
Leakage Energy Reduction in Value Predictors through Static Decay

Juan M. Cebrián, Juan L. Aragón and José M. García

Dept. Ingeniería y Tecnología de Computadores
Universidad de Murcia
30100 Murcia, Spain

{jcebrian, jlaragon, jmgarcia}@ditec.um.es

Abstract

 As process technology advances toward deep
submicron (below 90nm), static power becomes a new
challenge to address for energy-efficient high performance
processors, especially for large on-chip array structures
such as caches and prediction tables. Value Prediction
appeared as an effective way of increasing processor
performance by overcoming data dependences, but at the
risk of becoming a thermal hot spot due to the additional
power dissipation.
 This paper proposes the design of low-leakage Value
Predictors by applying static decay techniques in order to
disable unused entries from the prediction tables. We
explore decay strategies suited for the three most common
Value Predictors (STP, FCM and DFCM) studying the
particular tradeoffs for these prediction structures. Our
mechanism reduces VP leakage energy efficiently without
compromising VP accuracy nor processor performance.
Results show average leakage energy reductions of 52%,
65% and 75% for the STP, DFCM and FCM Value
Predictors, respectively.

1. Introduction

 Power dissipation and energy consumption are two
major goals when facing the design of a new processor in
the high performance computing domain –servers and
high-end computing systems–. High-end systems, current
teraflop computers and future petaflop computers, use
many power-hungry components to achieve the required
high performance. However, the power needs of these
systems must be limited in order to make them feasible,
trying not to reach intolerable operating costs (e.g., the
Earth Simulator supercomputer requires 18 megawatts of
power). Other power-related parameters such as leakage,
temperature, failure rates, or component’s life expectancy

 1-4244-0910-1/07/$20.00 ©2007 IEEE

are also crucial for the success of high-end computing
systems.
 While feature size shrinks to allow greater density of
transistors on the processor, supply voltage must be
lowered to restrain dynamic power consumption since it is
proportional to the square of the supply voltage. By doing
this, however, static power is not reduced. This was not a
problem for several generations, as leakage was only a
minimal part of the overall power consumption and it was
not considered as a major concern. But, when using
smaller geometries (below 65nm) with very small
threshold voltages, leakage loss is exponentially increased,
to a point where static power begins to dominate the
overall power consumption [11].
 In order to deal with this problem, several proposals
can be found in the literature at both circuit and
architecture level for managing leakage power. Most of
these proposals have focused on reducing the leakage
power by switching off unused portions of large array
structures. Cache Decay [10] selectively turns individual
data cache lines off if they have not been used in a long
time, reducing leakage power at the cost of loosing the
content of the cache line. This non-state preserving
technique has also been successfully applied to branch
predictors [6][9].
 Value Prediction (VP) has also been proposed
[4][5][8][13] as an effective way of improving superscalar
processor performance by overcoming data dependences.
However, the use of VP structures, despite the speedup
provided in superscalar processors (average speedup of
15% as reported in [2]), has not been widely spread,
mainly due to complexity-delay issues.
 In addition, the use of VP structures incurs in extra
dynamic and static power dissipation. As in the case of
caches and branch predictors, the continuous access to the
VP structure may result in a thermal hot spot. Although
the VP is a small structure compared to a L2 cache, if we
let it overheat (likely, as it is accessed frequently and
resides quite close to the core) without any precaution to

