
Towards threat-adaptive dynamic fragment replication
in large scale distributed systems

Roberto Di Pietro1, Luigi V. Mancini2, and Alessandro Mei2

1Università di Roma Tre 2Università di Roma “La Sapienza”
Dipartimento di Matematica Dipartimento di Informatica

l.go S. Leonardo Murialdo 1, 00146 - Roma, Italy via Salaria 113, 00198 - Roma, Italy
dipietro@mat.uniroma3.it {mei,mancini@di.uniroma1.it}

Abstract

In this paper, we consider new issues in building secure
p2p file sharing systems. In particular, we define a power-
ful adversary model and consequently present the require-
ments to address when implementing a threat-adaptive se-
cure file sharing system. We describe the main components
of such a system: An early warning mechanism to perform
pre-emptive actions against new vulnerabilities; a mecha-
nism to sanitize corrupted nodes; a protocol to securely
“migrate” data from non-safe nodes; and an efficient dy-
namic secret sharing mechanism.

1 Introduction

The Internet and the WEB have defined an inherently
distributed and insecure environment for information shar-
ing. New forms of content distribution use resources pro-
vided in a fully interconnected environment which is chang-
ing our life. Information sharing is getting more and more
importance for many reasons, for private and public pur-
poses, for research progression and for business. Current
technology should enable its fruition.

Peer-to-peer (P2P) protocols allow to build networks of
huge size, with thousands or millions of cooperating users.
P2P networks can be scalable, resilient and efficient, usually
without the requirement of centralized servers, in a com-
pletely distributed fashion. P2P protocols provide under-
layers for a large variety of services, like network storage,
content distribution, web caching, searching, indexing and

This work was partially funded by the WEB-MINDS project supported by
the Italian MIUR under the FIRB program.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

more. Among these services, a storage utility like PAST
[24] is attractive for several reasons. First, it can exploit
the diffusion and heterogeneity (in geography, ownership,
administration, jurisdiction, etc.) of the nodes in the Inter-
net to achieve strong persistence and high availability. This
obviates the need for physical transport of storage media
to protect backup and archival data; likewise, it implies an
enhanced degree of availability and throughput for shared
data. A global storage utility also facilitates the sharing of
storage and bandwidth, thus permitting a group of nodes to
jointly store or publish content that would exceed the capac-
ity or bandwidth of any individual.

In this scenario, P2P systems are natural candidates for
the information sharing revolution, and are acquiring much
importance and interest. In particular, a P2P system allows
a (potentially) huge number of users to access different re-
sources, distributed over the nodes of the system, in a uni-
form way regardless of the actual allocation. The main ben-
efits are performance, scalability, high availability, fault-
tolerance and reliability. However, security of the shared
information is an issue. Many companies and organizations
spend billions of dollars in order to guarantee security of
their data and to fix information leaks caused by intruders or
insiders’s attacks. Information sharing is indissolubly tied
with the necessity of securing the information itself.

The goal of our work is to build a system for informa-
tion sharing that appear as a centralized system but is ac-
tually physically distributed among a large set of untrusted
machines, according to the P2P paradigm. The shared in-
formation (e. g. a file) can be accessed by many individuals
from many different locations that may be geographically
distributed world-wide. Data can be accessed in two differ-
ent modes, for reading and writing, and can be spread all
over the network with an appropriate degree of redundancy.
The system should provide security—in this paper we focus

on confidentiality and availability—without requiring phys-
ical protection, continuous administration, and burdensome
tasks of centralized server environments. Indeed, in a P2P
system every machine belonging to the system, henceforth
node, performs some client-side activities (it interacts with
the user and requests the access to the objects) and has some
server-side responsibilities (file storage and access request
service). It provides the location-transparent access typical
of client-server architecture, but has the benefits of typical
desktops and workstations, i. e. no need for centralized ad-
ministration and low cost.

