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Abstract

As modern computing clusters used in scientific
computing applications scale to ever-larger sizes and
capabilities, their operational energy costs have be-
come prohibitive. While it is an emerging trend in
modern cluster design to optimize for low energy
consumption in the individual computational nodes,
little attention has been paid to reducing the energy
used by the communication network that connects
the nodes. In this work. we consider a 3-D torus
network similar to the one in BlueGene/L to ex-
plore opporunities for link shutdown during collec-
tive communication operations. For example, we
demonstrate that in the case of all-to-one reduce
codes, approximately 99% of the total network link
time can be spent in a shutoff state on a 64-node
toroidal network, thus reducing the overall system
energy by approximately 15–28%

1 Introduction

The modern world of scientific computing has
increasingly turned to larger and larger supercom-
puting clusters in order to meet the community’s
ever-growing need for more capable computers. As
codes scale in complexity and the demand for com-
putational resources increases, the compute clusters
available to the community have grown, too, and
have begun to demonstrate significant challenges in
large energy consumption and high levels of power
dissipation. To combat this trend, the current gen-
eration of compute cluster designers have become
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much more mindful of the need for controlling en-
ergy consumption in clusters. The current state-of-
the-art clusters are, consequently, many times more
energy efficient than older clusters, but there are
still significant areas available for improvement.

Current energy optimizations in clusters are fo-
cused on reducing the energy used per bit of compu-
tation in the actual processing nodes—the proces-
sors, memory, and other associated hardware used
to compute results with available data. This trend
largely has ignored the approximately 37% of energy
budget that is consumed in a cluster by its intercon-
nection network [4]. The interconnection network,
in this work a three-dimensional torus, is respon-
sible for efficiently distributing and collecting data
across the nodes. It is responsible for providing high
bandwidth, low-latency communication, and many
possible network energy optimizations come at an
unacceptable cost in terms of one of those two per-
formance metrics.

In this work, we consider a technique that has
been explored in other application domains and ap-
ply this to several common kernels that are used
in many scientific computing applications. Link
shutdown, the practice of electrically disabling and
re-enabling network links through software controls
during the run time of an application, is a tested
method of saving significant energy in interconnec-
tion networks where networks can be shown to have
predictable or bursty traffic patterns [7]. These pat-
terns give the system ample opportunity to reac-
tively disable and predictively re-enable links with-
out causing significant performance loss at the ap-
plication level [7]. We show that scientific codes that
employ realistic usage of collective communications,
special group communications with well-defined and
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studied patterns, demonstrate promising opportuni-
ties for link shutdown.

While it is often left unstated in literature in the
scientific computing world, collective communica-
tions are a central and important aspect of almost
all scientific computing codes [8]. In practice, vir-
tually all scientific codes employ collective commu-
nications for many reasons, two of which are that
collective communications are available as simple,
pre-tested library calls and that collective commu-
nications reduce the needs for explicit barrier syn-
chronization in parallel codes.

We demonstrate that link shutdown opportuni-
ties for common collective communication opera-
tions on practical systems can surpass 99% while
observing network conditions that would allow in-
expensive on/off links to be used [7]. This means
that, in this context, 99% of all link-cycles during
collective communications, the clock cycles where
a link would normally be enabled, may be instead
spent in an electrically disabled state. Even at the
minimum, these algorithms bound at 50% potential
shutdown. By allowing the application layer to in-
form the link layer, the link shutdown process can be
made non-predictive. This allows for at least fully
half of the collective communication link energy to
be saved, representing approximately 15–28% of to-
tal system energy.

This paper is organized as follows. In section 2,
we introduce the custom simulation platform used
to complete the experimental trials. In section 3,
we describe our experimental procedure and con-
ditions. In section 4, we present and discuss the
experimental results. In section 5, we briefly dis-
cuss implementation details for real-world systems.
In section 6, we discuss relevant previous work in
this field. In section 7, we draw conclusions and
mention possible future work. In section 8, we offer
acknowledgments.

2 Simulation Platform

Because there was a lack of available pre-
constructed simulation environments that suited
our needs for this work, we developed a simulation
tool, TorusSim, to perform our experimental evalu-
ation. In this section, we introduce TorusSim and
explain its validation.

