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Abstract 

Snoopy cache coherence protocols broadcast requests 

to all nodes, reducing the latency of cache to cache 

transfer misses at the expense of increasing 

interconnect power. We propose speculative supplier 

identification (SSI) to reduce power dissipation in 

binary tree interconnects in snoopy cache coherence 
implementations.  

In SSI, instead of broadcasting a request to all 

processors, we send the request to the node more likely 

to have the missing data. We reduce power as we limit 

access only to the interconnect components between 

the requestor and the supplier node. We evaluate SSI 

using shared memory applications. We show that SSI 

reduces interconnect power by 23% in a 4-way 

multiprocessor. This comes with negligible 

performance cost and hardware overhead.  

SSI does not change existing coherence protocols and 

is completely transparent to software and the operating 
system. 

1. Introduction 
Exploiting thread-level parallelism is believed to be a 

reliable way to achieve higher performance 

improvements in the future. Moreover, as technology 

advances provide microprocessor design with more 
options, finding new solutions to use the possible 

capabilities is necessary. Chip multiprocessing offers 

an attractive solution as using multiple cores makes 

efficient execution of parallel threads possible. 

Accordingly, chip multiprocessors (CMPs) are 

expected to become more popular as the number of on-

die transistors continue to increase.  

Currently available CMPs (e.g., Sun’s Niagara) exploit 

as many as eight cores. However, it is expected that the 

increasing demand for higher speed in multiprocessors 

would require using higher number of cores, 
effectively increasing interconnect complexity and 

power dissipation. This is due to the fact that 

multithread workloads which run simultaneously on 

multiprocessor nodes communicate through 

interconnects and dissipate significant power. As a 

result, inter-processor communication has become one 
of the bottlenecks in multiprocessor systems 

consuming a considerable share of the overall power 

(i.e., up to 15% [1]).  

In a shared memory multiprocessor system, the 

processors have to access interconnects upon 

frequently occurring local cache misses [3, 6, 8, 15, 17, 

18].  Each local cache is responsible for maintaining 

the correct state for its local data and responding to 

requests made by other processors when necessary. 

Upon a cache miss, several power dissipating 

transactions occur on interconnects including snoop 
requests, invalidate messages, and block writebacks. In 

a write-invalidate protocol, a snoop request is 

broadcasted to all nodes, substantially increasing 

interconnect power dissipation.  

Our study shows that processors providing a missing 

data show very high locality. In other words, for a 

cache miss occurring in processor A, if the required 

data is residing in and provided by processor B’s local 

cache, there is a high probability that next time A is 

missing a data, it would be provided by B again. 

In this work we exploit this phenomenon and introduce 

speculative supplier identification (SSI) to reduce 
power in interconnects. In SSI, the requesting node 

avoids broadcasting requests to all nodes and sends the 

request only to the previous supplier if there is a high 

confidence that the previous supplier would provide the 

missing data. As such, interconnect activity is reduced 

and only necessary links and switches (which connect 

the requestor and supplier) are accessed. This 

eliminates unnecessary activities not only in 

interconnects and internal switches but also in tag 

arrays of non-supplying processors.  

In summary, we make the following contributions:  

• We show supplier nodes have very high locality, 

i.e., for any processor there is a high probability (85% 

for the configuration and applications studied here) that 
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two consecutive misses are handled by the same 

remote node.   

• We show that a simple predictor can predict the 

supplier processor for a local cache miss with high 

accuracy. Our study shows that a single entry 4-bit 

predictor can identify remote suppliers with an average 
accuracy up to 95%. 

• By limiting sending requests only to the predicted 

remote nodes, we reduce interconnect activity by 23% 

in a 4-way chip multiprocessor system. This comes 

with negligible impact on execution time. 

It should be noted that while in this work, and as a case 

study, we use a binary tree, similar to Sun Fireplane 

[2], our method can also be used for other alternative 

non-bus interconnects (e.g., benes and fat-tree [21]). 

The rest of the paper is organized as follows. In section 

2, we discuss our motivation. In section 3, we review 
the related background. In section 4, we discuss SSI 

and explain implementation details. In section 5, we 

discuss methodology and evaluate SSI. In section 6, we 

review related work. Finally, in section 7 we offer 

concluding remarks.

