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Abstract 
 
 As process technology advances toward deep 
submicron (below 90nm), static power becomes a new 
challenge to address for energy-efficient high performance 
processors, especially for large on-chip array structures 
such as caches and prediction tables. Value Prediction 
appeared as an effective way of increasing processor 
performance by overcoming data dependences, but at the 
risk of becoming a thermal hot spot due to the additional 
power dissipation.  
 This paper proposes the design of low-leakage Value 
Predictors by applying static decay techniques in order to 
disable unused entries from the prediction tables. We 
explore decay strategies suited for the three most common 
Value Predictors (STP, FCM and DFCM) studying the 
particular tradeoffs for these prediction structures. Our 
mechanism reduces VP leakage energy efficiently without 
compromising VP accuracy nor processor performance. 
Results show average leakage energy reductions of 52%, 
65% and 75% for the STP, DFCM and FCM Value 
Predictors, respectively. 

1. Introduction  

 Power dissipation and energy consumption are two 
major goals when facing the design of a new processor in 
the high performance computing domain –servers and 
high-end computing systems–. High-end systems, current 
teraflop computers and future petaflop computers, use 
many power-hungry components to achieve the required 
high performance. However, the power needs of these 
systems must be limited in order to make them feasible, 
trying not to reach intolerable operating costs (e.g., the 
Earth Simulator supercomputer requires 18 megawatts of 
power). Other power-related parameters such as leakage, 
temperature, failure rates, or component’s life expectancy 
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are also crucial for the success of high-end computing 
systems. 
 While feature size shrinks to allow greater density of 
transistors on the processor, supply voltage must be 
lowered to restrain dynamic power consumption since it is 
proportional to the square of the supply voltage. By doing 
this, however, static power is not reduced. This was not a 
problem for several generations, as leakage was only a 
minimal part of the overall power consumption and it was 
not considered as a major concern. But, when using 
smaller geometries (below 65nm) with very small 
threshold voltages, leakage loss is exponentially increased, 
to a point where static power begins to dominate the 
overall power consumption [11].  
 In order to deal with this problem, several proposals 
can be found in the literature at both circuit and 
architecture level for managing leakage power. Most of 
these proposals have focused on reducing the leakage 
power by switching off unused portions of large array 
structures. Cache Decay [10] selectively turns individual 
data cache lines off if they have not been used in a long 
time, reducing leakage power at the cost of loosing the 
content of the cache line. This non-state preserving 
technique has also been successfully applied to branch 
predictors [6][9].  
 Value Prediction (VP) has also been proposed 
[4][5][8][13] as an effective way of improving superscalar 
processor performance by overcoming data dependences. 
However, the use of VP structures, despite the speedup 
provided in superscalar processors (average speedup of 
15% as reported in [2]), has not been widely spread, 
mainly due to complexity-delay issues.  
 In addition, the use of VP structures incurs in extra 
dynamic and static power dissipation. As in the case of 
caches and branch predictors, the continuous access to the 
VP structure may result in a thermal hot spot. Although 
the VP is a small structure compared to a L2 cache, if we 
let it overheat (likely, as it is accessed frequently and 
resides quite close to the core) without any precaution to 



regulate its leakage, the negative effects can be quite 
serious. 
 Regarding the complexity-delay issues related to VPs, 
note that, unlike other prediction structures such as branch 
predictors where increasing access time and complexity 
can significantly reduce their benefits (the next fetch 
instruction is needed as early as possible), the access time 
in Value Predictors is not so crucial. First, the predicted 
value is not needed until the instruction has reached its 
issue stage, and second, current high performance 
processors typically implement deep pipelines (14 stages 
or more) which effectively hide the VP latency due to the 
increased front-end pipeline length. 
 In this paper we propose static Value Prediction Decay, 
a mechanism able to dramatically reduce the leakage 
energy of traditional Value Predictors with negligible 
impact on accuracy and processor performance, especially 
for deep-submicron designs (below 90nm.) by locating 
and disabling unused entries of the predictor. Our proposal 
makes Value Predictors complexity-effective structures 
(due to the minimal extra hardware required) when used in 
medium and long pipelines as well as a power-
performance efficient mechanism suitable for power-
aware high performance computing systems.  
 The rest of the paper is organized as follows. Section 2 
reviews some related works and provides an overview on 
Value Prediction. Section 3 analyzes the dynamic 
utilization of the prediction tables. The proposed Value 
Prediction Decay mechanism is described in Section 4. 
Section 5 shows the experimental methodology and the 
leakage energy savings obtained. Finally, Section 6 
summarizes the main conclusions of the work. 

