks per socket with explicit memory binding per core 
Interleave Interleaved memory allocation 

Table 1: numactl options used for experiments 

MPI 
tasks

System Default One 
MPI + 
Local
Alloc 

One MPI 
+

Membind 

Two
MPI + 
Local
Alloc 

Two MPI 
+

Membind 

Interleave 

2 HhaI 121.574 121.84 125.247 124.585 124.799 125.505 
4 HhaI 66.9479 — — 66.8357 70.9545 68.9576 
2 RAQ 787.533 787.686 878.659 797.81 802.674 830.71 
4 RAQ 387.266 — — 386.632 433.08 407.549 

Table 2: Impact of numactl options on runtime (seconds) 

Table 1 lists a combination of memory and processor 
affinity schemes that are used in running the LAMMPS 
experiments. In the default mode, no numactl option is 
used; the simulations are run using the standard mpirun
command. The cpubind option is used to a control 
placement of MPI tasks onto the cores. Similarly, memory 
binding option is used to assign memories to cores. 
Additional memory placement schemes, localalloc
and interleave, are also investigated for LAMMPS 
runs. 

Table 2 lists the runtimes (in seconds) for the two test 
cases: HhaI and RAQ. Both experiments are run for 100 
simulation time steps. We observe that both the memory 

and processor placement options impact performance of 
experiments. As we observed in the XT3 experiments, the 
slowdown increases with the increase in system size 
(number of atoms) and number of MPI tasks. For example, 
the difference between the fastest and the slowest runtime 
option can be about ~12%. In other words, we can control, 
monitor and train biomolecular simulation experiments at 
scale if some of these options are available on the future 
high-end supercomputing systems with multi-core 
processors. 
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5 Conclusions and future plans 

In this study, we have described performance 
characterization of a large scale parallel molecular 
dynamics code, LAMMPS, for simulating biologically 
relevant systems. The focus of this study is to characterize 
the performance on multi-core processors as the upcoming 
generations of supercomputers including Cray’s XT3 and 
XT4 as well as IBM’s Blue Gene continue to pack 
increasingly more computing power through utilization of 
multi-core processors. The results on the XT3 system 
indicate that the slowdown in performance in the dual-core 
Opteron processor due to shared resources depend on the 
system size (number of atoms) as well as the number of 
MPI tasks. Our investigation of performance data reveals 
that a single architectural or application feature is not 
responsible for the slowdown. Instead it is cumulative 
effect of memory and message passing performance of the 
application. Furthermore, we demonstrate that an 
appropriate selection of processor and memory placement 
scheme can result in over 12% performance gain for bio-
molecular simulation runs using the LAMMPS 
framework. 

The future plans include assessment of options similar 
to numactl on high-end systems, study of additional 
hardware counter information, and investigation of 
performance features of upcoming quad-core systems. We 
also plan to work with biomolecular application 
developers to incorporate features that will make these 
applications aware of underlying multi-core platforms. In 
particular, we are currently investigating hybrid 
programming approaches, for instance, (OpenMP + MPI) 
for tightly-coupled, homogeneous multi-core processors. 
These techniques will enable us to scale MD calculations 
to a large-number of cores thereby allowing longer time-
scales to be simulated on supercomputing systems with 
multi-core processors.  
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