
A Power-Aware Prediction-Based Cache Coherence Protocol

for Chip Multiprocessors

Ehsan Atoofian and Amirali Baniasadi
ECE Department, University of Victoria

{eatoofian, amirali}@ece.uvic.ca

Abstract

Snoopy cache coherence protocols broadcast requests

to all nodes, reducing the latency of cache to cache

transfer misses at the expense of increasing

interconnect power. We propose speculative supplier

identification (SSI) to reduce power dissipation in

binary tree interconnects in snoopy cache coherence
implementations.

In SSI, instead of broadcasting a request to all

processors, we send the request to the node more likely

to have the missing data. We reduce power as we limit

access only to the interconnect components between

the requestor and the supplier node. We evaluate SSI

using shared memory applications. We show that SSI

reduces interconnect power by 23% in a 4-way

multiprocessor. This comes with negligible

performance cost and hardware overhead.

SSI does not change existing coherence protocols and

is completely transparent to software and the operating
system.

1. Introduction
Exploiting thread-level parallelism is believed to be a

reliable way to achieve higher performance

improvements in the future. Moreover, as technology

advances provide microprocessor design with more
options, finding new solutions to use the possible

capabilities is necessary. Chip multiprocessing offers

an attractive solution as using multiple cores makes

efficient execution of parallel threads possible.

Accordingly, chip multiprocessors (CMPs) are

expected to become more popular as the number of on-

die transistors continue to increase.

Currently available CMPs (e.g., Sun’s Niagara) exploit

as many as eight cores. However, it is expected that the

increasing demand for higher speed in multiprocessors

would require using higher number of cores,
effectively increasing interconnect complexity and

power dissipation. This is due to the fact that

multithread workloads which run simultaneously on

multiprocessor nodes communicate through

interconnects and dissipate significant power. As a

result, inter-processor communication has become one
of the bottlenecks in multiprocessor systems

consuming a considerable share of the overall power

(i.e., up to 15% [1]).

In a shared memory multiprocessor system, the

processors have to access interconnects upon

frequently occurring local cache misses [3, 6, 8, 15, 17,

18]. Each local cache is responsible for maintaining

the correct state for its local data and responding to

requests made by other processors when necessary.

Upon a cache miss, several power dissipating

transactions occur on interconnects including snoop
requests, invalidate messages, and block writebacks. In

a write-invalidate protocol, a snoop request is

broadcasted to all nodes, substantially increasing

interconnect power dissipation.

Our study shows that processors providing a missing

data show very high locality. In other words, for a

cache miss occurring in processor A, if the required

data is residing in and provided by processor B’s local

cache, there is a high probability that next time A is

missing a data, it would be provided by B again.

In this work we exploit this phenomenon and introduce

speculative supplier identification (SSI) to reduce
power in interconnects. In SSI, the requesting node

avoids broadcasting requests to all nodes and sends the

request only to the previous supplier if there is a high

confidence that the previous supplier would provide the

missing data. As such, interconnect activity is reduced

and only necessary links and switches (which connect

the requestor and supplier) are accessed. This

eliminates unnecessary activities not only in

interconnects and internal switches but also in tag

arrays of non-supplying processors.

In summary, we make the following contributions:

• We show supplier nodes have very high locality,

i.e., for any processor there is a high probability (85%

for the configuration and applications studied here) that

1-4244-0910-1/07/$20.00 ©2007 IEEE

two consecutive misses are handled by the same

remote node.

• We show that a simple predictor can predict the

supplier processor for a local cache miss with high

accuracy. Our study shows that a single entry 4-bit

predictor can identify remote suppliers with an average
accuracy up to 95%.

• By limiting sending requests only to the predicted

remote nodes, we reduce interconnect activity by 23%

in a 4-way chip multiprocessor system. This comes

with negligible impact on execution time.

It should be noted that while in this work, and as a case

study, we use a binary tree, similar to Sun Fireplane

[2], our method can also be used for other alternative

non-bus interconnects (e.g., benes and fat-tree [21]).