2. Related work 

 In order to reduce leakage power in processors, several 
techniques have been proposed at both circuit and 
architectural level. At the architectural level, many 
proposals have focused on reducing the leakage power by 
switching off unused portions of large array structures 
such as caches. These techniques have been categorized 
into state-preserving and non-state preserving [1][7][14]. 
 Studies by Powell et al. [12] proposed gated-VDD as a 
technique to limit static leakage power by banking and 
providing “sleep” transistors which dramatically reduce 
leakage current by gating off the supply voltage. This 
technique, known as decay, reduces the leakage power 
drastically at the expense of loosing the cell’s contents, 
being necessary to apply it very carefully since the loose 
of information can result in an increase of the dynamic 
power to retrieve it again. Kaxiras et al. [10] successfully 
applied decay techniques to individual cache lines in order 
to reduce leakage in cache structures (67% of static power 
consumption can be saved with minimal performance 

loss). This technique has also been applied to conditional 
branch predictors and BTB structures [6][9]. 
 On the other hand, drowsy techniques try to reduce 
leakage without loosing the cell’s information. Drowsy 
caches [3] use different supply voltages according to the 
state of each cache line. The lines in drowsy mode use a 
low-voltage level, retaining the data, while requiring a 
high voltage level to access it again. Waking up from the 
drowsy state is similar to a pseudo-cache miss incurring in 
some additional penalty cycles (about 7 cycles).  
 Li et al. [7] evaluated the use of state and non-state 
preserving techniques in caches. The authors showed that 
for a fast L2 cache (5-8 cycles latency) decay techniques 
are superior in terms of both performance loss and energy 
savings to drowsy ones. 
 Finally, an alternative to traditional decay is to use 
quasi-static, four-transistor (4T) memory cells. 4T cells are 
approximately as fast as 6T SRAM cells, but do not have 
connections to the supply voltage (VSS). Rather, the 4T 
cell is charged upon each access, whether read or write, 
and it slowly leaks the charge over time until, eventually, 
the value stored is lost. In [9], it was proposed to apply 
decay techniques to branch predictors by using 4T cells. 
By doing this, some of the drawbacks of using gated-VDD 
transistors are eliminated, since an access to a 4T cell 
automatically reactivates the cell, whereas reactivating a 
6T cell from the “sleep” mode is somewhat more complex, 
requiring extra hardware involved in gating the supply 
voltage. 

2.1. Value Prediction overview 

 The last value predictor was introduced by Lipasti et 
al. [8]. This is the most basic prediction mechanism and, 
basically, it assumes that the next value produced by an 
instruction will be the same as the previous one. 
 A generalization of the last value predictor leads to the 
stride value predictor (STP). Introduced by Gabbay et al. 
[4], it uses the last value produced by an instruction plus a 
stride pattern. The next predicted value is computed by 
adding the last value to the stride. 
 The finite context method value predictor (FCM), 
introduced by Sazeides et al. [13], uses the history of 
recent values, called the context, to determine the next 
value. This is implemented by using two-level prediction 
tables.  
 The differential finite context method value predictor 
(DFCM), introduced by Goeman et al. [5], joins the two 
previous predictors. DFCM works like FCM (two-level 
prediction tables), but it stores the differences between the 
values instead of the values themselves, plus the last value 
of the instruction. This allows DFCM to capture both 
stride and non-stride patterns. 