In this paper we sketch the architecture and mechanisms
that can lead to the design of a threat-adaptive file shar-
ing system. In particular, we devise a system that is ro-
bust against active and silent adversaries. The former type
of adversary is able to compromise one or more nodes and
collect all of their content (the object itself, any secret key,
etc...). The latter is protocol complaint till it has compro-
mised enough nodes to perform a successful attack. Stem-
ming from this model of adversary, we describe the archi-
tecture components that are required to preserve the security
feature of the system, that we assume to be confidentiality
and availability. In particular, we sketch the need for the
following mechanisms: Early warning, sanitization, secure
migration, and secret sharing. These mechanisms will be
described in detail in the following.

The remaining of this paper is structured as follows:
Next section reviews a secure and efficient P2P file shar-
ing system. This system will be referenced throughout the
paper; Section 3 introduces the adversary model that threat-
ens the security and confidentiality of the file sharing sys-
tem; Section 4 introduces the required architecture compo-
nents. In particular, in Subsection 4.1 the Alert & Saniti-
zation mechanisms are introduced; Subsection 4.2 justifies
the need for a migration mechanism of the shares hosted on
class of nodes, while Subsection 4.3 describes the require-
ments for a secret sharing scheme. Section 5 reports on the
related work in the literature. Finally, Section 6 presents
some concluding remarks and indicates a few research di-
rections.

2 Secure and efficient P2P file sharing system

An active attack is an attack launched by an adversary
that is able to break into one or more nodes of the p2p sys-
tem, potentially compromising any stored data. In order to
break into a node, the adversary exploits a system weak-
ness. Of course, there can be several kinds of such weak-
nesses and security holes: Poor system administration; bad
users’ practices like, for example, choosing easily guess-
able passwords; malicious insiders, and so on. Moreover,
there can be different kinds of software and hardware flaws
that can be exploited, for example with buffer overflow at-

tacks. A possible solution to the problem of keeping data
confidential is to use cryptographic techniques and encrypt
the storage assuming that only authorized users are aware
of the correct decryption key. Unfortunately, practice says
that no encryption system is perfectly safe, so we need to
assume that breaking a cryptographic system is not impos-
sible. For example, the adversary could perform a dictio-
nary attack or use mathematical crypto-analysis; or it could
use social engineering techniques for retrieving an autho-
rized user’s secret key, whenever the user is not scrupulous
enough in securing it. More importantly, encrypted stor-
age rises not-trivial issues about key management. In fact,
key management has always been a challenging problem for
data sharing in large systems: encryption keys for storage
have longer lifetime compared to keys for communication;
they need to be securely stored and accessed only by au-
thorized users, which can belong to different administrative
domains. This raises the questions of how authorized users
should obtain the decryption keys, who should be respon-
sible for providing those keys, and to do it efficiently and
securely. Further, encrypted storage calls for some recov-
ery mechanisms and key escrow procedures, for the event
of secret key loss or corruption. This mechanism could be,
itself, a possible security hole.

In order to cope with active attacks without facing the
above issues, [30] proposes the use of data fragmentation
rather than encrypted data storage, and to store different
fragments of the same object on different nodes of the sys-
tem. There are many fragmentation mechanisms, like Ra-
bin’s information dispersal [21] and Shamir’s secret shar-
ing [26]. By using these mechanisms, it is possible to frag-
ment a file into n pieces, called shares, such that any m of
them are enough to reconstruct the file, while m− 1 shares
give no information (or give no information to every com-
putationally bounded adversary). The idea is to partition the
nodes into t “classes”, t ≥ n; nodes from different classes
should be heterogeneous in such way that any active attack
that is successful with nodes in a class, should be ineffective
with nodes in other classes. A similar, but stronger, assump-
tion has been done in [28], for example, where the system
is completely heterogeneous—every node in the system is
unique in software, administration, and so on.

