
A Parallel Hybrid Method of GMRES on GRID System

Ye ZHANG, Guy BERGERE and Serge PETITON

Laboratoire d’Informatique Fondamentale de Lille, USTL
Villeneuve D’Ascq, 59650, France

{Ye.Zhang, bergereg, petiton}@lifl.fr

Abstract

Grid computing focuses on making use of a very large

amount of resources from a large-scale computing
environment. It intends to deliver high-performance
computing over distributed platforms for computation and
data-intensive applications. In this paper, we will present
an effective parallel hybrid asynchronous method to solve
large sparse linear systems by the use of a Grid
Computing platform Grid5000. This hybrid method
combines a parallel GMRES(m) (Generalized Minimum
RESidual) algorithm with the Least Square method that
needs some eigenvalues obtained from a parallel Arnoldi
algorithm. All of these algorithms run on the different
processors of the platform Grid5000. Grid5000, a 5000
CPUs nation-wide infrastructure for research in Grid
computing, is designed to provide a scientific tool for
computing. We discuss the performances of this hybrid
method deployed on Grid5000, and compare these
performances with those on the IBM SP series
supercomputers.

1

1. Introduction

Many scientific applications can be transformed to the

problem of solving the linear system of the form Ax=b.
To solve this nonsymmetric linear system, the GMRES
algorithm is a classic iterative method. Saad and Schultz
introduced this popular GMRES method in [2]. It is based
on the Arnoldi process and allows computing sparse
matrices in compressed formats, without loading zeros
which are useless for the computing. It has been
implemented on parallel systems [1], but this method does
not always converge very fast. There are some ways to
accelerate the convergence of GMRES. One of those is to
calculate in parallel some eigenvalues by the Arnoldi
method [3,4]. As soon as they are approximated with a
sufficient accuracy, the eigenvalues are used to perform

1-4244-0910-1/07/$20.00 ©2007 IEEE

some iterations of the Least Squares method [6] for
getting a better initial vector for the next GMRES restarts.
We perform our experiments on two platforms: one is

the Grid system, and the other is with the SMP
architecture. The Grid is well established as a research
domain and proposes technologies that are mature enough
to be used for real-life applications. Projects like e-
Science, TeraGrid, DEISA and NAREGI, to cite a few,
demonstrate that a large scale infrastructure can be
deployed to provide scientists fairly easy access to
geographically distributed resources belonging to
different administration domains[13]. A high performance
of large scale computing can be achieved by using this
large amount of unoccupied computing resources.

The Grid5000 project has been launched to provide the
community of Grid researchers with an unprecedented
large-scale infrastructure to study Grid issues under real
experimental conditions [14]. It aims at providing a strong
reconfiguration, control and monitoring infrastructure,
transforming the full system into a scientific instrument. It
is implemented as a nation wide cluster of clusters over 9
sites in France. Every site is equipped with a cluster
ranging from 100 to 1000 CPUs and all sites are
connected by the high speed network RENATER.

The IBM RS6000 SP series supercomputers with the
SMP architecture are widely used in the world for various
scientific and commercial applications. Equipped with
high speed processors and high bandwidth
interconnections between the nodes, it provides an
excellent scientific calculation environment.
In this paper, we present the distributed hybrid method

GMRES(m)/LS-Arnoldi which is well implemented on
the GRID system Grid’5000. We will furthermore
compare the performances on Grid’5000 with those on
IBM SP series supercomputers.

This paper is organized as follows. The numerical
methods used in our hybrid method will be present in
section 2. In section 3, we introduce the implementation
on Grid’5000. In section 4, we present the results
obtained on the platform Grid’5000 and IBM SP series
supercomputers. At the same time we analyze and
compare the performance of computing from the

viewpoint of the method and the viewpoint of the
hardware platform. Finally, in section 5, we present a
summary and discuss directions for future research.