3. Utilization analysis of Value Prediction 
structures 

 The power dissipation of Value Prediction structures is 
divided into dynamic and static power. The dynamic 
component depends on the utilization of the VP. Values 
can be predicted at different levels, the most aggressive 
utilization predicts the output value for all instructions 
traversing the pipeline. This is the worst case scenario for 
our mechanism, and it will be used in all our simulations. 
Other approaches, however, restrict the use of the VP to 
just a fraction of instructions such as long-latency 
instructions; instructions that belong to a critical path; or 
just to predict the effective address to provide memory 
disambiguation.  
 Therefore, limiting the VP utilization to just a fraction 
of selected instructions, effectively reduces the dynamic 
power component of this structure. However, the static 
power component is still present, as the VP structure leaks 
regardless of utilization with increasing leakage loss as 
process technology shrinks. For this reason, this work is 
focused on reducing the static power component of the VP 
structure. 
 In [10] Kaxiras et al. showed that, very frequently, 
cache lines have an initial active period (known as live 
time) followed by a period of no utilization (known as 
dead time) before they are eventually evicted. They 
proposed to break the stream of references to a particular 
cache line into generations. Each generation lasts until the 
cache line is evicted and replaced by a new one. This 
generational behavior also appears in Value Predictors, 
although with some particularities: as VPs are 
implemented as direct-mapped tables with no tags and 
allowing destructive interferences, in our proposal, a 
generation ends when the VP entry is accessed by an 
instruction with a different PC (see Figure 1). Its live time 
will be the period of accesses with the same PC and its 
dead time will be the period between the last access with 
an specific PC until an access with a new one. 
 Our first study analyzes the utilization of the VP 
tables, measuring the fraction of time each entry remains 
in the dead state, in order to determine if turning those VP 
entries off will result in a significant decrement of leakage 
energy. Figure 2 shows the average fraction of time each 
generation is in a dead state (i.e., the ratio 
dead/(live+dead)) for the whole SPECint2000 benchmark 
suite as a function of VP size (see Section 5 for details 
about simulation methodology and processor 
configuration). 
 It can be observed that the three evaluated Value 
Predictors –STP, FCM and DFCM– present a similar 
utilization regardless of their size. For sizes around 20 KB, 
the average fraction of dead time is 43% and for predictor 
sizes around 40 KB the average fraction of time the entries 
spend in their dead state is 47%. Therefore, if we were 

able to take advantage of these dead times by detecting 
them and shutting the entries off, we could reduce the 
leakage power of the Value Predictor structure by one half 
on average. 
 However, it is important to note that this is not an upper 
bound on the leakage energy savings that could be 
achieved by decaying VP entries. Long periods of inactive 
live time could also be detected to early shut the entry off 
in order to obtain further leakage savings, at the expense 
of reducing the VP accuracy, as we will show in next 
sections. 

4. Value Prediction Decay mechanism 

 In order to apply decay techniques to the Value 
Predictor mechanism, we need to detect VP entries that 
have been unused for a significant period of time in order 
to switch them off. Therefore, it is necessary to choose 
carefully the number of cycles we should wait before 
shutting an entry off to match generational changes.  
 The proposed Value Prediction Decay mechanism 
tracks the accesses to each VP entry in order to detect if a 
particular entry is accessed very frequently or, otherwise, 
the entry is unused for a long period of time, entering into 
a dead state. In order to measure the power-efficiency of 
our proposal, we will explore a wide range of decay 
intervals to precisely detect the dead states while, at the 
same time, not degrading the VP’s accuracy.  

Figure 1. Generations in the value predictor. 
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Figure 2. Fraction of time VP entries are in 
dead state (average SpecInt2000). 
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 Note that, if the policy that decides when to turn a VP 
entry off uses too long decay intervals, the potential 
leakage savings will be reduced. Conversely, if the policy 
uses too short decay intervals, the VP hit ratio will be 
degraded. In any case, a positive effect of Value 
Prediction Decay when compared to Cache Decay is that 
prematurely disabling a VP entry is not so harmful as 
disabling a cache line: loosing the contents of the cache 
line always leads to an extra access to L2 cache or 
memory to retrieve the lost information incurring in extra 
execution cycles; however, loosing the contents of a VP 
entry might result –or not– in a value misprediction on the 
next access to that entry but this is exactly what would 
happen if we had a real generation change (which is a very 
common situation and one of the major limitations in 
traditional non-tagged VPs, where the huge number of 
destructive interferences dramatically shortens the 
generational replacement). 
 Regarding the utilization of Value Predictors, 
throughout the paper we are predicting the output values 
for all instructions traversing the pipeline. However, it is 
important to note that this aggressive prediction scheme 
does not benefit a decay mechanism. The more demanding 
use of the VP structure, the less opportunities to detect 
unused VP entries and the less leakage energy savings 
obtained from a decaying mechanism. 
 A power-efficient implementation of the decay 
mechanism requires the use of a hierarchical counter 
composed of a global counter and two-bit saturated gray-
code counters on each VP entry1. Each time the global 
counter gets to zero, all the local counters will be 
incremented by one. On the other hand, an access to a VP 
entry results on a reset of its local counter. When a VP 
entry remains unused for a long time, its local counter will 
reach the upper limit eventually, and the corresponding 
entry will be shut off. 
 The length of the decay intervals is controlled by the 
period of the global counter. If we set the period of the 
global counter to a low value, the VP entries may be 
disabled prematurely and leakage will be reduced 
drastically, but so will be the hit rate of the predictor. On 
the other hand, if we disable too late (large global counter 
periods), the leakage energy savings won’t be as high as 
they could have been.  
 The VP entries will be shut off by using gated-VDD   
transistors [12]. These “sleep” transistors are inserted 
between the ground (or supply) and the cells of each VP 
entry, which reduces the leakage in several orders of 
magnitude and can be considered negligible. An 
alternative to using gated-VDD transistors consists on using 
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quasi-static 4T transistors in the VP array, although similar 
leakage savings would be expected [9]. 
 In order to precisely evaluate the net leakage energy 
savings provided by the static VP decay approach, it is 
necessary to consider the following overheads associated 
with the mechanism.  
 The first component overhead takes into account the 
extra dynamic and static power that results from the 
additional hardware (a global decay interval counter as 
well as the two-bit local counters per VP entry). The 
dynamic and static power overhead of the global counter 
and all 2-bit local counters has been measured to be less 
than 2% of the total VP structure for all evaluated sizes, 
which can be considered negligible.  
 The second overhead component is derived from the 
induced VP misses (when a VP entry is prematurely 
disabled) that increase execution time. These extra cycles 
that the program is running will also lead to additional 
static and dynamic power dissipation. Note that this 
second overhead is highly destructive since each extra 
cycle accounts for the overall processor dynamic and static 
power and it can easily cancel whatever VP leakage 
energy savings provided by the static decay scheme. 