The rest of the paper is organized as follows. In section

2, we discuss our motivation. In section 3, we review
the related background. In section 4, we discuss SSI

and explain implementation details. In section 5, we

discuss methodology and evaluate SSI. In section 6, we

review related work. Finally, in section 7 we offer

concluding remarks.

2. Motivation
In Figure 1, we show how a snoop request is handled.

As presented, N processors sharing a single L2 cache

are connected through a network interconnect. Suppose

that processor P0 is about to read the elements of a

shared array for the first time. Meantime assume that

Pn-1 has already read the array, and all array elements

are available in Pn-1’s local cache. A miss occurs as
soon as P0 reads the first array element. To find the

missing data, P0 broadcasts snoop requests to all the

other nodes (Figure 1.a). P1, P2, …, and Pn-1 receive

snoop requests and lookup their tag arrays. Pn-1 finds

the element and sends it to P0. The system goes through

the same procedure every time P0 reads a new

(missing) element.

Note that all interconnect components are accessed

every time that an array element is accessed in P0.

However, only one of the many processors (Pn-1 in the

example) provides the data. This approach provides
fast access to the missing data but is inefficient from

the energy point of view [6].

In this work, we address this design inefficiency and

introduce speculative supplier identification (or simply

SSI) to reduce power in snoop-based chip

multiprocessor systems.

SSI relies on the fact that there is a high chance that

two consecutive cache missies in a local cache are

supplied by the same remote node. We refer to this

phenomenon as supplier locality. Figure 2 reports

supplier locality for the Splash-2 benchmarks used in

this study (see section 5.1 for methodology). Locality
shows how often the current supplier of a missing data

in a local node is the same as the previous supplier.

Except for barnes, all benchmarks have a locality

higher than 70%. On average, supplier locality is 85%.

SSI exploits this locality and uses a simple predictor to

speculate the remote node providing the missing data.

SSI sends the associated request only to the speculated
node. As such, only the path between the requestor and

supplier is accessed (Fig. 1.b). This can reduce power

compared to a conventional snoop-based system where

all nodes are accessed uniformly and regularly.

a) b)

Figure 1. a) Conventional snooping. b) SSI snooping.

Power savings is possible if the supplier node is

predicted accurately. In the event of a misprediction,

however, snoop requests have to be broadcasted to all

nodes resulting in energy and latency penalty. This

penalty can negate our savings if the necessary

behavior is not there. However, as we show later in this

work, savings outweigh the associated overhead.

Note that although speculation has been used in
directory-based cache coherence protocols (e.g., to

reduce cache to cache transfer latency [12]), to the best

of our knowledge, this is the first time it is being used

in snoopy cache coherence protocols.

0%
10%

20%
30%

40%
50%

60%

70%
80%

90%
100%

Bar
ne

s

C
ho

le
sk

y

Lu
_c

on
t

Lu
_n

co
nt

O
ce

an
_nc

on
t in

us

R
ad

io
sit

y

Rad
ix

R
ay

tra
ce

W
ate

r_
Nsq

W
ate

r_
Sp

AV
G.

Figure 2. Supplier locality for the applications and the
configuration used in this study.

P0
P1

Pn-2

Pn-1

L2

P0
P1

Pn-2

Pn-1

L2

3. Background
In section 3.1, we review a basic write-invalidate snoop

protocol. We discuss the interconnect architecture used

in this work in section 3.2.

3.1 Write-invalidate snoop protocol
The snoop protocol is used to maintain cache

coherence in shared memory multiprocessors. A cache

coherence protocol is a collection of finite state

machines that change their states in response to their

local processors’ requests and messages received on

the bus. Each finite state machine is distributed over

nodes with each local cache maintaining the state of its

local data. All caches connected to the bus monitor bus

transactions. Caches update the state of their data and
reply to requests whenever necessary.

On a cache read miss, a request is broadcasted on the

bus. All caches lookup their tag arrays with the address

of requesting message. If a cache has the requested

(valid) data, it sends the data to the requestor. In a

write-invalidate protocol, when a write miss occurs, an

invalidate request is sent over the bus. All processors

that have a copy of the message address invalidate the

corresponding entry in their local caches.