2. Motivation 
In Figure 1, we show how a snoop request is handled.  

As presented, N processors sharing a single L2 cache 

are connected through a network interconnect. Suppose 

that processor P0 is about to read the elements of a 

shared array for the first time. Meantime assume that 

Pn-1 has already read the array, and all array elements 

are available in Pn-1’s local cache. A miss occurs as 
soon as P0 reads the first array element. To find the 

missing data, P0 broadcasts snoop requests to all the 

other nodes (Figure 1.a). P1, P2, …, and Pn-1 receive 

snoop requests and lookup their tag arrays. Pn-1 finds 

the element and sends it to P0. The system goes through 

the same procedure every time P0 reads a new 

(missing) element.  

Note that all interconnect components are accessed 

every time that an array element is accessed in P0.

However, only one of the many processors (Pn-1 in the 

example) provides the data. This approach provides 
fast access to the missing data but is inefficient from 

the energy point of view [6].

In this work, we address this design inefficiency and 

introduce speculative supplier identification (or simply 

SSI) to reduce power in snoop-based chip 

multiprocessor systems. 

SSI relies on the fact that there is a high chance that 

two consecutive cache missies in a local cache are 

supplied by the same remote node. We refer to this 

phenomenon as supplier locality. Figure 2 reports 

supplier locality for the Splash-2 benchmarks used in 

this study (see section 5.1 for methodology). Locality 
shows how often the current supplier of a missing data 

in a local node is the same as the previous supplier. 

Except for barnes, all benchmarks have a locality 

higher than 70%. On average, supplier locality is 85%. 

SSI exploits this locality and uses a simple predictor to 

speculate the remote node providing the missing data. 

SSI sends the associated request only to the speculated 
node. As such, only the path between the requestor and 

supplier is accessed (Fig. 1.b). This can reduce power 

compared to a conventional snoop-based system where 

all nodes are accessed uniformly and regularly.  

a) b)

Figure 1. a) Conventional snooping. b) SSI snooping. 

Power savings is possible if the supplier node is 

predicted accurately. In the event of a misprediction, 

however, snoop requests have to be broadcasted to all 

nodes resulting in energy and latency penalty. This 

penalty can negate our savings if the necessary 

behavior is not there. However, as we show later in this 

work, savings outweigh the associated overhead.  

Note that although speculation has been used in 
directory-based cache coherence protocols (e.g., to 

reduce cache to cache transfer latency [12]), to the best 

of our knowledge, this is the first time it is being used 

in snoopy cache coherence protocols.
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Figure 2. Supplier locality for the applications and the 
configuration used in this study.
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3. Background 
In section 3.1, we review a basic write-invalidate snoop 

protocol. We discuss the interconnect architecture used 

in this work in section 3.2. 

3.1 Write-invalidate snoop protocol 
The snoop protocol is used to maintain cache 

coherence in shared memory multiprocessors. A cache 

coherence protocol is a collection of finite state 

machines that change their states in response to their 

local processors’ requests and messages received on 

the bus. Each finite state machine is distributed over 

nodes with each local cache maintaining the state of its 

local data. All caches connected to the bus monitor bus 

transactions. Caches update the state of their data and 
reply to requests whenever necessary. 

On a cache read miss, a request is broadcasted on the 

bus. All caches lookup their tag arrays with the address 

of requesting message. If a cache has the requested 

(valid) data, it sends the data to the requestor. In a 

write-invalidate protocol, when a write miss occurs, an 

invalidate request is sent over the bus. All processors 

that have a copy of the message address invalidate the 

corresponding entry in their local caches. 

3.2. Tree-base interconnect structure 
The address interconnect used in this paper is similar to 

Sun Fireplane interconnect[2]. Figure 3 shows the 
structure of the address interconnects. Address 

interconnect is implemented using two level switches. 

Processors are located at the leaves of the tree, and the 

L2 cache is connected to the root. Memory is off the 

chip and is connected to the L2 cache. At any moment, 

at most one message exists in the tree. It should be 

noted that from a processor viewpoint, the tree 

structure is similar to a bus [6].

Upon broadcasting a request, the request is first sent to 

the root switch. In the next step, the root switch sends 

copies of the request down to all processors. Processors 

use the received data and lookup their tag arrays before 
replying to the root switch. If any of the processors has 

the data, the root switch selects the closest processor to 

the requestor and forwards the processor’s message. If 

none of the processors hold the requested data, the root 

switch sends a request to the L2 cache. If the data is not 

found in the L2 cache, the processor sends an off the 

chip request to the memory.  