5. Experimental results 

5.1. Simulation methodology 

 To evaluate the power-performance efficiency of the 
proposed Value Prediction Decay, we have used the 
SPECint2000 benchmark suite. All benchmarks were 
compiled with maximum optimizations (-O4 -fast) by the 
Compaq Alpha compiler and they were run to completion 
using the reduced input data set (test). The energy 
evaluation has been carried out with a modified version of 
the HotLeakage power-performance simulator [15] that 
includes the dynamic and static power model for the three 
evaluated Value Predictors (STP, FCM and DFCM) as 

Table 1. Configuration of the simulated 
Processor. 

Processor Core 
Process Technology: 

Frequency:  
Instruction Window:  

Decode Width:  
Issue Width: 

Functional Units:  
 
 

Pipeline: 

70 nanometers 
5600 MHz 
128 RUU, 64 LSQ 
8 inst/cycle 
8 inst/cycle 
8 Int Alu; 2 Int Mult 
8 FP Alu; 2 FP Mult 
2 Memports 
22 stages 

Memory Hierarchy 
L1 Icache:  

L1 Dcache:  
L2 cache:   

64KB, 2-way  
64KB, 2-way 
1MB, 4-way, unified  

 



well as both power overheads associated to our proposal. 
The access latency for the three Value Predictors is 5 
cycles. 
 Table 1 shows the configuration of the simulated 
architecture. The leakage related parameters have been 
taken from the Alpha 21264 processor (provided with the 
HotLeakage simulator suite) using a process technology of 
70 nanometers. 

5.2. Leakage-efficiency of Value Prediction 
Decay 

 This section presents the power-performance evaluation 
of the proposed Value Prediction Decay mechanism for 
the STP, FCM and DFCM Value Predictors for different 
predictor sizes and for several decay interval windows: 64, 
256, 512, 1024, 4096, 32768 and 262144 cycles.  
 For each evaluated Value Predictor we report, firstly, 
the IPC degradation as we reduce the decay interval, and 
secondly, the corresponding leakage energy2 savings just 
for the VP structure. Overall leakage energy savings are 
not presented due to HotLeakage limitations that only 
provide static power models for regular array structures, 
such as caches and predictors, or the register file. 
 Figure 3 shows the performance degradation for the 
STP Value Predictor for different predictor sizes 
(averaging the whole SpecInt2000 suite). Note that, as 
cited previously, traditional VP (with no decay) can 
provide significant average speedups (12% for a 20 KB 
STP predictor). Looking into the performance degradation 
caused by static decay, we can notice that it is degraded as 
expected, due to the data loss of prematurely deactivating 
VP entries that still are in a live state. In particular, there is 
a slight IPC degradation (around 1%) for 1024- and 512-
cycle decay intervals. However, due to early deactivation 
of entries and the induced extra execution cycles, for 256-
cycle, and smaller, decay intervals the performance loss is 
not tolerable. 
 Figure 4 shows the average leakage energy savings for 
the STP predictor. As expected from the IPC degradation, 
for very small decay intervals (64 and 256 cycles), the 
early deactivation of entries result in no leakage energy 
savings at all due to the induced extra execution cycles 
that completely cancel whatever leakage power savings 
provided by the decay mechanism. However, for 1024 
cycles and, particularly, for a 4K-cycle decay interval, the 
proposed VP decay approach obtains 52% average leakage 
energy savings when considering a medium size (20KB) 
predictor. As expected, further leakage savings can be 
obtained as we increase VP size but the speedup provided 
for bigger sizes (> 20KB) does not justify the additional 
resources used. 
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 Figures 5 and 6 show the performance degradation and 
the average leakage energy savings for the FCM Value 
Predictor, respectively. Since the FCM is a two-level 
predictor (with the relevant and bigger part of the data 
stored in the second level table), we will be disabling both 
tables. We can notice a similar behavior to the STP 
predictor for the very small decay intervals (64 and 256 
cycles), again with negative leakage energy savings due to 
the early deactivation of entries and the induced extra 
execution cycles. On the other hand, for very big decay 
intervals (32K and 256K-cycles), the overhead is almost 
zero, but we obtain very small leakage energy savings 
(Figure 6) since there are almost no deactivations of VP 
entries. However, as we reduce the decay interval length, 
there is an increase in leakage savings with a maximum 
for the 512-cycle interval. For this decay interval, a 20 KB 
FCM predictor obtains average leakage energy savings of 
75%, showing the benefits of Value Prediction Decay. 