3.2. Tree-base interconnect structure
The address interconnect used in this paper is similar to

Sun Fireplane interconnect[2]. Figure 3 shows the
structure of the address interconnects. Address

interconnect is implemented using two level switches.

Processors are located at the leaves of the tree, and the

L2 cache is connected to the root. Memory is off the

chip and is connected to the L2 cache. At any moment,

at most one message exists in the tree. It should be

noted that from a processor viewpoint, the tree

structure is similar to a bus [6].

Upon broadcasting a request, the request is first sent to

the root switch. In the next step, the root switch sends

copies of the request down to all processors. Processors

use the received data and lookup their tag arrays before
replying to the root switch. If any of the processors has

the data, the root switch selects the closest processor to

the requestor and forwards the processor’s message. If

none of the processors hold the requested data, the root

switch sends a request to the L2 cache. If the data is not

found in the L2 cache, the processor sends an off the

chip request to the memory.

In SSI, we modify the baseline cache coherence

protocol and reduce the number of steps involved.

Instead of sending request to the root and then having

the request broadcasted by the root, the request is
directly sent to other nodes. This reduces the number

of accesses to the links by one and results in processors

receiving snoops requests at different cycles. For

example in Figure 3, under our system, a request sent

by P0 is received by P1 sooner than P3.

In our system, and similar to the conventional snoop-

based system, processors reply to the root switch after

tag lookup is performed. However, in our system, the

root switch does not receive replies from processors at
the same time. The root switch should wait to receive

all replies and then select the closest supplier to the

requestor or send the request to the L2 cache.

We use separate data and address interconnects. Data

interconnect is similar to address interconnect and uses

two level of switches. When the supplier is determined

by the cache coherence protocol, the supplier sends

data to the requestor through the data interconnect. In

this work we focus on the address interconnect.

Figure 3. Address interconnect structure.

4. Implementation
In our proposed architecture, each node is equipped

with a small single-entry predictor to speculate the

supplier for missing data reads1 in the local cache.

Figure 4 depicts a typical processor in our CMP

configuration. Each processor includes a core, a private

L1 cache, and a supplier predictor. Each predictor entry

is equipped with two fields: a log2N bit field, where N

is the number of processors, referred to as speculated

supplier or SPL (SPL has two bits in our example of
four processors) and an n-bit saturating counter. SPL

records the last supplier node for the processor. To

achieve high accuracy, we use saturating counters. If

the prediction is correct, the counter is incremented.

For mispredictions, the counter is reset to zero. The

predictor is trusted only if the value of the saturating

counter is more than a pre-decided threshold. Note that

the area and energy overhead associated with the

predictor is negligible as the predictor only includes an

1 A predictor may need to predict multiple nodes for write
misses [5], since several nodes may share the missing data,

and invalidation request should be sent to all of the sharers.
However, our predictor can predict only one node. Extending
this work to cover more complex scenarios is part of our
ongoing research.

P3P2P1P0

L2

S0

S2S1

n-bit counter and a log2N bit register. We refer to an

SSI system using an n-bit counter as SSI-n (e.g., SSI-2

uses a single 2-bit counter).

Initially the predictor does not include any information.

Therefore, no prediction is made when the first miss

occurs as there is no record of any previous supplier.
Under such circumstances, the processor follows the

conventional approach and broadcasts a snoop request

on the interconnect. When the supplier processor

responds, the predictor is updated with the supplier

number. Upon the next cache miss, if the saturating

counter is more than a threshold, the predictor

speculates, and the request is only sent to the predicted

node. The predicted node looks up for the requested

address, and replies. For accurate predictions and if the

valid data is found in the speculated supplier, no

additional step is needed. Consequently, instead of

accessing all switches, links, and tag arrays, only those
components that are between the requestor and the

supplier will be accessed. This reduces power in both

interconnect and tag arrays.

Figure 4. A processor using a node predictor: each predictor
includes a speculative supplier (SPL) and a saturating
counter.