In SSI, we modify the baseline cache coherence 

protocol and reduce the number of steps involved. 

Instead of sending request to the root and then having 

the request broadcasted by the root, the request is 
directly sent to other nodes.  This reduces the number 

of accesses to the links by one and results in processors 

receiving snoops requests at different cycles. For 

example in Figure 3, under our system, a request sent 

by P0 is received by P1 sooner than P3.

In our system, and similar to the conventional snoop-

based system, processors reply to the root switch after 

tag lookup is performed. However, in our system, the 

root switch does not receive replies from processors at 
the same time. The root switch should wait to receive 

all replies and then select the closest supplier to the 

requestor or send the request to the L2 cache.

We use separate data and address interconnects. Data 

interconnect is similar to address interconnect and uses 

two level of switches. When the supplier is determined 

by the cache coherence protocol, the supplier sends 

data to the requestor through the data interconnect. In 

this work we focus on the address interconnect. 

Figure 3. Address interconnect structure. 

4. Implementation 
In our proposed architecture, each node is equipped 

with a small single-entry predictor to speculate the 

supplier for missing data reads1 in the local cache.  

Figure 4 depicts a typical processor in our CMP 

configuration. Each processor includes a core, a private 

L1 cache, and a supplier predictor. Each predictor entry 

is equipped with two fields: a log2N bit field, where N 

is the number of processors, referred to as speculated 

supplier or SPL (SPL has two bits in our example of 
four processors) and an n-bit saturating counter. SPL 

records the last supplier node for the processor. To 

achieve high accuracy, we use saturating counters. If 

the prediction is correct, the counter is incremented. 

For mispredictions, the counter is reset to zero. The 

predictor is trusted only if the value of the saturating 

counter is more than a pre-decided threshold. Note that 

the area and energy overhead associated with the 

predictor is negligible as the predictor only includes an 

                                               
1 A predictor may need to predict multiple nodes for write 
misses [5], since several nodes may share the missing data, 

and invalidation request should be sent to all of the sharers. 
However, our predictor can predict only one node. Extending 
this work to cover more complex scenarios is part of our 
ongoing research. 
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n-bit counter and a log2N bit register. We refer to an 

SSI system using an n-bit counter as SSI-n (e.g., SSI-2 

uses a single 2-bit counter). 

Initially the predictor does not include any information. 

Therefore, no prediction is made when the first miss 

occurs as there is no record of any previous supplier. 
Under such circumstances, the processor follows the 

conventional approach and broadcasts a snoop request 

on the interconnect. When the supplier processor 

responds, the predictor is updated with the supplier 

number. Upon the next cache miss, if the saturating 

counter is more than a threshold, the predictor 

speculates, and the request is only sent to the predicted 

node. The predicted node looks up for the requested 

address, and replies. For accurate predictions and if the 

valid data is found in the speculated supplier, no 

additional step is needed. Consequently, instead of 

accessing all switches, links, and tag arrays, only those 
components that are between the requestor and the 

supplier will be accessed. This reduces power in both 

interconnect and tag arrays.  

Figure 4. A processor using a node predictor: each predictor 
includes a speculative supplier (SPL) and a saturating 
counter.

In the event of mispredicting the supplier, a snoop 

request is broadcasted by the requestor to all the other 

processors. The cost associated with the misprediction 

includes the extra access to interconnect and an 

increase in data communication latency. However, as 

we show later, the benefits of correct predictions 

outweigh the associated misprediction costs. 

It is important to note that SSI does not impose any 

changes to the underlying cache coherence protocol. In 

a MESI protocol [21], the state of a requested cache 

block in the speculated supplier node is in one of the 

following four states: modified, exclusive, shared, or 
invalid. If the state is modified, exclusive, or shared, 

and speculation turns out to be accurate, then both the 

supplier and requester will end up having the shared 

state. However, if the state of requested cache block is 

invalid, a misprediction will occur and the requester 

will broadcast a snoop request. Consequently, whether 

the prediction is right or wrong, SSI would not change 

any state transition in the MESI protocol. Moreover, 

SSI does not impose any limitation on software, and is 

completely transparent to operating system. 