regulate its leakage, the negative effects can be quite
serious.
 Regarding the complexity-delay issues related to VPs,
note that, unlike other prediction structures such as branch
predictors where increasing access time and complexity
can significantly reduce their benefits (the next fetch
instruction is needed as early as possible), the access time
in Value Predictors is not so crucial. First, the predicted
value is not needed until the instruction has reached its
issue stage, and second, current high performance
processors typically implement deep pipelines (14 stages
or more) which effectively hide the VP latency due to the
increased front-end pipeline length.
 In this paper we propose static Value Prediction Decay,
a mechanism able to dramatically reduce the leakage
energy of traditional Value Predictors with negligible
impact on accuracy and processor performance, especially
for deep-submicron designs (below 90nm.) by locating
and disabling unused entries of the predictor. Our proposal
makes Value Predictors complexity-effective structures
(due to the minimal extra hardware required) when used in
medium and long pipelines as well as a power-
performance efficient mechanism suitable for power-
aware high performance computing systems.
 The rest of the paper is organized as follows. Section 2
reviews some related works and provides an overview on
Value Prediction. Section 3 analyzes the dynamic
utilization of the prediction tables. The proposed Value
Prediction Decay mechanism is described in Section 4.
Section 5 shows the experimental methodology and the
leakage energy savings obtained. Finally, Section 6
summarizes the main conclusions of the work.

2. Related work

 In order to reduce leakage power in processors, several
techniques have been proposed at both circuit and
architectural level. At the architectural level, many
proposals have focused on reducing the leakage power by
switching off unused portions of large array structures
such as caches. These techniques have been categorized
into state-preserving and non-state preserving [1][7][14].
 Studies by Powell et al. [12] proposed gated-VDD as a
technique to limit static leakage power by banking and
providing “sleep” transistors which dramatically reduce
leakage current by gating off the supply voltage. This
technique, known as decay, reduces the leakage power
drastically at the expense of loosing the cell’s contents,
being necessary to apply it very carefully since the loose
of information can result in an increase of the dynamic
power to retrieve it again. Kaxiras et al. [10] successfully
applied decay techniques to individual cache lines in order
to reduce leakage in cache structures (67% of static power
consumption can be saved with minimal performance

loss). This technique has also been applied to conditional
branch predictors and BTB structures [6][9].
 On the other hand, drowsy techniques try to reduce
leakage without loosing the cell’s information. Drowsy
caches [3] use different supply voltages according to the
state of each cache line. The lines in drowsy mode use a
low-voltage level, retaining the data, while requiring a
high voltage level to access it again. Waking up from the
drowsy state is similar to a pseudo-cache miss incurring in
some additional penalty cycles (about 7 cycles).
 Li et al. [7] evaluated the use of state and non-state
preserving techniques in caches. The authors showed that
for a fast L2 cache (5-8 cycles latency) decay techniques
are superior in terms of both performance loss and energy
savings to drowsy ones.
 Finally, an alternative to traditional decay is to use
quasi-static, four-transistor (4T) memory cells. 4T cells are
approximately as fast as 6T SRAM cells, but do not have
connections to the supply voltage (VSS). Rather, the 4T
cell is charged upon each access, whether read or write,
and it slowly leaks the charge over time until, eventually,
the value stored is lost. In [9], it was proposed to apply
decay techniques to branch predictors by using 4T cells.
By doing this, some of the drawbacks of using gated-VDD
transistors are eliminated, since an access to a 4T cell
automatically reactivates the cell, whereas reactivating a
6T cell from the “sleep” mode is somewhat more complex,
requiring extra hardware involved in gating the supply
voltage.

2.1. Value Prediction overview

 The last value predictor was introduced by Lipasti et
al. [8]. This is the most basic prediction mechanism and,
basically, it assumes that the next value produced by an
instruction will be the same as the previous one.
 A generalization of the last value predictor leads to the
stride value predictor (STP). Introduced by Gabbay et al.
[4], it uses the last value produced by an instruction plus a
stride pattern. The next predicted value is computed by
adding the last value to the stride.
 The finite context method value predictor (FCM),
introduced by Sazeides et al. [13], uses the history of
recent values, called the context, to determine the next
value. This is implemented by using two-level prediction
tables.
 The differential finite context method value predictor
(DFCM), introduced by Goeman et al. [5], joins the two
previous predictors. DFCM works like FCM (two-level
prediction tables), but it stores the differences between the
values instead of the values themselves, plus the last value
of the instruction. This allows DFCM to capture both
stride and non-stride patterns.