2. The GMRES(m)/LS-Arnoldi hybrid
parallel method

2.1. GMRES method

The GMRES (Generalized Minimum RESidual)
method was proposed by Saad and Schultz[2] in 1986. It
is a Krylov method for solving non-symmetric linear

systems. The thm iterate mx of GMRES is the solution of

the least squares problem:

2)r,A(Kxx ||Axb||minimize
0m0

−+∈ , where 00 Axbr −= is

the residual of the initial solution. The Arnoldi process

applied to)r,A(K 0m builds]v,V[V 1mm1m ++ = , an

orthonormal basis of)r,A(K 0m , the m+1 by m matrix

mH and
20r=β . These matrices satisfy the

relation m1mm HVAV += . The iterate mx can be written

as mm0m yVxx += , where m
my ℜ∈ is the solution of

the least squares problem:
2m1y

yHeminimize m −β
ℜ∈

In the GMRES algorithm the number of vectors
requiring storage increases with m. One way to address
this problem is using the algorithm iteratively, by finding

the iterate mx , and restarting the algorithm with the

initial guess m0 xx = , until convergence. Thus, we obtain

the restarted GMRES(m) after iteration of GMRES.
Algorithm GMRES(m):

1. Start: choose 0x an initial guess of the solution,

 m is the solution of Krylov subspaces, and ε the
tolerance,

 compute 00 Axbr −=

2. Apply Arnoldi process to)r,A(K 0m

3. Compute 2m1

y

m ||yHe||minargy
m

−β=
ℜ∈

 with QR

factorization,

 and set mmmm0m Axbr ,yVxx −=+=

4. Restart: if ε≤2m ||r||

else set m0m0 rr ,xx == , and goto 2.

2.2. The hybrid algorithm GMRES(m)/LS(k,l)

The hybrid algorithm applies the GMRES(m)
algorithm as the basic part to solve the linear system. In
addition, it also integrates two methods: Arnoldi and
Least Square. The idea of the whole process is to
calculate in parallel some eigenvalues on other machines

by the Arnoldi method [5]. As they will be approximated
with a sufficient accuracy, eigenvalues are used to
perform some iterations of the Least Squares method [6]
in order to obtain a better initial vector for the next
GMRES iterations.
At first, we describe the Arnoldi method and the

method Least Square.
Algorithm: Arnoldi’s method

1. Start: choose v an initial vector, m the dimension of
krylov subspaces,
 and d, the number of desired dominant eigenvalues,

with the threshold ε .

2. Apply Arnoldi process to)v,A(Km .

3. Compute the eigenvalues(di1 ,i ≤≤λ) and the

associated

Eigenvectors (di1 ,yi ≤≤) of mH .

4. Set imi yVu = , for i=1, ···, d, the Ritz vectors.

5, Compute
2iiii Auu −λ=ρ , di1 ≤≤ .

6. Restart: if ε<ρ
=

i

d

1i
max stop else set ∑ =

=
d

1i i)uRe(v ,

and goto 2.
The Least Square method can be written as follows:

0k0 r)A(Pxx~ += where 0x an initial approximation,

0r its residual, and kP is a polynomial of degree k-1. Let

1
k be the set of the real polynomials p of degree k, such

that p(0)=1, and define the polynomial 1
kkR ∈ by

)z(zP1)z(R kk −= . Then the residual of the iterate

x~ is 0k r)A(Rr~ = .

In general, we do not have the whole spectrum of A,
but only some eigenvalue estimates contained in a convex
hull H. H is constructed such as it does not contain the
origin. Smolarski and Saylor [11] proposed to find

kR minimizing a weighted L2-norm on the space of real

polynomials, with a suitable weight function w, defined
on the boundary of H. We obtain the following least

squares problem
wk

PR
Rmin

1
kk∈

.

The obtained polynomial ∑
−

=

η=
1k

0i

iik tP is expressed in

the scaled and shifted Chebyshev basis defined by

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −λ
=λ

d

a
T/

d

c
T)(t jjj j=0,1,… This is the best basis

of polynomials on the ellipse)a,d,c(ε of smallest area

enclosing H (see [10] and [5] for an algorithm computing
this optimal ellipse). For more details, see [6].