The distributed system proposed in [30] is a collection
of nodes organized in a tree (the physical tree). An example
of such a system is shown in Figure 1. Clients connect to
one of the nodes to read and write a shared file. When the
client reads the file, it has to retrieve a copy of each of the t
fragments. Hence, it must find at least one node from every
class. When the client writes the file, it has to update every
copy of every share. A key point to address in the system is
how to partition the nodes into classes in such a way that it
is possible to get high performance. Every client should be
able to find a copy of every fragment relatively quickly. The

2

Figure 1. Partition of a network into 4 classes.

[s
1
]

[s
4
]

[s
12

]

[s
2
]

[s
7
]

[s
11

]

[s
5
]

[s
3
]

[s
10

]

[s
8
]

[s
9
]

[s
6
]

Figure 2. A logical tree.

problem of partitioning is solved by choosing a hash func-
tion H : N 7→ {1, . . . , t} and setting the class of node i to
H(i) (this means that the architecture of the node depends
on its ID). With high probability, every client will be close
to a node from each of the t classes. An example of this ran-
dom partitioning is shown in Figure 1. The set of nodes in
every class self-organizes in a distributed fashion into a log-
ical network, that turns out to be a tree where, under proper
hypothesis, logical edges (edges from nodes of the same
class) can be simulated by using a path of at most O(log t)
physical edges. So, performance of communications on the
logical trees are provably efficient. Figure 2 shows one of
the logical trees from the partition of Figure 1—the one
composed by the light gray nodes. Finally, every share is
assigned one of the classes in the distributed system, and
consequently a logical tree. Then, a secure replication and
migration protocol is run on each logical tree to replicate
and move each share towards the optimal location given a
fixed read/write activity on the file by the clients of the sys-
tem. When m = n = t and when the client activity is
stable, [30] shows that the protocol converges to the opti-
mal share allocation. For the details, the reader is referred
to the original paper.

3 Adversary model

In our view, the adversary is a malicious individual that
can misbehave in many flavors in order to compromise both
the availability and the confidentiality of the file sharing
system. Specifically, the adversary we define has the fol-
lowing goals: a) to compromise the integrity of the shares
hosted on a specific server; b) to collect a set of shares such
that it can recover the file. Further, more malicious individ-
uals can collude, by combining their resources, in order to
actively attack the service. In the following, we follow a
conservative approach and consider that all the adversaries
collude; we denote such a group of conspirators as a sin-
gle adversary. An active attack is an attack launched by an
adversary that is able to break into one or more classes of
nodes, potentially compromising those nodes.

Threats cannot be realistically avoided and, in general,
it is not possible to foresee the vulnerabilities that could
be exploited by the adversary in the future, as well as the
extension of the attack (that is, just a node, all the nodes for
a given class, several nodes spanning several classes). For
this reason, we allow the adversary to be able to corrupt up
to a given number of nodes.

Once a server is corrupted, confidentiality and integrity
of any private and public information stored on the server
are assumed to be compromised, and these data can be
recorded or leaked to third parties, as well as arbitrarily
modified. Moreover, the adversary can re-program the
server, changing the protocol it was supposed to follow,
making the node unavailable, and so on. In [15, 14], two
adversary models are presented, to characterize the power
of these adversaries:

Long-term constrained adversary: the adversary can
break into and control at most t − 1 nodes, during the
entire life of the network;

Short-term constrained adversary: assuming that
the time is divided into intervals, the adversary can
break into and control at most t − 1 nodes during any
time interval.

Note that, even though victims can be arbitrarily chosen,
in both of the models above t is a fixed parameter, express-
ing the system’s robustness against active attacks. In the
long-term constrained model, the adversary has the entire
life of the network to attempt to disrupt or deny the service.
Gradual breaks into subsets of nodes over a long time period
are feasible. In the short-term constrained model the adver-
sary has just an arbitrary short time-window to compromise
enough nodes, that is the adversary is more constrained.