To provide better understanding, in Figure 5, we show 

the actions taken under SSI for the example discussed 

earlier in section 2. For simplicity, we assume SSI-1 

with a prediction threshold equal to 0.

a)                                  b)                            c) 

Figure 5. An SSI example: P0 and Pn-1 share an array. Pn-1

has already read the elements and has them in its L1 cache. P0

starts reading the (missing) array elements. a.1) P0 asks the 
predictor for the likely supplier. a.2) The predictor cannot 
make a prediction as there is no previous record. a.3) P0

broadcasts snoop request to all nodes. b.4) Pn-1 sends the data 
to P0. Predictor is updated with the supplier processor 

number, and data is stored in P0’s local cache. a.5, a.6) Upon 
missing the array’s second element, the predictor speculates 
Pn-1 as the likely supplier. The predictor is not trusted since 
the saturating counter is not greater than the threshold. a.7) P0

broadcasts snoop request to all nodes. b.8) The saturating 
counter is incremented as the predictor has made a correct 
prediction. c.9) For the third array element, P0 probes the 
predictor. c.10) Predictor speculates that Pn-1 is supplier. c.11)

P0 sends the request only to Pn-1 (instead of broadcasting).   
Pn-1 provides the array element. 

5. Evaluation 
In this section, we evaluate SSI. In section 5.1 we 

present the methodology. In section 5.2 we report the 

results.  

5.1. Methodology
We use SPLASH-2 [4] benchmarks (details reported in 
Table 1) to evaluate our scheme.  For simulation, we 

used the execution driven mode of Sesc[7] modeling 

the out of order processors and the memory subsystem 

presented in Table 2. In this work we focus on a 4-way 

CMP. Note that extending our scheme to systems with 

higher number of processors is possible and is part of 

our future work. We used MESI protocol to maintain 

cache coherence in L1 caches. 

In section 5.2, we report SSI accuracy and coverage. In 

section 5.3 and 5.4, we report how SSI impacts 

performance and interconnect activity. We use 
interconnect activity as an implementation independent 

and indirect power estimate. Modeling of links and 

switches to achieve direct power estimation is part of 

our ongoing research. We compare SSI with the 
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conventional baseline cache coherence where snoop 

requests are broadcasted to all nodes upon any local 

cache miss. To make better evaluation of SSI possible, 

we also compare SSI to serial snooping [6]. In serial 

snooping, a snoop request is initially sent only to the 

neighbor node. The neighbor node looks up its local 
cache and replies to the requestor if the requested data 

is found, otherwise, it sends the snoop request to the 

next node. In both SSI and serial snooping, at any 

moment, at most one message exists in interconnect. 

As such, memory consistency is maintained accurately 

[20]. To the best of our knowledge, serial snooping is 

the only power aware snoop-based cache coherence in 

binary tree interconnects. 

Table 1. Splash2 benchmarks and input parameters 

Benchmarks Input Parameters 

Barnes 16k particles 
Cholesky tk29.O 

Lu(contiguous, non-contiguous) 512×512 matrix, B=16 

Ocean(non-contiguous) 258×258 grid  
Radiosity -batch –room 

Radix 8M keys 
Raytrace Balls4.env 

Water(nsquared, spatial) 4k molecules 

Table 2. System parameters 

Processor Interconnect Memory System 

frequency: 1 GHz 
branch 
predictor:16K entry  

bimodal and gshare 
branch penalty: 17 
Fetch/issue/commit: 
6/4/4 
RAS: 32 entries 
BTB: 2K entries, 2-
way 

bus clock 
cycle: 7 ns 
switch latency: 

1 cycle 
link latency: 1 
cycle 
interconnect 
width: 64B 

cache block size: 
64B 
split I-L1,D-L1: 

32KB, 4-way 
L1 latency: 2 
L2: 512KB/8-way 
L2 latency: 11 
memory latency: 
70 ns 

5.2. Coverage and Accuracy 
In this section, we report coverage and accuracy for 

SSI. Note that in a 4-way multiprocessor there are four 

predictors, one predictor for each processor. We report 

average data for the four predictors.  