The hybrid algorithm GMRES(m)/LS(k,l) can be given
as follows:

Algorithm: GMRES(m)/LS(lk,)

1. Start: Choose 0x , m, m′ the dimension of Krylov

subspaces. k is the degree of the least squares polynomial,

ε the threshold and l the number of the successive

applications of the Least Squares method.

2. Compute mx , the thm iterate of GMRES starting

with 0x ,

if ε<− 2m ||Axb|| Stop else set 0x = mx ,

00 Axbr −= .

3. Perform m′ iterations of the Arnoldi process starting

with 0r ,

 And compute the eigenvalues of mH ′ .

4. Compute the least squares polynomial kP on the

boundary of H, the hull convex enclosing all computed
eigenvalues.

5. For lj ,,1 L= do

 Compute 0k0 r)A(Pxx~ += , and set x~x0 = ,

00 Axbr −= .

end do

6. Restart: if ε<20 ||r|| Stop, else goto 2.

3. Implementation on Grid’5000

Grid’5000 is not a Grid, but a highly configurable,

controllable and monitorable instrument that can be
configured to work as a real Grid. There are 5000 CPUs
distributed over 9 sites in France. Every site hosts a
cluster and all sites are connected by RENATER through
VLANS implemented by MPLS at level 2 [14]. Besides,
on account of the security, the sites of Grid’5000 are not
directly connected to the Internet, but all communication
packets fly without limitation between Grid’5000 sites.

Firstly, we customize our environment MPI on
Grid’5000 for our experiments. Next, we distribute our
algorithm on the processors reserved in one or some sites
of Grid’5000.
We use primarily the clusters of the site Orsay and the

site Rennes. These two sites are interconnected by the
high speed network RENATER. After deploying our
environment, we have the copy of the program and the
data needed for calculation on all the processors reserved.
All the sparse matrices are stored in the compressed
format CSR (Compress Sparse Row) for saving the
memory and reducing the communication on the network.

The most processors reserved are used to run the
algorithm GMRES(m) by the way of the SPMD model
with an administrative process and p identical calculation
processes. The calculation processors read directly their
own data and execute the method GMRES(m),
communicating with their brother processes.

The processors dedicated to the parallel package
“PARPACK” are in charge of the reception of residuals,

the projection of Arnoldi and the calculation of
eigenvalues, independently of the processes GMRES.

Only one processor is in charge of the sequential part
(the LS method and the sorting of eigenvalues) because of
the small set of data for calculation. The parameters
“Least Square” obtained are then sent to the processors
executing the algorithm GMRES(m) later.

The whole process and the relationship of the
communication between the three parts are presented in
Figure 1. We also do our implementations according to
this schema.

4. Numeric Results and Analysis

The detailed configuration of the sites Orsay and
Rennes are showed in Table 1. The bandwidth and the
average latency inside the cluster of Orsay and those
between these two sites are present in Table 2. Table 3
shows the configuration of the IBM SP series
supercomputers.

Number
of PCs

CPU Memory

the site Orsay

216 Dual AMD Opteron 246, 1.95GHz 1.96G

121 Dual AMD Opteron 250, 1.95GHz 1.96G

the site Rennes

99 Dual AMD Opteron 246, 1.96GHz 1.96G

64 Dual AMD Opteron 248, 2.14GHz 1.96G

64 Intel Xeon IA32, 2.33GHz 0.99G

32 PowerPC, 1.95GHz 1.5G

���������	�
��
��
�����

�������	����
�

 bandwidth latency

Orsay 941 Mb/s 0.09ms

Orsay – Rennes 27.25 Mb/s 9ms

������ ��� ���� ���������� ���� ����
���
���� �������� �������� ���� ����
�

Number
of node

CPUs of node Memory
/node

SP3

4 16 Power 3 NH2, 375MHz 16G

SP4

2 32 Power 4, 1.3GHz 64G

2 32 Power 4, 1.7GHz 64G

5 32 Power 4, 1.7GHz 32G

����������������
�������������������������

 ���
�����!���
���
���"������
����
����
����
���!#	$�%&�'(
������)
���

�

We will analyze the numeric results obtained from the

viewpoint of the algorithm itself and the hardware
platform. In our experiments, we use the sparse matrices
derived from the site “MatrixMarket”. And the
comparisons are made in the same condition of the
parameters of the method.