In the event of mispredicting the supplier, a snoop

request is broadcasted by the requestor to all the other

processors. The cost associated with the misprediction

includes the extra access to interconnect and an

increase in data communication latency. However, as

we show later, the benefits of correct predictions

outweigh the associated misprediction costs.

It is important to note that SSI does not impose any

changes to the underlying cache coherence protocol. In

a MESI protocol [21], the state of a requested cache

block in the speculated supplier node is in one of the

following four states: modified, exclusive, shared, or
invalid. If the state is modified, exclusive, or shared,

and speculation turns out to be accurate, then both the

supplier and requester will end up having the shared

state. However, if the state of requested cache block is

invalid, a misprediction will occur and the requester

will broadcast a snoop request. Consequently, whether

the prediction is right or wrong, SSI would not change

any state transition in the MESI protocol. Moreover,

SSI does not impose any limitation on software, and is

completely transparent to operating system.

To provide better understanding, in Figure 5, we show

the actions taken under SSI for the example discussed

earlier in section 2. For simplicity, we assume SSI-1

with a prediction threshold equal to 0.

a) b) c)

Figure 5. An SSI example: P0 and Pn-1 share an array. Pn-1

has already read the elements and has them in its L1 cache. P0

starts reading the (missing) array elements. a.1) P0 asks the
predictor for the likely supplier. a.2) The predictor cannot
make a prediction as there is no previous record. a.3) P0

broadcasts snoop request to all nodes. b.4) Pn-1 sends the data
to P0. Predictor is updated with the supplier processor

number, and data is stored in P0’s local cache. a.5, a.6) Upon
missing the array’s second element, the predictor speculates
Pn-1 as the likely supplier. The predictor is not trusted since
the saturating counter is not greater than the threshold. a.7) P0

broadcasts snoop request to all nodes. b.8) The saturating
counter is incremented as the predictor has made a correct
prediction. c.9) For the third array element, P0 probes the
predictor. c.10) Predictor speculates that Pn-1 is supplier. c.11)

P0 sends the request only to Pn-1 (instead of broadcasting).
Pn-1 provides the array element.

5. Evaluation
In this section, we evaluate SSI. In section 5.1 we

present the methodology. In section 5.2 we report the

results.

5.1. Methodology
We use SPLASH-2 [4] benchmarks (details reported in
Table 1) to evaluate our scheme. For simulation, we

used the execution driven mode of Sesc[7] modeling

the out of order processors and the memory subsystem

presented in Table 2. In this work we focus on a 4-way

CMP. Note that extending our scheme to systems with

higher number of processors is possible and is part of

our future work. We used MESI protocol to maintain

cache coherence in L1 caches.

In section 5.2, we report SSI accuracy and coverage. In

section 5.3 and 5.4, we report how SSI impacts

performance and interconnect activity. We use
interconnect activity as an implementation independent

and indirect power estimate. Modeling of links and

switches to achieve direct power estimation is part of

our ongoing research. We compare SSI with the

Core

L1 Predictor

Processor

SPL Saturating

Counter

Predictor

P0

Predictor

1,5
2,6

3,7

broadcast

P0

Predictor
4,8

Received

message

P0

9
10

11

Only to

Pn-1

Predictor

conventional baseline cache coherence where snoop

requests are broadcasted to all nodes upon any local

cache miss. To make better evaluation of SSI possible,

we also compare SSI to serial snooping [6]. In serial

snooping, a snoop request is initially sent only to the

neighbor node. The neighbor node looks up its local
cache and replies to the requestor if the requested data

is found, otherwise, it sends the snoop request to the

next node. In both SSI and serial snooping, at any

moment, at most one message exists in interconnect.

As such, memory consistency is maintained accurately

[20]. To the best of our knowledge, serial snooping is

the only power aware snoop-based cache coherence in

binary tree interconnects.