3. Utilization analysis of Value Prediction
structures

 The power dissipation of Value Prediction structures is
divided into dynamic and static power. The dynamic
component depends on the utilization of the VP. Values
can be predicted at different levels, the most aggressive
utilization predicts the output value for all instructions
traversing the pipeline. This is the worst case scenario for
our mechanism, and it will be used in all our simulations.
Other approaches, however, restrict the use of the VP to
just a fraction of instructions such as long-latency
instructions; instructions that belong to a critical path; or
just to predict the effective address to provide memory
disambiguation.
 Therefore, limiting the VP utilization to just a fraction
of selected instructions, effectively reduces the dynamic
power component of this structure. However, the static
power component is still present, as the VP structure leaks
regardless of utilization with increasing leakage loss as
process technology shrinks. For this reason, this work is
focused on reducing the static power component of the VP
structure.
 In [10] Kaxiras et al. showed that, very frequently,
cache lines have an initial active period (known as live
time) followed by a period of no utilization (known as
dead time) before they are eventually evicted. They
proposed to break the stream of references to a particular
cache line into generations. Each generation lasts until the
cache line is evicted and replaced by a new one. This
generational behavior also appears in Value Predictors,
although with some particularities: as VPs are
implemented as direct-mapped tables with no tags and
allowing destructive interferences, in our proposal, a
generation ends when the VP entry is accessed by an
instruction with a different PC (see Figure 1). Its live time
will be the period of accesses with the same PC and its
dead time will be the period between the last access with
an specific PC until an access with a new one.
 Our first study analyzes the utilization of the VP
tables, measuring the fraction of time each entry remains
in the dead state, in order to determine if turning those VP
entries off will result in a significant decrement of leakage
energy. Figure 2 shows the average fraction of time each
generation is in a dead state (i.e., the ratio
dead/(live+dead)) for the whole SPECint2000 benchmark
suite as a function of VP size (see Section 5 for details
about simulation methodology and processor
configuration).
 It can be observed that the three evaluated Value
Predictors –STP, FCM and DFCM– present a similar
utilization regardless of their size. For sizes around 20 KB,
the average fraction of dead time is 43% and for predictor
sizes around 40 KB the average fraction of time the entries
spend in their dead state is 47%. Therefore, if we were

able to take advantage of these dead times by detecting
them and shutting the entries off, we could reduce the
leakage power of the Value Predictor structure by one half
on average.
 However, it is important to note that this is not an upper
bound on the leakage energy savings that could be
achieved by decaying VP entries. Long periods of inactive
live time could also be detected to early shut the entry off
in order to obtain further leakage savings, at the expense
of reducing the VP accuracy, as we will show in next
sections.

4. Value Prediction Decay mechanism

 In order to apply decay techniques to the Value
Predictor mechanism, we need to detect VP entries that
have been unused for a significant period of time in order
to switch them off. Therefore, it is necessary to choose
carefully the number of cycles we should wait before
shutting an entry off to match generational changes.
 The proposed Value Prediction Decay mechanism
tracks the accesses to each VP entry in order to detect if a
particular entry is accessed very frequently or, otherwise,
the entry is unused for a long period of time, entering into
a dead state. In order to measure the power-efficiency of
our proposal, we will explore a wide range of decay
intervals to precisely detect the dead states while, at the
same time, not degrading the VP’s accuracy.

Figure 1. Generations in the value predictor.

Live Time Dead Time

Last Access New Generation

PC1 PC1 PC1
PC1 PC1 PC2

time

New Generation

Figure 2. Fraction of time VP entries are in
dead state (average SpecInt2000).

0,40

0,45

0,50

0,55

0,60

0,65

0,70

10 20 40 80 160

Predictor Size (KB)

de
ad

_t
im

e
/ (

liv
e_

tim
e+

de
ad

_t
im

e)

…
…

...
..