Proactive secret sharing [10] is a secret sharing scheme
that periodically renews shares, without changing the se-
cret (the file), such that any information learned by the

3

adversary becomes obsolete after the share-renewal proto-
col completes. The scheme assumes that participants are
not malicious, that is they destroy their previous shares as
soon as they get the new ones. By periodically refreshing
the single shares, the time window in which the adversary
needs to corrupt the nodes is supposed to decrease dramat-
ically, making the network more robust. The assumption
made is that it is possible to recover a compromised node
via some administration technique (for example by resetting
hardware and system configurations, reloading the code and
so on), thus removing the adversary from corrupted nodes.
This is done either when compromission is detected (when-
ever detection is possible) or at the beginning of every inter-
val the time is divided into, before the share-renewal phase.
Note that this kind of node recovery could be classified as
weak, since just reloading the proper code on a node does
not eliminate the vulnerability the adversary used to break
into the node; hence, the adversary could immediately re-
gain control of the node. We would like to take into ac-
count a form of strong recovery as well. This recovery is
performed when the vulnerability that was exploited by the
adversary is eliminated (for instance, installing a patch to
the OS, or a fix to the application’s code). We consider
strong recovery a realistic assumption, since patches and
fixes are nowadays delivered, or at least signalled, in auto-
matic ways. Hence, we can assume that if we can apply
a strong recovery on a node (we say that the node is sani-
tized), the same sanitization can be extended to all the nodes
in the network that belong to the class of the sanitized one,
and eventually the adversary is expelled from a certain class
of servers. Sanitization mitigates one of the major issue in
these scenarios: the possibility for an adversary to break in
the network and act silently. Nodes under control of the
adversary could exhibit a correct behavior, as long as their
number is not enough to harm the service. A class that is
just sanitized is safe; however, a sanitized class could be
compromised again if a new vulnerability for that class is
found by the adversary.

This is likely to occur for large-scale long-lived net-
works, because the probability to compromise enough
classes increases with the number of nodes. According to
[10, 14], thanks to pro-activity, this scenario is modeled by
a short-term constrained adversary, but the adversary, actu-
ally, still has the entire life of the network for compromising
enough nodes.

One possibility to cope with this kind of a attack is pro-
posed in [29] within the context of distributed signatures.
This proposal heavy relies on the algebraic properties of
RSA, and its general applicability is still a concern.

In this paper, to thwart the proposed adversary model,
and in particular the silent adversary, we propose to dy-
namically increase the confidentiality of the service, that is
the number of shares needed for reconstructing of the file.

Moreover, since availability is a plus for distributed file sys-
tems, we also increase the number of redundant shares.

4 Architecture components

In this section we describe the components of the archi-
tecture that will provide our system both confidentiality and
availability. Further, we highlight a few directions to imple-
ment these mechanisms.

4.1 Alert & Sanitization components

The most serious threat in our model is given by the as-
sumption that the adversary is silent, as we have discussed
in Section 3. Indeed, if the adversary continue corrupt-
ing nodes belonging to different classes, and the number
of classes does not increase, at a certain point the adversary
will be able to gain access to the file.

To cope with this adversary, our architecture needs three
mechanisms:

• early warning: This mechanism reports which classes
can be compromised, that is the classes for which a
vulnerability has been identified;

• sanitization: A way to sanitize the possibly compro-
mised systems. We take a conservative approach and
manifest our interest for sanitizing systems for which
it is possible strong recovery only. Indeed, sanitization
that would lead to a weak recovery does not provide
any assurance on the fact that the adversary could not
take control of this class of nodes;

• secure migration: In the time frame between the early
warning for a class of nodes and its sanitization, the se-
curity of the file is decreased. To keep the same secu-
rity assurance, it is possibile to “migrate” the shares of
the file towards safe classes by forcing a proper rewrite
of the file.