2.1 TorusSim Overview

TorusSim is an offline, modular torus and mesh
simulator that has been developed by the authors.

It uses an event-based simulation engine to route
simulated packets through arbitrarily-sized torus
and mesh networks in a fashion that is accurate
enough to produce meaningful results while being
fast enough to simulate large networks and large
trace files captured from production hardware.

TorusSim presents the user with a number of im-
portant features for this work, including arbitrar-
ily sized one-, two-, and three-dimensional toruses
of any size from the trivial case to a large 256 ×
256× 256 network—far larger than any modern su-
percomputer. TorusSim offers configurable tracking
of send, receive, buffer, processing-per-bit, start-
message, and receive-message energy, along with
customizable tracking of opportunities for link shut-
down by recording significant gaps in link traffic at
runtime. Buffer sizes, link speeds, and other net-
work parameters are also configurable.

Data input to the simulator is accomplished by
recording application-level traces from actual codes
on toroidal clusters; converting them into a sim-
ple, text-based file format; and providing them as
input to TorusSim. Input files are organized accord-
ing to message traces, with one complete message
per input line. Each message description contains
a start node, an end node, the message size in 64-
bit units, and start and receive time stamps. The
unit of time, typically nanoseconds or microseconds,
is configurable between milliseconds and nanosec-
onds. Internally, TorusSim simulates using nanosec-
ond granularity, meaning that all events take an in-
tegral number of nanoseconds to complete.

For standard communications, TorusSim imple-
ments a statically-routed, minimum-length, uni-
formly distributed, random-path routing algorithm.
All packets within a message follow the same route,
and behave according to wormhole-like routing,
where all of the packets move in a chain without
waiting for each packet to be received before the
next is sent. At trace-read time, a static path is
generated for each message, and that path is fol-
lowed by all of the packets in the message. This
provides a very simple routing model that is made
deadlock-free by the addition of virtual channels in
the torus, while still remaining realistic enough to
capture network behavior—eg. link activity, con-
gestion, queue utilization, and other statistics. Ad-
ditionally, routing simulation is simplified further
by restricting all links to be point-to-point. This
means that each node-to-node connection is stati-
cally allocated a dedicated link, or, equivalently, a
portion of a shared link where each connection is
given a static bandwidth and latency guarantee.



2.2 The TorusSim Event Model

In TorusSim, all events in the network are han-
dled through a central event-management priority
queue. Events are prioritized on the basis of event
time, event virtual channel/priority, and event serial
number, in decreasing order. These criteria provide
a deterministic and correct event ordering. To sup-
port this, TorusSim requires time-sorted input files
and reads a trace from the input file to determine
the next input time stamp, then iterates over the
existing events until time “catches up” before plac-
ing the new event from the file into the queue. This
permits the preservation of causality without man-
dating complicated event-reordering schemes.

It is assumed that all simulated torus links have
the same performance characteristics. This tech-
nique is accomplished without difficulty in produc-
tion systems by interleaving the torus nodes and
folding the torus into itself, eliminating long cables
[1].

2.3 Link Shutdown Analysis

TorusSim implements a simple, effective method
of tracking opportunities for link shutdown at run-
time. Based on the fact that the network under
test is not dynamically routing, it becomes useful
to simply track when links are active and when
they are not. Every time a packet is transmitted
across a link, the times that the transmission starts
and completes are recorded. Between packets, the
analysis engine looks for gaps by comparing these
timestamps, and records significant gaps by adding
them to a counter. To determine if a gap is signifi-
cant, they are compared to a runtime-defined static
time—the “link shutdown cutoff”—, which can be
varied for each simulation run by the user. Each link
in the system has its own counter for link shutdown
opportunity.

2.4 Validation

Many approaches were considered for validating
TorusSim to verify its correct simulation of net-
works. Unfortunately, the authors were unable to
locate any other project or product that was de-
signed specifically for this purpose and the challenge
of re-creating a torus simulator in another frame-
work was prohibitive and would provide only an
un-verified benchmark to compare against. There-
fore, validation of TorusSim has been accomplished

by hand-verification of representative, small simu-
lations.