Table 1. Splash2 benchmarks and input parameters

Benchmarks Input Parameters

Barnes 16k particles
Cholesky tk29.O

Lu(contiguous, non-contiguous) 512×512 matrix, B=16

Ocean(non-contiguous) 258×258 grid
Radiosity -batch –room

Radix 8M keys
Raytrace Balls4.env

Water(nsquared, spatial) 4k molecules

Table 2. System parameters

Processor Interconnect Memory System

frequency: 1 GHz
branch
predictor:16K entry

bimodal and gshare
branch penalty: 17
Fetch/issue/commit:
6/4/4
RAS: 32 entries
BTB: 2K entries, 2-
way

bus clock
cycle: 7 ns
switch latency:

1 cycle
link latency: 1
cycle
interconnect
width: 64B

cache block size:
64B
split I-L1,D-L1:

32KB, 4-way
L1 latency: 2
L2: 512KB/8-way
L2 latency: 11
memory latency:
70 ns

5.2. Coverage and Accuracy
In this section, we report coverage and accuracy for

SSI. Note that in a 4-way multiprocessor there are four

predictors, one predictor for each processor. We report

average data for the four predictors.

We define coverage as the percentage of all supplier

nodes in cache to cache transfers that are accurately

identified by predictors. Figure 6.a shows coverage for
predictors with different sizes. We report for SSI-1,

SSI-2, SSI-3 and SSI-4. We use thresholds values

equal to zero, three, six, and 14, for SSI-1, SSI-2, SSI-3

and SSI-4 respectively. We picked theses thresholds

after testing different alternatives. In general, coverage

reduces as the counter size increases. On average,

coverage varies from 54% to 80% for different counter

sizes.

Figure 6.b shows accuracy for predictors with different

counter sizes. Accuracy shows how often the

speculated supplier turns out to be the correct one. In

general, accuracy improves as counter size increases.

On average, accuracy changes from 91% to 95% for

different counter sizes.

5.3. Execution Time
In this section, we report execution time for SSI and

serial snooping [6] compared to the baseline cache

coherence protocol. Table 3 reports execution time for

different benchmarks. Positive numbers indicate an

increase in execution time.
SSI has negligible impact on execution time. For most

benchmarks, the impact is less than 0.5%. Note that

for some benchmarks (e.g., ocean_ncontinious) SSI

improves execution time. This could be explained by

the following: a) for these benchmarks, often the

missing data is provided by on-chip caches rather than

the memory and b) SSI can speculate the supplier

caches with high accuracy.

0%

20%

40%

60%

80%

100%

Bar
ne

s

Cho
le

sk
y

Lu
_c

on
t

Lu
_n

co
nt

O
ce

an
_nc

on
t in

us

Rad
io

si
ty

R
ad

ix

Ray
tra

ce

W
ate

r_
Nsq

W
ate

r_
Sp

AVG
.

SSI-1 SSI-2 SSI-3 SSI-4

a)Coverage

0%

20%

40%

60%

80%

100%

Bar
ne

s

Cho
le

sk
y

Lu
_c

on
t

Lu
_n

co
nt

O
ce

an
_nc

on
t in

us

Rad
io

si
ty

R
ad

ix

Ray
tra

ce

W
ate

r_
Nsq

W
ate

r_
Sp

AVG
.

SSI-1 SSI-2 SSI-3 SSI-4

b)Accuracy

Figure 6. Coverage and accuracy of predictors equipped with
1-, 2-, 3- and 4-bit counters.

The last column of Table 3 reports execution time for
serial snooping. On average, serial snooping increases

execution time by 9.6%. In some benchmarks, e.g.
raytrace, serial snooping increases run time

considerably. In these benchmarks, quite often the

supplier is not close to the requestor, and serial

snooping increases latency of cache to cache transfers.

5.4 Activity Reduction
In Figure 7, we report activity reduction in links,

switches, and tag arrays for SSI and serial snoop

compared to the baseline cache coherence scenario.

Generally, activity reduction improves as counter size
decreases. This is intuitive as bigger counters have

lower coverage.

On average, as reported in Figure 7.a, SSI-1, SSI-2,

SSI-3 and SSI-4 reduce link activity by 23%, 21%,

18%, and 18% respectively. Serial snooping reduces

link activity by 31%. However, this comes with

significant increase in run time.