STP DFCM FCM

 Note that, if the policy that decides when to turn a VP
entry off uses too long decay intervals, the potential
leakage savings will be reduced. Conversely, if the policy
uses too short decay intervals, the VP hit ratio will be
degraded. In any case, a positive effect of Value
Prediction Decay when compared to Cache Decay is that
prematurely disabling a VP entry is not so harmful as
disabling a cache line: loosing the contents of the cache
line always leads to an extra access to L2 cache or
memory to retrieve the lost information incurring in extra
execution cycles; however, loosing the contents of a VP
entry might result –or not– in a value misprediction on the
next access to that entry but this is exactly what would
happen if we had a real generation change (which is a very
common situation and one of the major limitations in
traditional non-tagged VPs, where the huge number of
destructive interferences dramatically shortens the
generational replacement).
 Regarding the utilization of Value Predictors,
throughout the paper we are predicting the output values
for all instructions traversing the pipeline. However, it is
important to note that this aggressive prediction scheme
does not benefit a decay mechanism. The more demanding
use of the VP structure, the less opportunities to detect
unused VP entries and the less leakage energy savings
obtained from a decaying mechanism.
 A power-efficient implementation of the decay
mechanism requires the use of a hierarchical counter
composed of a global counter and two-bit saturated gray-
code counters on each VP entry1. Each time the global
counter gets to zero, all the local counters will be
incremented by one. On the other hand, an access to a VP
entry results on a reset of its local counter. When a VP
entry remains unused for a long time, its local counter will
reach the upper limit eventually, and the corresponding
entry will be shut off.
 The length of the decay intervals is controlled by the
period of the global counter. If we set the period of the
global counter to a low value, the VP entries may be
disabled prematurely and leakage will be reduced
drastically, but so will be the hit rate of the predictor. On
the other hand, if we disable too late (large global counter
periods), the leakage energy savings won’t be as high as
they could have been.
 The VP entries will be shut off by using gated-VDD
transistors [12]. These “sleep” transistors are inserted
between the ground (or supply) and the cells of each VP
entry, which reduces the leakage in several orders of
magnitude and can be considered negligible. An
alternative to using gated-VDD transistors consists on using

1 Using a hierarchical counter is more power-efficient since it allows
accessing the local counters at a much coarser level. Accessing the local
counters each cycle would be prohibitive because of the power overhead.

quasi-static 4T transistors in the VP array, although similar
leakage savings would be expected [9].
 In order to precisely evaluate the net leakage energy
savings provided by the static VP decay approach, it is
necessary to consider the following overheads associated
with the mechanism.
 The first component overhead takes into account the
extra dynamic and static power that results from the
additional hardware (a global decay interval counter as
well as the two-bit local counters per VP entry). The
dynamic and static power overhead of the global counter
and all 2-bit local counters has been measured to be less
than 2% of the total VP structure for all evaluated sizes,
which can be considered negligible.
 The second overhead component is derived from the
induced VP misses (when a VP entry is prematurely
disabled) that increase execution time. These extra cycles
that the program is running will also lead to additional
static and dynamic power dissipation. Note that this
second overhead is highly destructive since each extra
cycle accounts for the overall processor dynamic and static
power and it can easily cancel whatever VP leakage
energy savings provided by the static decay scheme.

5. Experimental results

5.1. Simulation methodology

 To evaluate the power-performance efficiency of the
proposed Value Prediction Decay, we have used the
SPECint2000 benchmark suite. All benchmarks were
compiled with maximum optimizations (-O4 -fast) by the
Compaq Alpha compiler and they were run to completion
using the reduced input data set (test). The energy
evaluation has been carried out with a modified version of
the HotLeakage power-performance simulator [15] that
includes the dynamic and static power model for the three
evaluated Value Predictors (STP, FCM and DFCM) as

Table 1. Configuration of the simulated
Processor.