We define coverage as the percentage of all supplier 

nodes in cache to cache transfers that are accurately 

identified by predictors. Figure 6.a shows coverage for 
predictors with different sizes. We report for SSI-1, 

SSI-2, SSI-3 and SSI-4. We use thresholds values 

equal to zero, three, six, and 14, for SSI-1, SSI-2, SSI-3 

and SSI-4 respectively. We picked theses thresholds 

after testing different alternatives.  In general, coverage 

reduces as the counter size increases. On average, 

coverage varies from 54% to 80% for different counter 

sizes. 

Figure 6.b shows accuracy for predictors with different 

counter sizes. Accuracy shows how often the 

speculated supplier turns out to be the correct one. In 

general, accuracy improves as counter size increases. 

On average, accuracy changes from 91% to 95% for 

different counter sizes. 

5.3. Execution Time 
In this section, we report execution time for SSI and 

serial snooping [6] compared to the baseline cache 

coherence protocol. Table 3 reports execution time for 

different benchmarks. Positive numbers indicate an 

increase in execution time. 
SSI has negligible impact on execution time. For most 

benchmarks, the impact is less than 0.5%.  Note that 

for some benchmarks (e.g., ocean_ncontinious) SSI 

improves execution time. This could be explained by 

the following: a) for these benchmarks, often the 

missing data is provided by on-chip caches rather than 

the memory and b) SSI can speculate the supplier 

caches with high accuracy.  
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Figure 6. Coverage and accuracy of predictors equipped with 
1-, 2-, 3- and 4-bit counters. 

The last column of Table 3 reports execution time for 
serial snooping. On average, serial snooping increases 

execution time by 9.6%. In some benchmarks, e.g. 
raytrace, serial snooping increases run time 

considerably. In these benchmarks, quite often the 



supplier is not close to the requestor, and serial 

snooping increases latency of cache to cache transfers.

5.4 Activity Reduction 
In Figure 7, we report activity reduction in links, 

switches, and tag arrays for SSI and serial snoop 

compared to the baseline cache coherence scenario. 

Generally, activity reduction improves as counter size 
decreases. This is intuitive as bigger counters have 

lower coverage.  

On average, as reported in Figure 7.a, SSI-1, SSI-2, 

SSI-3 and SSI-4 reduce link activity by 23%, 21%, 

18%, and 18% respectively. Serial snooping reduces 

link activity by 31%. However, this comes with 

significant increase in run time. 

Table 3. Effect of predictors on execution time. 
SSI-1 SSI-22 SSI-3 SSI-4 Serial 

Barnes 0.69% 1.62% -0.27% -0.20% 7.27% 
Cholesky 0.01% 0.05% -0.04% -0.04% 18.57% 
Lu_cont -0.01% -0.01% 0.00% 0.01% 3.89% 
Lu_ncont -0.01% -0.01% 0.00% 0.01% 3.89% 
Ocean_ 

ncont 

-2.14% -1.20% -3.55% -3.62% 5.78% 

Radiosity -0.03% 0.08% -0.02% 0.00% 0.03% 
Radix 0.00% 0.00% 0.00% 0.00% 0.00% 
Raytrace -0.15% -0.61% -0.75% -0.58% 27.17% 
Water_Nsq -0.90% -0.91% -0.90% -0.90% 11.00% 
Water_Sp 0.06% 0.03% 0.01% 0.00% 2.30% 
AVG. -0.25% -0.10% -0.55% -0.53% 7.09% 

 On average, as reported in Figure 7.b, SSI-1, SSI-2, 

SSI-3 and SSI-4 reduce interconnect switch activity by 

27%, 27%, 26% and 25% respectively. Serial snooping 
reduces switch activity by 16%. For half of the 

benchmarks, SSI reduces switch activity twice that 

achieved by serial snooping. This is due to the fact that 

in serial snooping, whenever a cache lookup fails, the 

request is forwarded to the next node. Consequently, 

the closest switch to the processor is accessed at least 

twice. For example, in Figure 3, if P1 receives a snoop 

request from P0, and the requested address misses in P1,

the request is forwarded to P2 through S1 , and S1 is 

accessed twice: once, when P0 sends snoop request to 

P1, and once when P1 forwards snoop request to P2.

This is not the case under SSI. The two methods 
improve tag array power competitively (see Figure 

7.c). SSI-1, SSI-2, SSI-3 and SSI-4 improve tag array 

accesses by 16%, 15%, 10% and 9% respectively. 