Figures 7 and 8 show the performance degradation and 
the average leakage energy savings for the DFCM Value 
Predictor, respectively. We can notice that the DFCM 
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predictor behaves very similar to FCM. However, for big 
decay intervals, DFCM obtains better energy savings 
(Figure 8) due to a positive side effect when shutting 
DFCM entries off that results in a reduction of destructive 
interferences. A similar effect was also found and reported 
in [6] for branch predictors. 
 Again, as we reduce the decay interval length, there is 
an increase in leakage energy savings with a maximum in 
the 512-cycle interval. In this case, for a predictor size of 
about 20 KB, we obtain average leakage energy savings of 
65%. For both FCM and DFCM predictors, the best 
energy savings are obtained for a decay interval within the 
512-cycle range, unlike data caches where the best decay 
intervals are within the 8-Kcycle range [10], because the 
“average” live time is around 400 cycles (note also that the 
decay mechanism needs some additional cycles to 
consider that an entry has entered in a dead state). 
 Finally, Figure 9 shows the leakage energy savings 
breakdown for a predictor size of 20 KB and a decay 
interval of 1024 cycles. It can be observed that a 
significant amount of leakage savings are obtained when 
disabling VP entries during its live time. As commented in 

Section 3, there are many cases where even though an 
entry is live, the next access will be far in the future (more 
than 1024 cycles ahead in this experiment). In such cases, 
short decay intervals can obtain even further leakage 
savings by early disabling those entries. Figure 9 shows 
that, on average, half of the leakage energy savings comes 
from disabling entries during their live time and the other 
half comes from disabling entries during a dead time. Note 
also that the three evaluated predictors obtain a very 
similar leakage savings breakdown since they all are 
indexed in the same way (the instruction PC). 

6. Conclusions 

 In this paper we propose Value Prediction Decay, a 
mechanism able to dramatically reduce the leakage energy 
of Value Predictors with negligible accuracy reduction, 
especially for deep-submicron high performance processor 
designs.  
 Our proposal dynamically tracks the accesses to each 
Value Predictor entry in order to determine if the entry has 
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been unused for a significant amount of time, and in that 
case, it switches the entry off, avoiding leakage loss. 
Although the VP structure is smaller than a L2 cache, hot 
small structures can leak more than large but cooler ones. 
We must fight to reduce leakage at every level, even at the 
smallest structures, like Value Predictors, Branch 
Predictors, BTBs, etc.  
 Experimental results have shown that both FCM and 
DFCM seem to be the most energy-efficient predictors 
achieving average leakage energy savings of 75% and 
65%, respectively, for a predictor size of around 20 KB 
with negligible processor performance degradation when 
considering a decay interval of 512 cycles. We have also 
shown that leakage energy savings are not limited by only 
detecting dead times, since Value Predictors are structures 
that exhibit long periods of inactivity during an entry’s live 
time which allows to early shut the entry off in order to 
obtain further leakage savings. 
 Finally, the present work tries to show how the use of 
low-power VP structures could still make Value Prediction 
a power-performance efficient mechanism suitable for 
modern high-end processor designs.  
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Figure 9. Leakage energy savings breakdown (20 KB predictor with decay interval of 1024 cycles). 