Table 3. Effect of predictors on execution time.
SSI-1 SSI-22 SSI-3 SSI-4 Serial

Barnes 0.69% 1.62% -0.27% -0.20% 7.27%
Cholesky 0.01% 0.05% -0.04% -0.04% 18.57%
Lu_cont -0.01% -0.01% 0.00% 0.01% 3.89%
Lu_ncont -0.01% -0.01% 0.00% 0.01% 3.89%
Ocean_

ncont

-2.14% -1.20% -3.55% -3.62% 5.78%

Radiosity -0.03% 0.08% -0.02% 0.00% 0.03%
Radix 0.00% 0.00% 0.00% 0.00% 0.00%
Raytrace -0.15% -0.61% -0.75% -0.58% 27.17%
Water_Nsq -0.90% -0.91% -0.90% -0.90% 11.00%
Water_Sp 0.06% 0.03% 0.01% 0.00% 2.30%
AVG. -0.25% -0.10% -0.55% -0.53% 7.09%

 On average, as reported in Figure 7.b, SSI-1, SSI-2,

SSI-3 and SSI-4 reduce interconnect switch activity by

27%, 27%, 26% and 25% respectively. Serial snooping
reduces switch activity by 16%. For half of the

benchmarks, SSI reduces switch activity twice that

achieved by serial snooping. This is due to the fact that

in serial snooping, whenever a cache lookup fails, the

request is forwarded to the next node. Consequently,

the closest switch to the processor is accessed at least

twice. For example, in Figure 3, if P1 receives a snoop

request from P0, and the requested address misses in P1,

the request is forwarded to P2 through S1 , and S1 is

accessed twice: once, when P0 sends snoop request to

P1, and once when P1 forwards snoop request to P2.

This is not the case under SSI. The two methods
improve tag array power competitively (see Figure

7.c). SSI-1, SSI-2, SSI-3 and SSI-4 improve tag array

accesses by 16%, 15%, 10% and 9% respectively.

Serial snooping improves tag array power by 14%.

Note that tag array activity reduction is zero for

cholesky. Our study shows that cache to cache transfers

occur rarely for cholesky. As such, despite high

accuracy, SSI does not improve tag array activity.

However, cholesky shows activity reduction in links

and switches as the result of the cache coherence step

reduction explained in section 3.2.

Overall, SSI-1 provides substantial power savings with

negligible performance degradation, and minimal

hardware overhead.

0%

10%

20%

30%

40%

50%

60%

Bar
ne

s

Cho
le

sk
y

Lu
_c

on
t

Lu
_n

co
nt

O
ce

an
_nc

on
tin

us

Rad
io

si
ty

R
ad

ix

Ray
tra

ce

W
ate

r_
Nsq

W
ate

r_
Sp

AVG
.

SSI-1 SSI-2 SSI-3 SSI-4 Serial Snoop

a) Activity reduction of links

0%

10%

20%

30%

40%

50%

Bar
ne

s

Cho
le

sk
y

Lu
_c

on
t

Lu
_n

co
nt

O
ce

an
_nc

on
tin

us

Rad
io

si
ty

R
ad

ix

Ray
tra

ce

W
ate

r_
Nsq

W
ate

r_
Sp

AVG
.

SSI-1 SSI-2 SSI-3 SSI-4 Serial Snoop

b) Activity reduction of switches

0%

10%

20%

30%

40%

50%

Bar
ne

s

Cho
le

sk
y

Lu
_c

on
t

Lu
_n

co
nt

O
ce

an
_nc

on
tin

us

Rad
io

si
ty

R
ad

ix

Ray
tra

ce

W
ate

r_
Nsq

W
ate

r_
Sp

AVG
.

SSI-1 SSI-2 SSI-3 SSI-4 Serial Snoop

c) Activity reduction of tag arrays

Figure 7. Activity reduction in links, switches, and tag
arrays.

6. Related Work
Saldanha and Lipasti [6] proposed serial snooping to

reduce interconnects power. We introduce SSI as an

alternative speculative approach and compare our

results to their method.