Serial snooping improves tag array power by 14%. 

Note that tag array activity reduction is zero for 

cholesky. Our study shows that cache to cache transfers 

occur rarely for cholesky. As such, despite high 

accuracy, SSI does not improve tag array activity. 

However, cholesky shows activity reduction in links 

and switches as the result of the cache coherence step 

reduction explained in section 3.2. 

Overall, SSI-1 provides substantial power savings with 

negligible performance degradation, and minimal 

hardware overhead. 
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a) Activity reduction of links 
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b) Activity reduction of switches 
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c) Activity reduction of tag arrays 

Figure 7. Activity reduction in links, switches, and tag 
arrays.  

6. Related Work 
Saldanha and Lipasti [6] proposed serial snooping to 

reduce interconnects power. We introduce SSI as an 

alternative speculative approach and compare our 

results to their method. 

Bjorkman et al. [19] proposed hints to reduce cache 

miss penalty. For each block in memory, they use one 

hint to identity the potential holder of the copy. When a 

cache miss can not be serviced in the local node, a 

request is sent to both home directory and to the hint 



node. If hint node has the copy, it sends it to the 

requestor and this reduces the cache miss delay by one 

hop. Otherwise, home directory provides data 

following convention method. While their method 

improves performance, sending two requests for each 

cache miss pollutes interconnect network and increases 
power dissipation in inter-node communication. In 

addition, they use hints for each memory block which 

increases hardware complexity dramatically. SSI, 

however, uses one SPL per node to reduce power 

dissipation in interconnects.  

Mukherjee and Hill [9] used prediction in distributed 

shared memory systems to speculate coherent 

messages in advance. Their work is based on the 

observation that memory blocks have a small number 

of repetitive sharing patterns. They used a general 

pattern-based predictor derived from two-level PAp 

branch predictor [10]. Memory Sharing Predictor 
(MSPs) [11] is a special type of general pattern-based 

predictor. MSP only predicts remote memory accesses 

and not the subsequent coherent messages. As such, it 

reduces predictor cost and improves accuracy. 

While both works discussed above use speculation in 

directory-based cache coherence, we apply speculation 

in snoopy cache coherence to reduce power of 

interconnect. 

Owner predictor [12] reduces latency of cache to cache 

transfer in cc-NUMA. By using a two level predictor, 

3-hop misses are converted to 2-hop misses. The first 
level of predictor determines those misses that are 

satisfied by cache to cache transfers. The second level 

determines the list of nodes that have a valid copy of 

memory line. Requests are sent directly to the 

speculated nodes, removing the directory from the 

critical path. Our work is different as we focus on 

snoop-based protocols for chip multiprocessors and 

exploit much simpler predictors. 

In Jetty [13] snoops from remote nodes are filtered to 

reduce the number of L2 cache accesses in SMPs. Each 

node has a filter on the bus side of the L2 cache, 

checking the snoop requests sent from remote nodes. 
The filter identifies situations where the L2 cache does 

not include the requested data and eliminates the 

associated extra L2 tag arrays lookups. In RegionScout 

[14], a node determines in advance that a coarse grain 

region is not available in none of the other nodes. As 

such, the request is sent directly to the memory, 

reducing both interconnect power and bandwidth. SSI 

can be used on top of Jetty and RegionScout possibly 

increasing power savings.  

Ekman et al. [16] evaluated Jetty and serial snooping in 

chip multiprocessors. They concluded that Jetty can not 
improve power of caches in CMPs as the power loss 

due to filters in Jetty outweighs cache power savings.  

Also, they demonstrated that serial snooping has little 

benefit in CMPs. Their study, however, did not 

investigate power savings in interconnects.     

7. Conclusion 
We proposed a prediction-based cache coherence 

protocol to speculate the supplier processor. By using a 

low overhead predictor, requests are sent directly to the 

speculated supplier. We save power as we avoid 
broadcasting whenever there is high confidence in the 

prediction outcome. We showed that simple predictors 

can effectively identify a considerable share of 

suppliers with high accuracy. Our method results in 

considerable activity reduction while improving 

performance slightly. We showed that SSI reduces 

activity of links, switches, and tag arrays by 23%, 27%, 

16% respectively.   
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