Several different approaches to validation have
been performed on simplified networks. First, to
verify that the network is deadlock-free, artificial
traces that would otherwise deadlock were given to
the simulator, which successfully cleared the net-
work using the escape virtual channel functionality.
This functionality breaks down with traces that sat-
urate every buffer in the network at once, but in this
situation, no virtual channel system will succeed in
clearing the network, so this is expected behavior.

Analysis of the above simulations also provides
evidence that the event ordering and congestion
models work properly. Events are queued at the
right time and execute in the proper order, and
when contention occurs in the network, the proper
message is blocked according to realistic behavior
for real systems.

While no experimental evaluation against ex-
isting implemented networks or other, previously-
validated, network simulators are available, the
hand-validation permits us to assert our confidence
that the simulator, as operating, functions properly
and accurately enough to demonstrate the broad
trends presented in this paper.

3 Experimental Procedure

The effort of simulating real-world data using
captured traces from actual machines introduces
concerns about the validity and usefulness of cap-
tured traces. Additionally, because the simulated
network and physical network that traces are drawn
from cannot be identical, it is useful to describe both
in detail, as we do in this section.

3.1 The Simulated Network

For this work, we configured TorusSim to simu-
late a BlueGene/L-like 3-D torus network consist-
ing of seven queues per node (X+/-, Y+/-, Z+/-,
Exit) [3]. The BlueGene/L is designed as a low-
power and high-performance supercomputer, how-
ever, most of the power retrenchment is achieved
around CPU cores. We conjecture that further en-
ergy savings may be possible if collective communi-
cations afford ample opportunity for link shutdown.
In TorusSim, individual messages between nodes, in
this configuration, consist of atomic packets carry-
ing eight 256-bit flits, which with headers results
in 1952 data bits per packet. The first packet of
a message takes 6000ns to its first hop to account



for application-layer and network-layer setup. All
other packet hops, including the first hops of subse-
quent packets in a message, take 90ns to complete.
Links are full duplex, meaning that each torus edge
consists of two links, one in each direction such that
two nodes, side by side, can communicate at full bit
rate without interleaving their communications.

While TorusSim is able to simulate networks
ranging from small, one-dimensional rings to very
large, three-dimensional superclusters, for this work
the range of explored network sizes is constrained.
Simulations were performed on a 64-node torus ar-
ranged in a logical 4 × 4 × 4 structure embedded
in a larger BlueGene/L torus, which provides short-
cut links to guarantee proper message timing de-
spite the logical node embedding. Timings in the
network were assumed to match the published fig-
ures for the full-scale BlueGene/L network at Los
Alamos National Labs [3].

3.2 Source and Validity of Traces

Traces for this work were provided by hand-
written MPI codes executed on a small BlueGene/L
installation at Argonne national Labs. Codes were
written specifically to perform minimal calculation
between communications, thereby minimizing the
opportunity for the application layer to artificially
increase the potential for link shutdown.

We experimentally collected traces for all-to-one
reduce and all-to-all scatter operations for a wide
variety of specifications. By varying message sizes
from 8 KiB to 128 KiB, we loaded the network dif-
ferently to provide a good cross section of behav-
ior. For this work, however, we chose to focus on
32 KiB traces. As the message sizes increase, the
trend shows even more profound opportunities for
link shutdown. Additionally, we explored sinking to
various torus nodes for reduce, but because toruses
are always self-similar from the view of any node,
the sink node does not matter significantly for any
algorithm that involves all-to-one or all-to-all com-
munication. As shown in Figure 1, the variances in
opportunity are experimentally small. Therefore,
we focus our results on specific sets of nodes.

4 Results and Analysis

In general, results show that applications that
depend heavily on collective communication primi-
tives will show great opportunity for exploiting link
shutdown (LS) to save energy. Because of the struc-
tured nature of primitive collective operations, we

see that many links in a three-dimensional torus are
never used at all for some codes. For the cases of
both all-to-all scatter and all-to-one reduce, approx-
imately 50% of links go completely unutilized. This
pattern demonstrates that these algorithms operate
inherently by embedding a minimal tree structure
into the torus, and any link that does not become a
tree edge will go unused.