Bjorkman et al. [19] proposed hints to reduce cache

miss penalty. For each block in memory, they use one

hint to identity the potential holder of the copy. When a

cache miss can not be serviced in the local node, a

request is sent to both home directory and to the hint

node. If hint node has the copy, it sends it to the

requestor and this reduces the cache miss delay by one

hop. Otherwise, home directory provides data

following convention method. While their method

improves performance, sending two requests for each

cache miss pollutes interconnect network and increases
power dissipation in inter-node communication. In

addition, they use hints for each memory block which

increases hardware complexity dramatically. SSI,

however, uses one SPL per node to reduce power

dissipation in interconnects.

Mukherjee and Hill [9] used prediction in distributed

shared memory systems to speculate coherent

messages in advance. Their work is based on the

observation that memory blocks have a small number

of repetitive sharing patterns. They used a general

pattern-based predictor derived from two-level PAp

branch predictor [10]. Memory Sharing Predictor
(MSPs) [11] is a special type of general pattern-based

predictor. MSP only predicts remote memory accesses

and not the subsequent coherent messages. As such, it

reduces predictor cost and improves accuracy.

While both works discussed above use speculation in

directory-based cache coherence, we apply speculation

in snoopy cache coherence to reduce power of

interconnect.

Owner predictor [12] reduces latency of cache to cache

transfer in cc-NUMA. By using a two level predictor,

3-hop misses are converted to 2-hop misses. The first
level of predictor determines those misses that are

satisfied by cache to cache transfers. The second level

determines the list of nodes that have a valid copy of

memory line. Requests are sent directly to the

speculated nodes, removing the directory from the

critical path. Our work is different as we focus on

snoop-based protocols for chip multiprocessors and

exploit much simpler predictors.

In Jetty [13] snoops from remote nodes are filtered to

reduce the number of L2 cache accesses in SMPs. Each

node has a filter on the bus side of the L2 cache,

checking the snoop requests sent from remote nodes.
The filter identifies situations where the L2 cache does

not include the requested data and eliminates the

associated extra L2 tag arrays lookups. In RegionScout

[14], a node determines in advance that a coarse grain

region is not available in none of the other nodes. As

such, the request is sent directly to the memory,

reducing both interconnect power and bandwidth. SSI

can be used on top of Jetty and RegionScout possibly

increasing power savings.

Ekman et al. [16] evaluated Jetty and serial snooping in

chip multiprocessors. They concluded that Jetty can not
improve power of caches in CMPs as the power loss

due to filters in Jetty outweighs cache power savings.

Also, they demonstrated that serial snooping has little

benefit in CMPs. Their study, however, did not

investigate power savings in interconnects.

7. Conclusion
We proposed a prediction-based cache coherence

protocol to speculate the supplier processor. By using a

low overhead predictor, requests are sent directly to the

speculated supplier. We save power as we avoid
broadcasting whenever there is high confidence in the

prediction outcome. We showed that simple predictors

can effectively identify a considerable share of

suppliers with high accuracy. Our method results in

considerable activity reduction while improving

performance slightly. We showed that SSI reduces

activity of links, switches, and tag arrays by 23%, 27%,

16% respectively.

Acknowledgement
This work was supported by the Natural Sciences and

Engineering Research Council of Canada, Discovery

Grants Program and Canada Foundation for
Innovation, New Opportunities Fund.

Refrences
[1]Loghi, M., Poncino, M. and Benini, L., Cycle- Accurate

Power Analysis for Multiprocessor System-on-a-Chip, In
Proceeding of the 2004 ACM Great Lakes Symposium on
VLSI , pp. 401-406, 2004.
[2] Alan E. Charlesworth. The Sun Fireplane System
Interconnect, In Proceedings of the 2001 ACM/IEEE
conference on Supercomputing, 2001.
[3] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato,
The Use of Prediction for Accelerating Upgrade Misses in
CCNUMA Multiprocessors, In Proceedings of PACT-11,

2002.
[4] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta. The SPLASH-2 Programs: Characterization and
Methodological Considerations. In International Symposium
on Computer Architecture, June 1995.
[5] Robert C. Steinke, Gary J. Nutt, A unified theory of
shared memory consistency, Journal of the ACM (JACM),
v.51, n.5, p.800-849, September 2004.