4.1. Analysis and comparisons between the
hybrid method and the classic method
GMRES(m)

According to the experiments results (see figure 2), it

is clear that the global computation time of the hybrid
parallel method is better than the parallel GMRES(m)
itself. And the speed up can even be spectacular when the
convergence of GMRES itself is difficult. It is because we
use continually the new better approximate initial vector
obtained by the method LS for the restart of the next
GMRES iterations. After each iteration, the processors
executing GMRES(m) always check if the parameters of
the method LS arrive. In this case, the GMRES algorithm
is then stopped, the processes perform the parallel part of
the hybridizations, and GMRES(m) restart with the
obtained iterate.
When the hybrid computation using LS parameters by

the GMRES/LS processes occurs, we then notice an
obvious decrease of the residual, usually after a temporary
increase of the residual. Thereby, too frequent sending of

LS parameters damage the efficiency, as each LS iterate
influences many GMRES iterations. When the peaks are
high and nearby, divergence may even occur.

The implementation of this hybrid method allows to
take advantage of available parallelism. Both GMRES(m)
and the hybrid method all have an optimal number of
processors involved in the calculation. When we put more
processors into the calculation after this threshold, that
time we used to get the resolution increases contrarily.
Because the GMRES processes require intensive
communications and multiple synchronizations, the time
of calculation gained by the acceleration with more
processors involved is less than the time consumed by the
communications among the processors. However, for the
hybrid method, we can increase the used parallelism
because of the join of the parallel processes Arnoldi. The
parallel Arnoldi algorithm calculates the eigenvalues
necessary for the hybridization independently of the
processes GMRES(m). Additionally, although there is
also the optimal number of processors for the Arnoldi
algorithm, we can still increase moderately the number of
processors beyond this optimal number. As mentioned
above, sending eigenvalues too frequently is not desirable,
so the Arnoldi computation needs to be very efficient.

4.2. Analysis and comparisons between the
platform Grid’5000 and the supercomputer

In the Table 4, we easily remark that the global
computation time on Grid’5000 is much shorter not only
for the method GMRES(m) itself but also for our hybrid
method. It is because the hardware configuration of
Grid’5000 is obviously better than the supercomputer SP3
(see Table 1, Table 3)
We observe that on the SP3 supercomputer there are

more peaks (see Figure 3). In other word, the hybrid
computation using LS parameters on the SP3 occurs more
times than that on Grid’5000. Because on the Grid5000
the GMRES(m) iterations are faster, there are more

GMRES(m) iterations between two receipts of the LS
parameters taken into account by the processes GMRES.
We remark also that on SP3 when nG (number of
processors for the running of the algorithm GMRES) is 2,
the divergence occurs. However on Grid’5000 the
convergence is realized. This result accords with the
theory that the group of the processors running the
algorithm GMRES function too slowly to have enough
time to deal with the LS parameters before the reach of
the new LS parameters.

Hybrid method compared to GMRES itself

utm1700a (n=1700, m(GMRES)=100, m(Arnoldi)=64, K=30, l=10)

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05

1.00E+07

1.00E+09

1.00E+11

1.00E+13

1.00E+15

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

R
es

id
u

a
l

n
o

rm

Hybrid method

GMRES itself

Hybridization with l=1,5,10,15, compared to GMRES itself

utm1700a (n=1700, m(GMRES)=400, m(Arnoldi)=256, K=15)

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

0 5 10 15 20 25

Time (seconds)

R
es

id
u

a
l

n
o

rm

GMRES itself

L=1

L=5

L=10

L=15

 ���
�����������")�
�
���������
���"����������!#	$����
�������*��"�+,,�-����!
��./,,,�

hybridization with nG=2,5,8,10 compared to GMRES itself

utm1700a (n=1700,m(GMRES)=358,m(Arnoldi)=150,l=30,k=30)