Processor Core
Process Technology:

Frequency:
Instruction Window:

Decode Width:
Issue Width:

Functional Units:

Pipeline:

70 nanometers
5600 MHz
128 RUU, 64 LSQ
8 inst/cycle
8 inst/cycle
8 Int Alu; 2 Int Mult
8 FP Alu; 2 FP Mult
2 Memports
22 stages

Memory Hierarchy
L1 Icache:

L1 Dcache:
L2 cache:

64KB, 2-way
64KB, 2-way
1MB, 4-way, unified

well as both power overheads associated to our proposal.
The access latency for the three Value Predictors is 5
cycles.
 Table 1 shows the configuration of the simulated
architecture. The leakage related parameters have been
taken from the Alpha 21264 processor (provided with the
HotLeakage simulator suite) using a process technology of
70 nanometers.

5.2. Leakage-efficiency of Value Prediction
Decay

 This section presents the power-performance evaluation
of the proposed Value Prediction Decay mechanism for
the STP, FCM and DFCM Value Predictors for different
predictor sizes and for several decay interval windows: 64,
256, 512, 1024, 4096, 32768 and 262144 cycles.
 For each evaluated Value Predictor we report, firstly,
the IPC degradation as we reduce the decay interval, and
secondly, the corresponding leakage energy2 savings just
for the VP structure. Overall leakage energy savings are
not presented due to HotLeakage limitations that only
provide static power models for regular array structures,
such as caches and predictors, or the register file.
 Figure 3 shows the performance degradation for the
STP Value Predictor for different predictor sizes
(averaging the whole SpecInt2000 suite). Note that, as
cited previously, traditional VP (with no decay) can
provide significant average speedups (12% for a 20 KB
STP predictor). Looking into the performance degradation
caused by static decay, we can notice that it is degraded as
expected, due to the data loss of prematurely deactivating
VP entries that still are in a live state. In particular, there is
a slight IPC degradation (around 1%) for 1024- and 512-
cycle decay intervals. However, due to early deactivation
of entries and the induced extra execution cycles, for 256-
cycle, and smaller, decay intervals the performance loss is
not tolerable.
 Figure 4 shows the average leakage energy savings for
the STP predictor. As expected from the IPC degradation,
for very small decay intervals (64 and 256 cycles), the
early deactivation of entries result in no leakage energy
savings at all due to the induced extra execution cycles
that completely cancel whatever leakage power savings
provided by the decay mechanism. However, for 1024
cycles and, particularly, for a 4K-cycle decay interval, the
proposed VP decay approach obtains 52% average leakage
energy savings when considering a medium size (20KB)
predictor. As expected, further leakage savings can be
obtained as we increase VP size but the speedup provided
for bigger sizes (> 20KB) does not justify the additional
resources used.

2 Recall that the performance degradation is also included in the
energy metrics (leakage energy = leakage power * delay).

 Figures 5 and 6 show the performance degradation and
the average leakage energy savings for the FCM Value
Predictor, respectively. Since the FCM is a two-level
predictor (with the relevant and bigger part of the data
stored in the second level table), we will be disabling both
tables. We can notice a similar behavior to the STP
predictor for the very small decay intervals (64 and 256
cycles), again with negative leakage energy savings due to
the early deactivation of entries and the induced extra
execution cycles. On the other hand, for very big decay
intervals (32K and 256K-cycles), the overhead is almost
zero, but we obtain very small leakage energy savings
(Figure 6) since there are almost no deactivations of VP
entries. However, as we reduce the decay interval length,
there is an increase in leakage savings with a maximum
for the 512-cycle interval. For this decay interval, a 20 KB
FCM predictor obtains average leakage energy savings of
75%, showing the benefits of Value Prediction Decay.

Figures 7 and 8 show the performance degradation and
the average leakage energy savings for the DFCM Value
Predictor, respectively. We can notice that the DFCM

2

4

6

8

10

12

14

VP-no
decay

262144 32768 4096 1024 512 256 64

Decay Interval (Cycles)

IP
C

 S
pe

ed
up

 (%
)

…
..

4,6KB 9,25KB 18,5KB 37KB 74KB

Figure 3. STP value predictor performance
degradation (average SpecInt2000).

