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Abstract 
 
Grid computing focuses on making use of a very large 

amount of resources from a large-scale computing 
environment. It intends to deliver high-performance 
computing over distributed platforms for computation and 
data-intensive applications. In this paper, we will present 
an effective parallel hybrid asynchronous method to solve 
large sparse linear systems by the use of a Grid 
Computing platform Grid5000. This hybrid method 
combines a parallel GMRES(m) (Generalized Minimum 
RESidual) algorithm with the Least Square method that 
needs some eigenvalues obtained from a parallel Arnoldi 
algorithm. All of these algorithms run on the different 
processors of the platform Grid5000. Grid5000, a 5000 
CPUs nation-wide infrastructure for research in Grid 
computing, is designed to provide a scientific tool for 
computing. We discuss the performances of this hybrid 
method deployed on Grid5000, and compare these 
performances with those on the IBM SP series 
supercomputers. 

1    
 

1. Introduction 
 
Many scientific applications can be transformed to the 

problem of solving the linear system of the form Ax=b. 
To solve this nonsymmetric linear system, the GMRES 
algorithm is a classic iterative method. Saad and Schultz 
introduced this popular GMRES method in [2]. It is based 
on the Arnoldi process and allows computing sparse 
matrices in compressed formats, without loading zeros 
which are useless for the computing. It has been 
implemented on parallel systems [1], but this method does 
not always converge very fast. There are some ways to 
accelerate the convergence of GMRES. One of those is to 
calculate in parallel some eigenvalues by the Arnoldi 
method [3,4]. As soon as they are approximated with a 
sufficient accuracy, the eigenvalues are used to perform 
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some iterations of the Least Squares method [6] for 
getting a better initial vector for the next GMRES restarts. 
We perform our experiments on two platforms: one is 

the Grid system, and the other is with the SMP 
architecture. The Grid is well established as a research 
domain and proposes technologies that are mature enough 
to be used for real-life applications. Projects like e-
Science, TeraGrid, DEISA and NAREGI, to cite a few, 
demonstrate that a large scale infrastructure can be 
deployed to provide scientists fairly easy access to 
geographically distributed resources belonging to 
different administration domains[13]. A high performance 
of large scale computing can be achieved by using this 
large amount of unoccupied computing resources.  

The Grid5000 project has been launched to provide the 
community of Grid researchers with an unprecedented 
large-scale infrastructure to study Grid issues under real 
experimental conditions [14]. It aims at providing a strong 
reconfiguration, control and monitoring infrastructure, 
transforming the full system into a scientific instrument. It 
is implemented as a nation wide cluster of clusters over 9 
sites in France. Every site is equipped with a cluster 
ranging from 100 to 1000 CPUs and all sites are 
connected by the high speed network RENATER. 

The IBM RS6000 SP series supercomputers with the 
SMP architecture are widely used in the world for various 
scientific and commercial applications. Equipped with 
high speed processors and high bandwidth 
interconnections between the nodes, it provides an 
excellent scientific calculation environment.  
In this paper, we present the distributed hybrid method 

GMRES(m)/LS-Arnoldi which is well implemented on 
the GRID system Grid’5000. We will furthermore 
compare the performances on Grid’5000 with those on 
IBM SP series supercomputers.  

This paper is organized as follows. The numerical 
methods used in our hybrid method will be present in 
section 2. In section 3, we introduce the implementation 
on Grid’5000. In section 4, we present the results 
obtained on the platform Grid’5000 and IBM SP series 
supercomputers. At the same time we analyze and 
compare the performance of computing from the 



viewpoint of the method and the viewpoint of the 
hardware platform. Finally, in section 5, we present a 
summary and discuss directions for future research. 
 