4.1 Scatter Results

Scatter was chosen for this work because it heav-
ily loads the network by distributing data from each
node to each other node. At the end of an all-to-all
scatter operation, all nodes contain all of the data
sent from every node. This has the effect of mini-
mizing the LS opportunities given that it is a well-
structured algorithm. Of the collective communica-
tion primitives, all-to-all scatter is among the most
link-using. The intention of this was to provide a
worst-case collective communication demonstration.

For the specific case of 32 KiB messages on a
64-node 4× 4× 4 torus, we find that all-to-all scat-
ter opportunities fall off from over 99.999% of total
runtime to 50% gradually as the LS cutoff enlarges.
From these data, we see that LS opportunities at a
cutoff of 0.05s are still 99.9%, at 0.1s are 89.3%, and
only reach 50% at 0.8s, never dropping below that
percentage. These results are shown in Figure 2.

4.2 Reduce Results

In addition to all-to-all scatter, we investigated
all-to-one reduce for this work. All-to-one reduce
collects a reduction of data that is spread across the
network into a single sink node. Each node reduces
the data sent to it by its downstream nodes, such
that a node will produce only a single message to its
upstream neighbor. This has the effect of loading
the network less heavily than almost any other col-
lective communication primitive, because the data
is not only being sent to a single node instead of
distributed, it is being condensed at each hop. This
provides an example of a highly exploitable collec-
tive communication operation, as opposed to scat-
ter, which was chosen for its less exploitable behav-
ior.

For the analogous case of reduce as described
above for scatter, with 32 KiB messages on the same
torus, we see that reduce presents a very different
LS profile from scatter. While in the best case we
see only about 99.991% opportunity, the curve falls
off more smoothly, to 99.1% at 0.05s, down to 92.2%



All-to-One Reduce, 4x4x4 Torus, 32 KiB Messages

Link Shutdown Opportunity vs. Shutdown vs. Sink
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Figure 1: Insignificant LS Opportunity Variance Due to Sink Location (Zoomed in to significant region)

at 0.1s, and bottoming out only at 67.2% at 0.45s.
These results are shown graphically in Figure 3, and
meant for comparison with those in Figure 2.

In noting that the all-to-one reduce operation
reaches a minimum at a higher opportunity than
all-to-all scatter, we can see a general trend that
all-to-one operations tend to make much less use of
the network, and therefore provide more significant
opportunities for link shutdown.

5 Link Shutdown Implementations

For the majority of this work, we have avoided
the discussion of implementing a real-world system
to implement the ideas presented here. In the liter-
ature, many works consider the various ways of im-
plementing link shutdown, from which two major
techniques for implementation have emerged. We
discuss those methods and how they apply to this
specific problem domain here.

The technique that is most simple and also
presently available commercially is the use of
”on/off” links. As the name implies, these are
links that switch, via some technique, between en-
tirely enabled and entirely disabled, doing so as
needed during program runtime. These typically
use a counter to count consecutive cycles of links
going unused and disable a link once it has reached
a threshold, only to non-predictively re-enable the
link when it is needed again. This is inexpensive
and not complex in terms of hardware implemen-

tation, but a naive approach can cause latency loss
in the single digit percents [7]. Systems with highly
redundant link structures such as fat-trees [2] and
the torus networks considered here, however, fare
much better with basic on/off links. Commercially,
on/off links that exhibit maximal latency increases
of tens of microseconds were available in 2004 [7],
and we have demonstrated here that codes showing
thousands of microseconds of inactivity show very
high shutdown opportunities.

By moving to a more complex hardware im-
plementation, designers may opt to use dynamic
voltage scaling (DVS) and dynamic link shutdown
(DLS) in combination. This method is comprised
of two techniques. Firstly, DVS is used to electri-
cally slow down links that are necessary but expe-
riencing minimal load, thereby saving energy and
making messages traveling on those links experi-
ence higher latency while still allowing connectivity.
Then, network-level heuristics predictively disable
and re-enable links that are historically not highly
used, attempting to predict when they will be nec-
essary. This has the potential to reduce the latency
cost to sub-microsecond times [7] and to save more
energy than on/off links. DVS and DLS links are,
however, more complex and expensive to implement
[5].

