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Abstract 

In this paper we describe a novel solution for delay 
sensitive one-to-many content distribution in P2P 
networks based on cooperative m-ary trees. Our scheme 
maximizes the overall throughput while minimizing end-
to-end delay by exploiting the full upload capacities of the 
participating peers and their proximity relationship. Our 
delivery scheme is based on cooperation between the 
source, the content-requesting peers and the helper peers. 
In our solution, the source splits the content into several 
blocks and feeds them into multiple m-ary trees rooted at 
the source. Every peer contributes its upload capacity by 
being a forwarding peer in at least one of the m-ary trees. 
Our performance evaluation shows that our proposal 
achieves similar throughput as the best known solution in 
the literature (Mutualcast) while at the same time 
reducing content delivery delay.  

1. Introduction 

Many delay sensitive  applications such as TV over IP 
or multi-party video conferencing require content 
distribution from one source to multiple receiver nodes. 
IP Multicast has been proposed as an efficient solution for 
one-to-many content dissemination. However, IP 
Multicast is not widely available in today’s Internet. The 
construction of multicast trees at the application layer has 
been proposed as an alternative and has received 
considerable attention in the literature [1, 2, 3]. 
Application-level approaches provide more flexibility and 
are easier to deploy compared to network-based multicast 
support. In conventional tree-based distribution, the 
interior nodes redistribute the content, while the leaf peers 
receive the content only. Although multicast-tree based 
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content distribution has shown to be highly scalable [3, 4, 
5], it is not maximally efficient in collaborative 
environments, because the upload capacity of the leaf 
peers is not used during a multicast session. In order to 
achieve maximum throughput we need to exploit the full 
upload capacity of all participating peers. A solution is the 
construction of multiple concurrent trees where peers 
contribute with their upload capacity in at least one tree. 
The determination of the number of required trees to 
maximize the overall throughput is an open problem [6].  

A scheme that fully exploits the upload capacity of all 
participating peers is Mutualcast [7]. This scheme has 
been shown to provably maximize the overall throughput 
during a multicast session. Mutualcast engages as many 
peers as possible and uses their full upload capacities in 
order to maximize the overall throughput. Although 
Mutualcast achieves the maximum possible multicast 
throughput in P2P networks with constrained upload 
capacities, it has some limitations for delay sensitive 
applications, because it only considers the peer upload 
capacity ignoring their proximity relationship. 
Additionally, due to its fixed and fully connected 
topology Mutualcast has limited scalability.  

In this paper we present an algorithm to build multiple 
m-ary trees in which the upload capacities of the peers are 
fully exploited and proximity issues are explicitly 
considered. In our proximity-aware collaborative 
multicast scheme, the m-ary trees are rooted at the source 
and they always maintain a height of two levels from the 
root in order to avoid deep structures. The source splits 
the content into blocks and distributes every block 
separately by using a collection of m-ary trees. Every 
participating peer can receive one or more data blocks 
directly from the source. After this, every peer forwards 
the data block to its children in the corresponding m-ary
tree. All peers contribute with their full upload capacity 
by being a forwarding peer in at least one of the m-ary
trees. The goal of our scheme is to maximize the overall 
throughput, while minimizing end-to-end delay by 
considering peer proximity issues during a multicast 



session. To our knowledge our approach is the first work 
that combines upload capacities and proximity 
information using multiple m-ary trees rooted at the 
source in an efficient manner for delay sensitive one-to-
many content delivery. We compare the performance of 
our approach with Mutualcast [7], which is the best 
known scheme in terms of maximizing overall 
throughput. Our results show that our approach achieves 
an overall throughput similar to Mutualcast, while 
maintaining a smaller end-to-end delay. 

Our contributions in this paper are the following: 
1. A cooperative multicast scheme based on a collection 

of m-ary trees which achieves an overall throughput 
similar to fully connected schemes such as 
Mutualcast, while maintaining a reduced end-to-end 
delay.  

2. An algorithm to obtain a near optimal m-ary tree 
collection rooted at the source which exploits the full 
upload capacity of all participating peers in 
combination with their proximity information during 
a multicast session. Our m-ary tree collection is 
different to the tree collection used by Mutualcast 
because our scheme avoids that a single peer has to 
forward its received blocks from the source to all 
peers in the fully connected topology. Hence, the 
worst case delay encountered in Mutualcast does not 
apply to our scheme. 

The remainder of this paper is organized as follows. 
We discuss related work in Section 2. In Section 3 we 
declare our motivation and introduce our approach based 
on m-ary trees. Then, we explain how to build the 
collection of m-ary trees for a multicast session in Section 
4. In Section 5 we evaluate the performance of our 
approach. Section 6 concludes the paper. 

2. Related work  

Because IP multicast has not been widely deployed, 
several application-level multicast schemes have been 
proposed for different applications [1, 2, 3, 7, 8, 9, 10]. 
Some of them are based on a single multicast tree [2, 3, 8] 
without considering the collaboration among peers to 
maximize the throughput, while others split the data over 
multiple trees to increase the overall throughput. Both 
Coopnet [9] and SplitStream [1] split the content and 
distribute the striped data using separate multicast trees. 
Coopnet proposes a centralized scheme to manage the 
multiple multicast trees from different sources, while 
SplitStream uses a decentralized scheme to construct a 
forest of multicast trees from a single source. Both 
systems fail to utilize the full upload capacity of all the 
participating nodes in the multicast group, limiting the 
maximum overall throughput. In Balanced Multicasting 
[10], the authors propose a balancing of the maximum 
amount of upload capacity and achievable capacity in all 