1.00E-14

1.00E-13

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

0 5 10 15 20 25 30

Time (seconds)

R
es

id
u

a
l

n
o

rm

GMRES itself

nG=2

nG=5

nG=8

nG=10

Hybridization with nG=2,5,8,10 compared to GMRES itself

utm1700a (n=1700,nA=4,m(GMRES)=358,m(Arnoldi)=150,k=30,l=30)

1.00E-14

1.00E-13

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

0 50 100 150 200 250

Time(seconds)

R
es

id
u

a
l

n
o

rm

GMRES itself

nG=2

nG=5

nG=8

nG=10

�

 ���
�����������")�
�
���������
���"������������������)�����
"
�!
��./,,,���������

 global computation time

 GMRES itself nG=2 nG=5 nG=8 nG=10

SP3 207.85s ∞ 50.51s 74.2s 139.3s

Grid5000 26.25s 24.45s 14.3s 10.5s 11.2s

�
���������������"����")�
�
���������
���"������������������)�����
"
�!
��./,,,���������

 ���
����������������������������"��
����)
���

�

���
���"�0,,�

 N=4 N=6 N=8 N=10 N=12

SP3 676.9824s 120.4734s 95.4734s 173.8691s 213.4357s

SP4 149.092s 80.1781s 71.7173s 91.0022s 95.1353s

Grid’5000 125.5664s 80.9961s 65.6797s 55.1875s 58.168s

������/�������������������������"��
����)
���

�

���
���"�0,,�

Implementation distributed on two sites compared to implementation inside one site

utm1700a (n=1700, m(GMRES)=400, m(Arnoldi)=256, k=18, l=10)

1.00E-13

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

0 10 20 30 40 50 60

Time (seconds)

R
es

id
u
a
l
n
o
rm

inside one site Orsay

GMRES-Orsay, Arnoldi-Rennes

GMRES-Orsay+Rennes, Arnold-Orsay

 ���
��/���������")�
�
�����������")��"�������������

��������������
���
�1�

�������	����
2�

Viewed from the parallelism granularity perspective,

the results (In Figure 4 and Table 5) show that the global
computation time on Grid’5000 is better than the IBM
RS6000 SP4 too. We also notice that on Grid’5000 and
SP4 the evolutions of the computing time along with the
number of processors are much smoother than on SP3. It
is due to their excellent hardware configurations. We can
also notice this phenomenon in Table 4. Additionally, on
Grid’5000 the optimal computation time is obtained when
the number of processors is 10, and on the

supercomputers SP3 and SP4 the optimal number of
processors is 8. In other words, we can take advantage of
available parallelism on Grid’5000. It can be explained by
the fact that when we use more processors, the time
consumed by the communication do not increase much
more thanks to the high speed network of Grid’5000, and
this increased time can be compensated by the diminution
of the computing time.
Moreover, we tested our hybrid algorithm with two

network configuration on Grid’5000: inside the cluster of

676.9824

213.4357

173.8691

95.4734

120.4734

830.6001

80.1781 71.7173
91.0022

95.1353

194.1473

149.092

125.5664

84.0742 80.9961
77.0234

65.6797
58.7266

55.1875
53.8672

58.168

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14

SP3

SP4

Grid5000

Number of processors

P-Time GMRES hybrid method
utm3600 (n=3060,nA=2,m(GMRES)=400,m(Arnoldi)=50,K=30,L=30)

T
im

e
(s

ec
o

n
d

s)

one site Orsay or Rennes and inter-sites Orsay and
Rennes. We can notice that there is almost no difference
between the implementation only inside one site Orsay
and the implementation distributed inter-components on
two sites (see Figure 5). However, when we distribute the
part GMRES on two sites, the performance drops. The
experiment further shows that the communications among
the processors taking charge of the algorithm GMRES(m)
are intense, and the communications between the
components are relatively little. So in the future when we
use the geographically distributed computing resources,
the implementation distributed inter-components will
have relatively small influence for the whole computing
performance.
As mention above, it can be concluded that combining

the advantage of the hybrid method GMRES(m)/LS-
Arnoldi (as shown in Figure 2) and the excellent Grid
platform Grid’5000 (as shown in Figure 3), we can
achieve a higher performance of computing.