-40

-20

0

20

40

60

80

256K 32K 4K 1024 512 256

Decay Interval (Cycles)

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)
 …

..…

4,6KB 9,25KB 18,5KB 37KB 74KB

Figure 4. STP value predictor leakage
energy savings (average SpecInt2000).

predictor behaves very similar to FCM. However, for big
decay intervals, DFCM obtains better energy savings
(Figure 8) due to a positive side effect when shutting
DFCM entries off that results in a reduction of destructive
interferences. A similar effect was also found and reported
in [6] for branch predictors.
 Again, as we reduce the decay interval length, there is
an increase in leakage energy savings with a maximum in
the 512-cycle interval. In this case, for a predictor size of
about 20 KB, we obtain average leakage energy savings of
65%. For both FCM and DFCM predictors, the best
energy savings are obtained for a decay interval within the
512-cycle range, unlike data caches where the best decay
intervals are within the 8-Kcycle range [10], because the
“average” live time is around 400 cycles (note also that the
decay mechanism needs some additional cycles to
consider that an entry has entered in a dead state).
 Finally, Figure 9 shows the leakage energy savings
breakdown for a predictor size of 20 KB and a decay
interval of 1024 cycles. It can be observed that a
significant amount of leakage savings are obtained when
disabling VP entries during its live time. As commented in

Section 3, there are many cases where even though an
entry is live, the next access will be far in the future (more
than 1024 cycles ahead in this experiment). In such cases,
short decay intervals can obtain even further leakage
savings by early disabling those entries. Figure 9 shows
that, on average, half of the leakage energy savings comes
from disabling entries during their live time and the other
half comes from disabling entries during a dead time. Note
also that the three evaluated predictors obtain a very
similar leakage savings breakdown since they all are
indexed in the same way (the instruction PC).

6. Conclusions

 In this paper we propose Value Prediction Decay, a
mechanism able to dramatically reduce the leakage energy
of Value Predictors with negligible accuracy reduction,
especially for deep-submicron high performance processor
designs.
 Our proposal dynamically tracks the accesses to each
Value Predictor entry in order to determine if the entry has

2

4

6

8

10

12

14

VP-no
decay

256K 32K 4K 1024 512 256 64

Decay Interval (Cycles)

IP
C

 S
pe

ed
up

 (%
)

…
..

2.3KB 4.6KB 9.5KB
19.25KB 39KB 78KB

Figure 5. FCM value predictor performance
degradation (average SpecInt2000).

-40

-20

0

20

40

60

80

256K 32K 4K 1024 512 256 64

Decay Interval (Cycles)

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)
 …

..…

2.3KB 4.6KB 9.5KB 19.25KB 39KB 78KB

Figure 7. DFCM value predictor performance
degradation (average SpecInt2000).

2

4

6

8

10

12

14

16

VP-no
decay

256K 32K 4K 1024 512 256 64

Decay Interval (Cycles)

IP
C

 S
pe

ed
up

 (%
)

…
..

2.5KB 5.18KB 10,5KB
21,25KB 43KB 87KB

-40

-20

0

20

40

60

80

256K 32K 4K 1024 512 256 64

Decay Interval (Cycles)

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)
 …

..…

2.5KB 5.18KB 10,5KB 21,25KB 43KB 87KB

Figure 8. DFCM value predictor leakage
energy savings (average SpecInt2000).

Figure 6. FCM value predictor leakage
energy savings (average SpecInt2000).

been unused for a significant amount of time, and in that
case, it switches the entry off, avoiding leakage loss.
Although the VP structure is smaller than a L2 cache, hot
small structures can leak more than large but cooler ones.
We must fight to reduce leakage at every level, even at the
smallest structures, like Value Predictors, Branch
Predictors, BTBs, etc.
 Experimental results have shown that both FCM and
DFCM seem to be the most energy-efficient predictors
achieving average leakage energy savings of 75% and
65%, respectively, for a predictor size of around 20 KB
with negligible processor performance degradation when
considering a decay interval of 512 cycles. We have also
shown that leakage energy savings are not limited by only
detecting dead times, since Value Predictors are structures
that exhibit long periods of inactivity during an entry’s live
time which allows to early shut the entry off in order to
obtain further leakage savings.
 Finally, the present work tries to show how the use of
low-power VP structures could still make Value Prediction
a power-performance efficient mechanism suitable for
modern high-end processor designs.