2. The GMRES(m)/LS-Arnoldi hybrid 
parallel method 

 

2.1. GMRES method 
 

The GMRES (Generalized Minimum RESidual) 
method was proposed by Saad and Schultz[2] in 1986. It 
is a Krylov method for solving non-symmetric linear 

systems. The thm iterate mx of GMRES is the solution of 

the least squares problem: 

2)r,A(Kxx ||Axb||minimize
0m0

−+∈ , where 00 Axbr −= is 

the residual of the initial solution. The Arnoldi process 

applied to )r,A(K 0m  builds ]v,V[V 1mm1m ++ = , an 

orthonormal basis of )r,A(K 0m , the m+1 by m matrix 

mH  and
20r=β . These matrices satisfy the 

relation m1mm HVAV += . The iterate mx can be written 

as mm0m yVxx += , where m
my ℜ∈ is the solution of 

the least squares problem: 
2m1y

yHeminimize m −β
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In the GMRES algorithm the number of vectors 
requiring storage increases with m. One way to address 
this problem is using the algorithm iteratively, by finding 

the iterate mx , and restarting the algorithm with the 

initial guess m0 xx = , until convergence. Thus, we obtain 

the restarted GMRES(m) after iteration of GMRES. 
Algorithm GMRES(m): 

1. Start: choose 0x  an initial guess of the solution,  

      m is the solution of Krylov subspaces, and ε the 
tolerance, 

    compute 00 Axbr −=  

2. Apply Arnoldi process to )r,A(K 0m  

3. Compute 2m1

y

m ||yHe||minargy
m

−β=
ℜ∈

 with QR 

factorization,  

    and set mmmm0m Axbr   ,yVxx −=+=  

4. Restart: if ε≤2m ||r||  

else set m0m0 rr  ,xx == , and goto 2. 

 

2.2. The hybrid algorithm GMRES(m)/LS(k,l) 
 

The hybrid algorithm applies the GMRES(m) 
algorithm as the basic part to solve the linear system. In 
addition, it also integrates two methods: Arnoldi and 
Least Square. The idea of the whole process is to 
calculate in parallel some eigenvalues on other machines 

by the Arnoldi method [5]. As they will be approximated 
with a sufficient accuracy, eigenvalues are used to 
perform some iterations of the Least Squares method [6] 
in order to obtain a better initial vector for the next 
GMRES iterations.  
At first, we describe the Arnoldi method and the 

method Least Square. 
Algorithm: Arnoldi’s method 

1. Start: choose v an initial vector, m the dimension of 
krylov subspaces, 
      and d, the number of desired dominant eigenvalues, 

with the threshold ε . 

2. Apply Arnoldi process to )v,A(Km . 

3. Compute the eigenvalues( di1  ,i ≤≤λ ) and the 

associated 

Eigenvectors ( di1  ,yi ≤≤ ) of mH . 

4. Set imi yVu = , for i=1, ···, d, the Ritz vectors. 

5, Compute 
2iiii Auu −λ=ρ , di1 ≤≤ . 

6. Restart: if ε<ρ
=

i

d

1i
max  stop   else set ∑ =

=
d

1i i )uRe(v , 

and goto 2. 
The Least Square method can be written as follows: 

0k0 r)A(Pxx~ +=  where 0x an initial approximation, 

0r its residual, and kP is a polynomial of degree k-1. Let 

1
k be the set of the real polynomials p of degree k, such 

that p(0)=1, and define the polynomial 1
kkR ∈ by 

)z(zP1)z(R kk −= . Then the residual of the iterate 

x~ is 0k r)A(Rr~ = . 

In general, we do not have the whole spectrum of A, 
but only some eigenvalue estimates contained in a convex 
hull H. H is constructed such as it does not contain the 
origin. Smolarski and Saylor [11] proposed to find 

kR minimizing a weighted L2-norm on the space of real 

polynomials, with a suitable weight function w, defined 
on the boundary of H. We obtain the following least 

squares problem
wk

PR
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1
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The obtained polynomial ∑
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the scaled and shifted Chebyshev basis defined by 
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T)(t jjj   j=0,1,…  This is the best basis 

of polynomials on the ellipse )a,d,c(ε of smallest area 

enclosing H (see [10] and [5] for an algorithm computing 
this optimal ellipse). For more details, see [6]. 