[6] C. Saldanha and M. H. Lipasti, Power Efficient Cache
Coherence, High Performance Memory Systems, edited by
H. Hadimiouglu, D. Kaeli, J. Kuskin, A. Nanda, and J.
Torrellas, Springer-Verlag, 2003.
[7] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L.
Ceze, K. Strauss, S. Sarangi, P. Sack, and P. Montesinos.
SESC Simulator, Jan 2005. http://sesc.sourceforge.net.
[8] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin,

M. D. Hill, and D. A. Wood, Multicast Snooping: A New
Coherence Method using a Multicast Address Network,
SIGARCH Comput. Architure News, pp. 294–304, 1999.
[9] Shubhendu S. Mukherjee and Mark D. Hill, Using
prediction to accelerate coherence protocols, In Proceedings
of the 25th Annual International Symposium on Computer
Architecture, June 1998.

[10] Tse-Yuh Yeh and Yale Patt, Alternative
implementations of two-level adaptive branch prediction, In
Proceedings of the 19th Annual International Symposium on
Computer Architecture, May 1992.
[11] A.-C. Lai and B. Falsafi, Memory sharing predictor: the

key to a speculative coherent DSM, In Proceedings of the
26th annual international symposium on Computer
architecture, pp. 172–183, 1999.
[12] M. E. Acacio, J. González, J. M. García, and J. Duato,
Owner Prediction for Accelerating Cache-to-Cache Transfers
in a cc-NUMA Architecture, In Proceedings of SC2002, Nov.
2002.
[13] A. Moshovos, B. Falsafi and A. Choudhary, JETTY:

Filtering Snoops for Reduced Energy Consumption in SMP
Servers, In Proceedings of the 7th International Symposium
on High-Performance Computer Architecture, January 2001.
[14] J. Cantin, A. Moshovos, M. Lipasti, J. Smith, and B.
Falsafi, Coarse-Grain Coherence Tracking: RegionScout and
Region Coherence Arrays, IEEE Micro, v.26, n.1, pp. 70-79,
Jan-Feb 2006.
[15] J. Huh, J. Chang, D. Burger, and G. S. Sohi, Coherence

Decoupling: Making Use of Incoherence, In Proceedings of
ASPLOS-XI, pp. 97-106, 2004.
[16] M. Ekman, F. Dahlgren, and P. Stenström: Evaluation of
Snoop-Energy Reduction Techniques for Chip-
Multiprocessors. In Proceedings of the First Workshop on
Duplicating, Deconstructing, and Debunking (WDDD-1),
May 2002.
[17] Milo M. K. Martin, Pacia J. Harper, Daniel J. Sorin,

Mark D. Hill, and David A. Wood, Using Destination-Set
Prediction to Improve the Latency/Bandwidth Tradeoff in
Shared-Memory Multiprocessors, In Proceedings of the 30th
Annual International Symposium on Computer Architecture,
pages 206-217, 2003.
[18] K. M. Lepak and M. H. Lipasti, Temporally Silent
Stores, In Proceedings of ASPLOS-X, pages 30–41, 2002.
[19] M. Bjorkman, F. Dahlgren, and P. Stenstrom, Using
Hints to Reduce the Read Miss Penalty for Flat COMA

Protocols, In Proceedings of the 28th Annual Hawaii
International Conference of System Sciences, pages 242-251,
January 1995.
[20] A. Landin, E. Hagersten, and S. Haridi, Race-free
interconnection networks and multiprocessor consistency, In
Proc. of the 18th Intl. Symp. on Comp. Architecture, 1991.
[21] D. E. Culler, J. Singh, A. Gupta, Parallel Computer
Architecture: A Hardware/Software Approach, Morgan

Kaufmann Publishers, San Francisco, Calif., 1998.