Note that to-date there is an increasing interest of the
security community to span and implement early warning
systems. For instance, the information provided by exist-
ing CERTs [1] as well as public and private Institutes [2]
provides an effective way to implement early warning and
sanitization.

Note that once a node has been informed that its class
could be compromised, it must be decided whether, how,
and where to migrate the shares. Indeed, the fact that its
class could be compromised does not necessarily imply that
it has been compromised. Migration could effectively pre-
serve the availability and confidentiality degree of the sys-
tem. Details about the migration existing strategies will be
discussed in next subsection.

4

However, if migration intuitively helps in preserving the
confidentiality of the scheme, an active measure has to be
adopted to increase the number of classes that can be con-
sidered safe, where we define safe a class that is not subject
to a known vulnerability. We can assume that once a certain
class has been demoted to non-safe due to the discovery of
a vulnerability, the same class could be promoted to safe if
the vulnerability is eliminated.

4.2 Migration mechanism

Assume that a certain class has just moved from a safe to
a non-safe state. What are the actions that should be under-
taken to preserve confidentiality and availability? Indeed,
usually a vulnerability is reported after a system with the
same weak component has been attacked (this system has
been subject to a so called zero-day attack). If our dis-
tributed system has been the targed of a zero-day attack,
it is not enough to migrate all the shares from the target
class to a safe one. Indeed, a reasonable and conservative
assumption is that all the information stored in any of the
nodes of the compromised class (not only the first target of
the attack) is lost. So, migration does not help. In this case,
the system should issue a forced rewrite of the file, taking
care that noone of the new n shares is stored in a non-safe
class. Depending on t, n, and m, and on the number of safe
classes in the system, this is not always possible. Note that
the new shares are completely independent of the previous,
possibly compromised, shares of the same file. In this way,
the confidentiality and availability of the file is preserved.

When the system is not the target of a zero-day attack,
instead of performing a rewrite of the file, that is an expen-
sive operation, it is possible to consider a simple migration
of the only share (and all of its copies) from the class that
just turned to non-safe towards a class that is classified safe,
that is, for which no vulnerabilities are known. This way, if
the system has not been compromised yet, we increase the
chances of preserving both availability and confidentiality.
This operation is much faster and less expensive, though
does not garantee the same degree of security.

4.3 Secret sharing

In the previous section we have seen that, in order to de-
sign a file sharing system that is adaptive to the threat from
a dynamically evolving adversary, it is required a mecha-
nism to migrate the share. However, note that only migrat-
ing the shares would provide no assurance that the file sys-
tem degree of security is preserved. Indeed, when migrating
a share, we assume that the class is in a non-safe state, that
is, it is subject to a vulnerability, but not necessarily it is has
been already compromised. The shares are migrated to the
nodes belonging to one or more classes that are in a safe

state.
A secret sharing mechanism should help in thwarting this

depletion of security. We have seen in Section 2 that the
files to be shared are split into shares according to some
(n, m) mechanism, that is at least m out of n shares are
required to recover the original file, like in [26]. The secret
sharing that should be adopted should allow to increase the
either the value n or both values m and n — for instance,
to (m,n + 1) or (m + 1, n + 1). Note that the relationship
t ≥ m ≥ n should be kept. In this way, the number of
classes increases and this should balance the gain achieved
by the adversary when corrupting a class.

4.4 Caveats

In this subsection we point out a few caveats for the mi-
gration and secret sharing mechanisms.
Migration mechanism
What is left in the migration mechanism above specified, is
to decide how migration should be addressed. One possi-
bility would be to migrate the shares towards a single class
of safe nodes; however, note that this solution would not
necessarily preserve the security properties. Indeed, shares
could migrate towards a class that is subject to a zero day at-
tack. Further, a few performance related issues arise: Desti-
nation nodes could be overloaded—above the average stor-
age could be required, as well as above the average queries
could be addressed to these nodes. To limit the extent of the
possible compromise and to provide a balanced allocation
of shares, it follows that the shares should migrate towards
the class of server that are still in a safe state.