The hybrid algorithm GMRES(m)/LS(k,l) can be given 
as follows: 

Algorithm: GMRES(m)/LS( lk, ) 



1. Start: Choose 0x , m, m′  the dimension of Krylov 

subspaces.  k is the degree of the least squares polynomial, 

ε the threshold and l the number of the successive 

applications of the Least Squares method. 

2. Compute mx , the thm  iterate of GMRES starting 

with 0x , 

if ε<− 2m ||Axb||  Stop else set 0x  = mx , 

00 Axbr −= . 

3. Perform m′  iterations of the Arnoldi process starting 

with 0r , 

    And compute the eigenvalues of mH ′ . 

4. Compute the least squares polynomial kP  on the 

boundary of H, the hull convex enclosing all computed 
eigenvalues. 

5. For lj ,,1 L=  do 

        Compute 0k0 r)A(Pxx~ += , and set x~x0 = , 

00 Axbr −= . 

end do 

6. Restart: if ε<20 ||r||  Stop, else goto 2. 

 

3. Implementation on Grid’5000 
 
Grid’5000 is not a Grid, but a highly configurable, 

controllable and monitorable instrument that can be 
configured to work as a real Grid. There are 5000 CPUs 
distributed over 9 sites in France. Every site hosts a 
cluster and all sites are connected by RENATER through 
VLANS implemented by MPLS at level 2 [14]. Besides, 
on account of the security, the sites of Grid’5000 are not 
directly connected to the Internet, but all communication 
packets fly without limitation between Grid’5000 sites. 

Firstly, we customize our environment MPI on 
Grid’5000 for our experiments. Next, we distribute our 
algorithm on the processors reserved in one or some sites 
of Grid’5000. 
We use primarily the clusters of the site Orsay and the 

site Rennes. These two sites are interconnected by the 
high speed network RENATER. After deploying our 
environment, we have the copy of the program and the 
data needed for calculation on all the processors reserved. 
All the sparse matrices are stored in the compressed 
format CSR (Compress Sparse Row) for saving the 
memory and reducing the communication on the network.  

The most processors reserved are used to run the 
algorithm GMRES(m) by the way of the SPMD model 
with an administrative process and p identical calculation 
processes. The calculation processors read directly their 
own data and execute the method GMRES(m), 
communicating with their brother processes. 

The processors dedicated to the parallel package 
“PARPACK” are in charge of the reception of residuals, 

the projection of Arnoldi and the calculation of 
eigenvalues, independently of the processes GMRES.  

Only one processor is in charge of the sequential part 
(the LS method and the sorting of eigenvalues) because of 
the small set of data for calculation. The parameters 
“Least Square” obtained are then sent to the processors 
executing the algorithm GMRES(m) later. 

The whole process and the relationship of the 
communication between the three parts are presented in 
Figure 1. We also do our implementations according to 
this schema.  
   

4. Numeric Results and Analysis 
 

The detailed configuration of the sites Orsay and 
Rennes are showed in Table 1. The bandwidth and the 
average latency inside the cluster of Orsay and those 
between these two sites are present in Table 2. Table 3 
shows the configuration of the IBM SP series 
supercomputers. 

 

Number 
of PCs 

CPU Memory

the site Orsay 

216 Dual AMD Opteron 246, 1.95GHz 1.96G 

121 Dual AMD Opteron 250, 1.95GHz 1.96G 

 

the site Rennes 

99 Dual AMD Opteron 246, 1.96GHz 1.96G 

64 Dual AMD Opteron 248, 2.14GHz 1.96G 

64 Intel Xeon IA32, 2.33GHz 0.99G 

32 PowerPC, 1.95GHz 1.5G 
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 bandwidth latency 

Orsay 941 Mb/s 0.09ms 

Orsay – Rennes 27.25 Mb/s 9ms 
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Number 
of node

CPUs of node Memory 
/node 

SP3 

4 16 Power 3 NH2, 375MHz 16G 

SP4 

2 32 Power 4, 1.3GHz 64G 

2 32 Power 4, 1.7GHz 64G 

5 32 Power 4, 1.7GHz 32G 
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We will analyze the numeric results obtained from the 

viewpoint of the algorithm itself and the hardware 
platform. In our experiments, we use the sparse matrices 
derived from the site “MatrixMarket”. And the 
comparisons are made in the same condition of the 
parameters of the method. 