We propose that a method for exploiting the link
shutdown opportunities in toroidal networks is to
use non-predictive on/off links. In real-world codes,
collective communication primitives may be han-
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Figure 2: LS Opportunity vs. LS Cutoff for 64-Node Scatter

dled by optimized software libraries that may in-
form the network structure of impending periods
of link activity or inactivity. Because such large
potentials for shutdown exist, very accurate on/off
timing may be achieved. By combining this with
traditional on/off links, we predict that significantly
near-zero latency costs may be achieved without sig-
nificantly increasing hardware cost beyond what is
already commercially available.

6 Prior Work

There is a limited body of work that discusses
large-scale network simulation with an eye toward
accurate energy analysis and link shutdown oppor-
tunity.

Alonso, et al., analyzed the effects of network link
shutdown using on/off links for general applications
running on fat trees, a similar but more specialized
network topology than those considered here. In
that work, they found that significant energy can be
saved with very little performance cost by exploiting
redundancy in the fat tree interconnection when the
network was not heavily loaded [2].

A number of groups have investigated on-chip
mesh energy for network-on-chip (NoC) computers.
Orion from Princeton University [9] is a tool that
performs cycle-accurate energy and performance
modeling of NoCs. Due to differences in the way
that meshes and toruses operate and the architec-

tural differences between simulating small NoCs and
large cluster systems, this work is not directly appli-
cable to modeling computing clusters. It has, how-
ever, significantly informed the field of mesh net-
work energy analysis.

In [5], Kim, et al., investigated practical energy-
saving techniques on individual cluster links. By
performing an energy analysis of a practical dy-
namic voltage scaling (DVS) and link shutdown
(LS) system for cluster-style interconnections, the
authors of that work concluded that DVS and LS
are useful and effective energy-saving techniques. In
that work, the authors analyzed a synthesizable net-
work link chip and associated link energy from a
real-world system and exposed the trend that, as
technology continues to scale, the need for network-
link-energy saving techniques like DVS and LS will
only increase.

7 Conclusions

Energy consumption of the interconnection net-
works in large-scale compute clusters has become
a significant, under-addressed problem in modern
cluster design. Because energy usage in a network is
not strongly dependent on the operational speed of
the network, reducing the energy consumed by the
network per computation must rely on utilizing the
network less. Without adapting scientific codes or
routing algorithms to use networks in more efficient
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Figure 3: LS Opportunity vs. LS Cutoff for 64-Node Reduce

ways, we still see that using current, commonly used
collective communication primitives provides signif-
icant opportunities to save energy with link shut-
down. In this work, we demonstrated that with a
link shutdown timer of 0.5s, a time easily managed
through explicit software calls, we can save 50–67%
of link energy. By decreasing the time to 0.1s, we
increase the potential energy savings considerably
to 92+%. This could represent considerable savings
over link shutdown for applications such as parallel
dense linear algebra libraries which rely on collective
communications with large message sizes [6].

Unfortunately, simply finding the opportunities
for link shutdown will not, in itself, save energy. In-
stead, a practical system must implement link shut-
down and wake-up in a way that preserves system
efficiency while effectively utilizing the opportuni-
ties presented. Thankfully, on/off links may be used
in conjunction with application level support to sim-
ply enable and disable links non-predictively, when
it is known that the application will not need them.
This has the potential to achieve very high efficien-
cies with minimal latency cost, but requires appli-
cations to be conscious of their link usage [7].

In the future, we will extend this work and analy-
sis to encompass detailed consideration of multiple
types of networks running heterogeneous applica-
tion codes. By focusing on how real-world bench-
marks, when properly coded, are crafted to include
collective communication primitives, we will analyze

how network energy in overall systems will be af-
fected when using link shutdown methods that focus
on the primitives. Finally, many potential avenues
for work including TorusSim exist, including analy-
sis of on-chip networks; heterogeneous, multi-chip
NoC systems; and very large scale supercomput-
ing networks beyond those currently implemented
in real systems.
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