At this point, we can assume that once a class has
been marked as non-safe, all the shares are migrated.
This triggers an interesting question: What happens when
sanitization intervenes? That is, once a class of nodes is
sanitaized, all the nodes in this class are promoted to a safe
state. Hence, this class contributes to increase the degree of
service availability; that is this class can now start receiving
shares from other servers (to receive shares that migrates
from nodes that are demoted to a non-safe state, or to
implement load balancing, if needed). A few points would
need better understanding: Which shares can be assigned to
this renewed class of servers? One possibility could be to
migrate to these nodes the same shares that migrated away
when these nodes where demoted; but if this is the solution,
what if the same shares have been migrated twice, since
the destination class has been marked non-safe as well?
This issue can be tackled in two ways: Via an efficient way
to track share distribution, or assigning shares to nodes
independently from their generation history, for instance in
a pseudo-random way like in [29].

5

Secret sharing
The features a secret sharing mechanism should provide
can be identified as follows:

• dynamic: The secret sharing mechanism should allow
the threshold to increase, but also to decrease. While
in Section 4.3 we have explained why the threshold
should increase, note that increasing the number of
shares the file has been split into would require writing
operations to be more expensive. Hence, if the secu-
rity conditions of the network indicate a demoted ad-
versary capability (this can be due, for instance, to an
increased capacity in nodes sanitization), the overall
number of split can be reduced, improving the perfor-
mances of both reading and writing operations.

• efficient: Note that to read the file, a legitimate user
has to access at least a share from m classes. The more
the classes, the more the nodes that a user has to con-
tact. Furthermore, the more the classes, the higher the
overhead to regenerate the file due to a file-write oper-
ation. The latter consideration implies that the number
of shares should be as small as possible in order to
reduce the overhead associated to file operations. Fur-
thermore, since writings require to re-generate all the
shares, it is necessary that the share generation proce-
dure be efficient.

• verifiable: This last property derives from a recent at-
tack shown in the literature, the pollution attack [11].
The following example explains this attack: The ad-
versary can take over a node without raising any alarm;
then, to disrupt the service, it provides a corrupted
share upon request. The requester, once it has collected
the shares, tries to rebuild the file, but the attempt fails
since the corrupted share does not enable the correct
recovery of the file. The goal of verifiable secret shar-
ing is to implement efficient solutions like the ones in
[11, 8], that are suitable to a multicast environment,
but that still need to be adapted to the completely dis-
tributed paradigm. A novel solution like the one in
[29], could be applicable, but it is still questionable if
the proposed method, that relies on the properties of
the modular algebra inherited by RSA, could be effi-
ciently generalized to support different cryptographic
techniques.

5 Related work

Distributed file systems has been a long lasting research
area. However, these systems generally focus on availabil-
ity and often set out weak security (whenever taken into ac-
count) or low performance, or both.

The most famous distributed file system is NFS, whose
specification has been made public by SUN in [17]. Basi-
cally, NFS passes most of the data in the clear, relying on in-
secure networks and trusted hosts. AFS [18] has been devel-
oped at the Carnegie Mellon University with the support of
IBM. Security is provided by Kerberos [20] between clients
and servers; files are stored in the clear. The CODA sys-
tem [25] is the evolution of AFS. The main difference with
its parent is the automatic replication system implemented
in CODA, not provided by AFS, that improves on the avail-
ability of the system at the expense of consistency. CODA
introduces specialized conflict resolution procedures. An-
other important feature is that it provides the possibility of
disconnected operations. SPRITE [19] is not just a dis-
tributed system but a real Network Operating System, de-
veloped at Berkeley. Its file system, SPRITE LFS [23], uses
replication and caching, and guarantees consistency among
replicas, at the expense of performance decay.

xFS [5] decentralizes the file system service among a
set of trusted workstation. The same approach is used
in Frangipani [27], that employs a distributed RAID [12]
rather than full replication. Frangipani has two layers, a
distributed storage service called Petal [13], that optionally
replicates data, and a set of symmetric servers. Both of the
systems are server-less, i. e. the responsibility for files is
spread over all the nodes. xFS, unlike Frangipani, has a
predesignated manager for each file. In particular, Frangi-
pani is meant to be used in a cluster of servers that share
a common administration and can communicate securely
(and trust each other).