 
4.1. Analysis and comparisons between the 
hybrid method and the classic method 
GMRES(m)  
 
According to the experiments results (see figure 2), it 

is clear that the global computation time of the hybrid 
parallel method is better than the parallel GMRES(m) 
itself. And the speed up can even be spectacular when the 
convergence of GMRES itself is difficult. It is because we 
use continually the new better approximate initial vector 
obtained by the method LS for the restart of the next 
GMRES iterations. After each iteration, the processors 
executing GMRES(m) always check if the parameters of 
the method LS arrive. In this case, the GMRES algorithm 
is then stopped, the processes perform the parallel part of 
the hybridizations, and GMRES(m) restart with the 
obtained iterate. 
When the hybrid computation using LS parameters by 

the GMRES/LS processes occurs, we then notice an 
obvious decrease of the residual, usually after a temporary 
increase of the residual. Thereby, too frequent sending of 

LS parameters damage the efficiency, as each LS iterate 
influences many GMRES iterations. When the peaks are 
high and nearby, divergence may even occur. 

The implementation of this hybrid method allows to 
take advantage of available parallelism. Both GMRES(m) 
and the hybrid method all have an optimal number of 
processors involved in the calculation. When we put more 
processors into the calculation after this threshold, that 
time we used to get the resolution increases contrarily. 
Because the GMRES processes require intensive 
communications and multiple synchronizations, the time 
of calculation gained by the acceleration with more 
processors involved is less than the time consumed by the 
communications among the processors. However, for the 
hybrid method, we can increase the used parallelism 
because of the join of the parallel processes Arnoldi. The 
parallel Arnoldi algorithm calculates the eigenvalues 
necessary for the hybridization independently of the 
processes GMRES(m). Additionally, although there is 
also the optimal number of processors for the Arnoldi 
algorithm, we can still increase moderately the number of 
processors beyond this optimal number. As mentioned 
above, sending eigenvalues too frequently is not desirable, 
so the Arnoldi computation needs to be very efficient. 
 

4.2. Analysis and comparisons between the 
platform Grid’5000 and the supercomputer  
 



In the Table 4, we easily remark that the global 
computation time on Grid’5000 is much shorter not only 
for the method GMRES(m) itself but also for our hybrid 
method. It is because the hardware configuration of 
Grid’5000 is obviously better than the supercomputer SP3 
(see Table 1, Table 3) 
We observe that on the SP3 supercomputer there are 

more peaks (see Figure 3). In other word, the hybrid 
computation using LS parameters on the SP3 occurs more 
times than that on Grid’5000. Because on the Grid5000 
the GMRES(m) iterations are faster, there are more 

GMRES(m) iterations between two receipts of the LS 
parameters taken into account by the processes GMRES. 
We remark also that on SP3 when nG (number of 
processors for the running of the algorithm GMRES) is 2, 
the divergence occurs. However on Grid’5000 the 
convergence is realized. This result accords with the 
theory that the group of the processors running the 
algorithm GMRES function too slowly to have enough 
time to deal with the LS parameters before the reach of 
the new LS parameters.  