Acknowledgements

 This work has been supported by the Ministry of
Education and Science of Spain under grant TIC2003-
08154-C06-03.

References

[1] J.A. Butts and G. Sohi. “A static power model for
architects”. In Proc. of the 33rd Int. Symp. on
Microarchitecture, 2000.

[2] B. Calder, G. Reinman and D.M. Tullsen. "Selective Value
Prediction". In Proc. of the 26th Int. Symp. on Computer
Architecture, May 1999.

[3] K. Flautner et al. “Drowsy Caches: Simple Techniques for
Reducing Leakage Power”. In Proc. of the 29th Int. Symp.
on Computer Architecture, 2002.

[4] F. Gabbay and A. Mendelson. “Speculative execution
based on value prediction”. Technical Report 1080,
Technion – Israel Institute of Technology, 1997.

[5] B. Goeman, H. Vandierendonck and K. de Bosschere.
“Differential FCM: Increasing Value Prediction Accuracy
by Improving Table Usage Efficiency”. In Proc. of the Int.
Symp. on High-Performance Comp. Architecture, 2001.

[6] Z. Hu et al. “Applying Decay Strategies to Branch
Predictors for Leakage Energy Savings”. In Proc. of the
Int. Conf. on Computer Design, Sep. 2002.

[7] Y. Li et al. “State-Preserving vs. Non-State-Preserving
Leakage Control in Caches,” In Proc. of the DATE
Conference, Feb. 2004.

[8] M. Lipasti, C. Wilkerson and J. Shen. “Value locality and
load value prediction”. In Proc. of the 7th Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems, Oct. 1996.

[9] P. Juang et al. “Implementing Branch-Predictor Decay
Using Quasi-Static Memory Cells”. ACM Transactions on
Architecture and Code Optimization, vol. 1, June 2004.

[10] S. Kaxiras, Z. Hu and M. Martonosi. “Cache Decay:
Exploiting Generational Behavior to Reduce Cache
Leakage Power”. In Proc. of the 28th Int. Symp. on
Computer Architecture, 2001.

[11] N.S. Kim, T. Austin et al. "Leakage Current: Moore’s Law
Meets Static Power". IEEE Computer, 2003.

[12] M.D. Powell et al. “Gated-Vdd: A Circuit Technique to
Reduce Leakage in Deep-Submicron Cache Memories”. In
Proc. of the ISLPED, 2000.

[13] Y. Sazeides and J.E. Smith. “The predictibility of data
values”. In Proc. of the 30th Annual International
Symposium of Microarchitecture, Dec. 1997.

[14] S. Yang et al. “An integrated circuit/architecture approach
to reducing leakage in deep-submicron high-performance I-
Caches”. In Proc. of the 7th Int. Symp. on High-
Performance Computer Architecture, 2001.

[15] Y. Zhang, D. Paritkh, K. Sankaranarayanan, K.Skadron
and M. Stan. “HotLeakage: A Temperature-Aware Model
of Subthreshold and Gate Leakage for Architects”.
Technical Report, Dept. of Computer Science, Univ. of
Virginia, 2003.

0
10
20
30
40
50
60
70
80
90

100

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf
pa

rs
er

tw
ol

f
vo

rte
x

vp
r

A
ve

ra
ge

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf
pa

rs
er

tw
ol

f
vo

rte
x

vp
r

A
ve

ra
ge

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf
pa

rs
er

tw
ol

f
vo

rte
x

vp
r

A
ve

ra
ge

Le
ak

ag
e

En
er

gy
 S

av
in

gs

br
ea

kd
ow

n
(%

)

Disabled in Dead Time

Disabled in Live Time

STP DFCM FCM

Figure 9. Leakage energy savings breakdown (20 KB predictor with decay interval of 1024 cycles).