Some security issues have been considered in several
projects. SCARED [22] uses cryptography to authenticate
users and end-to-end encryption of data moving through
the network, without encrypting the data while stored.
In [9] the system encrypts the storage at disk volume level
and employs an emergency key recovery mechanism that
uses Shamir’s secret sharing [26] to distribute key shares
to trusted individuals. Many systems provide authentica-
tion but not data confidentiality, so the user has to imple-
ment its own mechanism if willing to protect its files. Of
course, in such systems it is not easy to provide file sharing.
SUNDR [16] guarantees some important security proper-
ties even in presence of a compromised server, but it as-
sumes that all the clients are trusted. Most of the systems
addressing scalability are generally used for archiving data,
rather than to provide collaborative environments in which
information is read and written interactively. In this cate-
gory we find large p2p file sharing systems like Napster [4]
and Gnutella [3], that are suitable for finding files but do
not explicitly replicate files nor determine storage location;
and like Freenet [7], that replicates files near the points of
usage; some storage systems employ the same philosophy,
CFS [6] and PAST [24]. The typical limit of these systems

6

is that they assume read-only or one-publisher data, hence
only the publisher of the file can modify it, while other users
can only read it. CFS guarantees robustness, efficiency and
load-balancing; availability is assured by replication with-
out encryption, with the idea that files can be end-to-end
encrypted by clients before storing; however, CFS does not
provide any facility for information-sharing. PASIS [28]
offers more features: It makes use of secret sharing and
information dispersal [21] to provide confidentiality, avail-
ability and integrity, at the cost of performance. In PAST,
replicas are placed on a diverse set of network nodes by
a fault-tolerant and self-organizing routing and location in-
frastructure; the set of nodes storing replicas is determined
pseudo-randomly.

6 Concluding remarks

In this paper we have set out the requirements, the is-
sues, and the mechanisms that need to be addressed when
implementing a dynamically secure file sharing system. In
particular, we have described the main components of such
a system.

This paper also paves the way to foster a few research
issues: The sanitization mechanism would need a thorough
analysis of its fundamental properties; indeed, the rate at
which systems get infected and are sanitized would impact
on the possibilities for the reliability of the system to im-
prove or to lead the system itself to compromise. Another
research issue steams from the early warning mechanism:
Should it follow a push or a pull paradigm, and how to ef-
ficiently integrate this logical point of centralization into a
distributed architecture? We are currently addressing the
fundamental questions related to the sanitization mecha-
nism.

References

[1] http://www.cert.org/.
[2] http://www.sans.org/top20/.
[3] The Gnutella website. http://gnutella.com.
[4] The Napster website. http://www.napster.com.
[5] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patter-

son, D. S. Roselli, and R. Y. Wang. Serverless network file
systems. ACM Trans. Comput. Syst., 14(1):41–79, 1996.

[6] M. Blaze. A cryptographic file system for unix. In CCS ’93:
Proceedings of the 1st ACM conference on Computer and
communications security, pages 9–16, New York, NY, USA,
1993. ACM Press.

[7] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. Lecture Notes in Computer Science, 2009:46+,
2001.

[8] R. Di Pietro, S. Chessa, and P. Maestrini. Computationally,
memory and bandwidth efficient distillation codes to miti-
gate dos in multicast. In Proceedings of the 1st IEEE In-
ternational Conference on Security and Privacy for Emerg-
ing Areas in Communication Networks (SecureComm 2005),
pages 13–22. IEEE Press, 2005.