 

Hybrid method compared to GMRES itself 

utm1700a (n=1700, m(GMRES)=100, m(Arnoldi)=64, K=30, l=10)
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Hybridization with l=1,5,10,15, compared to GMRES itself 

utm1700a (n=1700, m(GMRES)=400, m(Arnoldi)=256, K=15)
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hybridization with nG=2,5,8,10 compared to GMRES itself 

utm1700a (n=1700,m(GMRES)=358,m(Arnoldi)=150,l=30,k=30)
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Hybridization with nG=2,5,8,10 compared to GMRES itself

utm1700a (n=1700,nA=4,m(GMRES)=358,m(Arnoldi)=150,k=30,l=30)
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 global computation time 

 GMRES itself nG=2 nG=5 nG=8 nG=10 

SP3 207.85s ∞ 50.51s 74.2s 139.3s 

Grid5000 26.25s 24.45s 14.3s 10.5s 11.2s 
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 N=4 N=6 N=8 N=10 N=12 

SP3 676.9824s 120.4734s 95.4734s 173.8691s 213.4357s 

SP4 149.092s 80.1781s 71.7173s 91.0022s 95.1353s 

Grid’5000 125.5664s 80.9961s 65.6797s 55.1875s 58.168s 
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Implementation distributed on two sites compared to implementation inside one site 

utm1700a (n=1700, m(GMRES)=400, m(Arnoldi)=256, k=18, l=10)
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Viewed from the parallelism granularity perspective, 

the results (In Figure 4 and Table 5) show that the global 
computation time on Grid’5000 is better than the IBM 
RS6000 SP4 too. We also notice that on Grid’5000 and 
SP4 the evolutions of the computing time along with the 
number of processors are much smoother than on SP3. It 
is due to their excellent hardware configurations. We can 
also notice this phenomenon in Table 4. Additionally, on 
Grid’5000 the optimal computation time is obtained when 
the number of processors is 10, and on the 

supercomputers SP3 and SP4 the optimal number of 
processors is 8. In other words, we can take advantage of 
available parallelism on Grid’5000. It can be explained by 
the fact that when we use more processors, the time 
consumed by the communication do not increase much 
more thanks to the high speed network of Grid’5000, and 
this increased time can be compensated by the diminution 
of the computing time. 
Moreover, we tested our hybrid algorithm with two 

network configuration on Grid’5000: inside the cluster of 
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one site Orsay or Rennes and inter-sites Orsay and 
Rennes. We can notice that there is almost no difference 
between the implementation only inside one site Orsay 
and the implementation distributed inter-components on 
two sites (see Figure 5). However, when we distribute the 
part GMRES on two sites, the performance drops. The 
experiment further shows that the communications among 
the processors taking charge of the algorithm GMRES(m) 
are intense, and the communications between the 
components are relatively little. So in the future when we 
use the geographically distributed computing resources, 
the implementation distributed inter-components will 
have relatively small influence for the whole computing 
performance. 
As mention above, it can be concluded that combining 

the advantage of the hybrid method GMRES(m)/LS-
Arnoldi (as shown in Figure 2) and the excellent Grid 
platform Grid’5000 (as shown in Figure 3), we can 
achieve a higher performance of computing.  
 

5. Conclusion 
 

We implemented our algorithm for the hybrid method 
GMRES(m)/LS-Arnoldi in two computing platforms: 
Grid’5000 with the environment MPI and a 
supercomputer system IBM SP series.  
Without any doubt, the experimental results show the 

interest of the hybrid method. We have obtained very 
important convergence accelerations. And thanks to the 
low amount of communications between its components, 
our hybrid method takes advantage of available 
parallelism unusable with the classic method.  
According to the results of the comparison with the 

supercomputer system IBM SP series, the platform 
Grid’5000 shows its good performance thanks to its 
excellent hardware and network configuration. 
In future, we will continue our experiments on 

Grid’5000, reconfiguring the others distribution 
computing environments. For the hybrid method, we will 
extend it to the scientific problems of very large size. In 
addition, we will do more tests on the other 
supercomputers or cluster (i.e. the supercomputer in Japan, 
IBM cell in France), and apply our experiments in an 
environment with a WAN based configuration. 
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