5. Conclusion

We implemented our algorithm for the hybrid method
GMRES(m)/LS-Arnoldi in two computing platforms:
Grid’5000 with the environment MPI and a
supercomputer system IBM SP series.
Without any doubt, the experimental results show the

interest of the hybrid method. We have obtained very
important convergence accelerations. And thanks to the
low amount of communications between its components,
our hybrid method takes advantage of available
parallelism unusable with the classic method.
According to the results of the comparison with the

supercomputer system IBM SP series, the platform
Grid’5000 shows its good performance thanks to its
excellent hardware and network configuration.
In future, we will continue our experiments on

Grid’5000, reconfiguring the others distribution
computing environments. For the hybrid method, we will
extend it to the scientific problems of very large size. In
addition, we will do more tests on the other
supercomputers or cluster (i.e. the supercomputer in Japan,
IBM cell in France), and apply our experiments in an
environment with a WAN based configuration.

Reference

[1] R.D.Da Cunha and T.Hopkins. A parallel implementation of
the restarted GMRES iterative algorithm for nonsymmetric
systems of linear equations. Advances in Computational
Mathematics. 2(1994).pp261-277
[2] Y.Saad. M. H. Schultz. GMRES: A Generalized GMRES
Algorithm for Solving Nonsymmetric Linear Systems, SIAM J.
Sci. Statist. Compt., 7(1986) 856-869

[3] G.Edjlali, N.Emad, S .Petiton, Hybrid methods on network
of heterogeneous computers, 14th IMACS World Congress,
1994.
[4] Y.Saad, Variations on Arnoldi’s method for computing
eigenelements of large unsymmetric matrices, Linear Algebra
Appl., 34(1980), pp.269-295
[5] Y.Saad, Numerical methods for large eigenvalue problems,
Manchester University Press, Manchester (1992)
[6] Y.Saad, Least Squares Polynomials in the Complex Plane
and their Use for Solving Nonsymmetric Linear Systems, SIAM
J. Sci. Statist. Comput., 7(1987),pp 155-169.
[7] Haiwu HE, Guy Bergere, Serge Petiton, A parallel
asynchronous hybrid method to accelerate convergence of a
linear system, DCABES 2004, Distributed Computing and
Algorithms for Business, Engineering, and Sciences
[8] Haiwu He, Guy Bergere, Serge Petiton, GMRES Method on
Lightweight GRID System, ISPDC 2005, the 4th International
Symposium on Parallel and Distributed Computing
[9] A.Essai, G.Bergere, Serge Petiton. Heterogeneous parallel
hybrid GMRES/LS-Arnold method. Ninth SIAM Conference on
Parallel Processing for Scientific Computing, 1999
[10] T.A.Manteuffel, The Tchebychev iteration for
nonsymmetric linear systems, Numer. Math., 28 (1997), pp.307-
327
[11] D.C.Smolarski, P.E.Saylor, An optimum iterative method
for solving any linear system with a square matrix, BIT,
28(1988), pp.163-178
[12] Y.Georgiou, O.Richard, P.Neyron, G.Huard, and C.Martin.
A batch scheduler with high level components. In proceedings
of CCGRID’2005. IEEE Computer Society, 2005
[13] C.Franck, C.Eddy, D.Michel, D.Frederic, J.Yvon,
Grid’5000: a large scale and highly reconfigurable Grid
experimental testbed, International Journal of High Performance
Computing Applications, 20(4):481-494, 2006
[14] Q.Benjamin, C.Franck, A survey of Grid research tools:
simulators, emulators and real life platform, in proceedings of
the 17th IMACS World Congress (IMACS 2005), Paris, France,
2005