[9] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. ACM Trans. Comput. Syst.,
20(1):1–24, 2002.

[10] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proac-
tive secret sharing or how to cope with perpetual leakage. In
D. Coppersmith, editor, Advances in Cryptology: CRYPTO
’95, volume 963 of Lecture Notes in Computer Science,
pages 339–352. Springer, 1995.

[11] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar. Dis-
tillation codes and applications to DoS resistant multicast
authentication. In Proceedings of the 11th Annual Network
and Distributed Systems Security Symposium (NDSS 2004),
pages 37–56, February 2004.

[12] E. K. Lee, P. M. Chen, J. H. Hartman, A. L. C. Drapeau,
E. L. Miller, R. H. Katz, G. A. Gibson, and D. A. Patterson.
Raid-ii: A scalable storage architecture for high-bandwidth
network. Technical report, University of California at Berke-
ley, 1992.

[13] E. K. Lee and C. A. Thekkath. Petal: distributed virtual
disks. In ASPLOS-VII: Proceedings of the seventh interna-
tional conference on Architectural support for programming
languages and operating systems, pages 84–92, New York,
NY, USA, 1996. ACM Press.

[14] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang. URSA:
Ubiquitous and Robust Access Control for Mobile Ad-hoc
Networks. IEEE/ACM Transactions on Networking (ToN),
12(6):1049–1063, 2004.

[15] H. Luo and S. Lu. Ubiquitous and robust authentication ser-
vices for ad hoc wireless networks. Technical Report TR-
200030, UCLA, Dept. of Computer Science, 2000.

[16] D. Mazières and D. Shasha. Building secure file systems
out of byzantine storage. In PODC ’02: Proceedings of the
twenty-first annual symposium on Principles of distributed
computing, pages 108–117, New York, NY, USA, 2002.
ACM Press.

[17] S. microsystems. NFS: Network file system version 3 pro-
tocol specification. Technical report, SUN microsystems,
1994.

[18] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. S. Rosenthal, and F. D. Smith. Andrew: a dis-
tributed personal computing environment. Commun. ACM,
29(3):184–201, 1986.

[19] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in
the Sprite network file system. ACM Transactions on Com-
puter Systems, 6(1):134–154, 1988.

[20] B. C. Neuman and T. Ts’o. Kerberos: An authentication
service for computer networks. IEEE Communications,
32(9):32–38, 1994.

[21] M. O. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance. J. ACM, 36(2):335–348,
1989.

[22] B. C. Reed, E. G. Chron, R. C. Burns, and D. D. E.
Long. Authenticating network-attached storage. IEEE Mi-
cro, 20(1):49–57, 2000.

7

[23] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Transactions
on Computer Systems, 10(1):26–52, 1992.

[24] A. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer stor-
age utility. In SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles, pages
188–201, New York, NY, USA, 2001. ACM Press.

[25] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A highly available
file system for a distributed workstation environment. IEEE
Transactions on Computers, 39(4):447–459, 1990.

[26] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[27] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: a scal-
able distributed file system. In SOSP ’97: Proceedings of the
sixteenth ACM symposium on Operating systems principles,
pages 224–237, New York, NY, USA, 1997. ACM Press.

[28] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger,
H. Kiliccote, and P. K. Khosla. Survivable information stor-
age systems. Computer, 33(8):61–68, 2000.

[29] G. Zanin, R. Di Pietro, and L. V. Mancini. Robust RSA
distributed signatures for large-scale long-lived ad hoc net-
works. Journal of Computer Security, to appear.

[30] G. Zanin, A. Mei, and L. V. Mancini. A secure and effi-
cient large scale distributed system for object sharing. In
Proceedings of the 23th IEEE International Conference on
Distributed Computing Systems (ICDCS), 2006.

8