nodes and paths of a network. Although Balanced 
Multicasting increases the throughput for grid 
applications, it provides limited scalability and 
adaptability. The authors in [2] have proposed to 
construct an overlay mesh to maximize the throughput 
during a concurrent data distribution. While some systems 
[4, 5, 11] are designed for large-scale applications other 
systems such as Overcast [3], Scattercast [12] or 
Mutualcast [7] are designed for small-scale overlay 
multicast approaches. All these approaches exploit the 
peers’ upload capacity only, while proximity issues 
(geographical position or connection quality) are ignored.  
In particular, Mutualcast achieves provably the maximum 
overall throughput during a multicast session. However, 
this approach does not address delivery delay or 

scalability when the multicast group size is increased. 
Recently, proximity has been addressed as an 

important issue in service and application distribution in 
P2P networks. Some approaches [13, 14, 15] combine 
transmission capacities and proximity issues.  In [13] 
Magellan is proposed, which is a multicast scheme based 
on cooperative applications. This approach reduces the 
total end-to-end hop distance in the distribution topology 
by using balanced trees, but without exploiting the full 
upload capacity of the participating peers. Also, the tree 
depth is increased as the group size increases. In [14] a 
distributed algorithm is presented to construct an overlay 
network based on the capacity of each peer and proximity 
information. The authors evaluate their proposed scheme 
using application layer multicast, however, they do not 
show the strategy to build the multicast tree. Zhu et al. 
propose in [15] to combine node capabilities and 
proximity relationship on load balancing schemes for 
DHT-based P2P systems. Our work has some similarity to 
[15] in the sense that we use node upload capacities and 
proximity relationship in combination with an m-ary tree 
for content delivery. However, several features make our 
approach different. First, our approach addresses 
multicast services and second, our approach uses a 
reduced collection of m-ary trees in order to maximize the 
overall throughput. Finally, our m-ary trees are built with 
a height identical to the Mutualcast scheme but combining 
proximity relationship with peer upload capacities. 

3. Motivation 

Our approach is inspired by [7], which presents a 
mechanism to obtain the maximum possible multicast 
throughput in P2P networks with constrained upload 
capacities. Peers can greatly benefit from the capacity of 
other requesting peers via collaboration, and hence the 
need to collaborate for multicast applications in large-
scale and heterogeneous environments. However, the 
participating peers are typically in different geographical 
locations, such as is shown in Figure 1. 



We extend the Mutualcast scheme in [7] by adding 
proximity information. In this work we use as proximity 
information the Round-Trip-Time (RTT) between two 
peers. In Mutualcast, the source assigns each block of 
content to a single peer for redelivery. Each peer 
redelivers its assigned block to the rest of the requesting 
peers. In this case, the distribution tree has two levels 
from the source for each data block. Thus, when all 
requesting peers have the same proximity among them, all 
blocks are delivered within the same time to all peers. We 
denote the number of peers participating in the multicast 
group as K. This case is shown in Figure 2 where the 
source S distributes the blocks X1 to X4 to K=4 requesting 
peers. The distance d (our proximity measure) among 
them is assumed to be identical. 

Mutualcast does not control the delivery time. This is 
because each peer forwards its block to all other peers 
without considering that these peers may be distant from 
it. On the contrary, our approach distributes a block 
through two or more peers, but they evaluate the peer 
proximity before forwarding their blocks to the rest of the 
peers. The basic idea is illustrated in Figure 3 using one 
source and K=5 requesting peers. The distance among 
peers is indicated by d, while Xi indicates the block 
management in each peer. Peers 1 and 2 have a distance 
of d from the source. Peers 3 and 4 have a distance of 2d
from the source. Peer 5 is 3d away. The worst case 
distance occurs when block X5 from the source is 
delivered through peer 5 to peer 4. In Figure 3a, we can 
see that block X5 travels a maximum distance of 8d when 
the Mutualcast approach is used. On the other hand, we 
can see in Figure 3b that when our approach is used block 
X5 encounters at most a distance of 5d during delivery 
from the source to all the requesting peers. How to build 

the collection of m-ary trees that achieves the previously 
described improved worst case distance is explained in 
the following section. 

4. System Architecture 

In our system, we assume that all participating peers 
collaborate by contributing their upload capacity. We 
assume asymmetric network access speeds (e.g. DSL) and 
hence the upload capacity is considered to be the limiting 
resource. Each peer can contribute to the data distribution 

in one or more m-ary trees. Similar to Mutualcast, the 
source splits the content into blocks. After this, our 
system builds a collection of m-ary trees over which the 

source delivers the content blocks. Every peer receives 
one or more data blocks from the source. Initially, peers 
with large upload capacity are used as forwarding peers, 
while peers with small upload capacity are placed as 
leaves in most multicast trees within the tree collection. 
When the remaining upload capacity of the best peers is 
small, they become leaves in the remaining trees.

We assume that the source knows the IP address and 
the upload capacity of all peers. Additionally, the distance 
among peers is assumed to be known. In this case our 
distance measure is the round-trip time (RTT). For each 

participating peer jp the upload capacity
jC is stored in list 
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Figure 1. Peers are located in several 
geographical locations during a multicast 
session  
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Figure 2. Mutualcast with same distance d
(e.g., RTT) among peers 
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Figure 3. Illustration of the worst case 
distance for Mutualcast and our approach 
when block X5 from the source is delivered 



For each peer jp , every peer ip  calculates the normalized 
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respectively. These lists will be used by the tree-
construction algorithm to select peers. Peers with high 

n
jC and low )( jD

n
i

 have a high preference to be selected. 

We use a preliminary delivery rate ( PDR ) to 
approximately determine how many times a peer can be 
used as a forwarding peer in different distribution trees. 
The PDR is computed as 
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with mK > . K is the number of requesting peers in the 

multicast group and m is the number of peers directly 

connected to the root of an m-ary tree. The denominator 
of (3) represents the number of leaf peers being served by 
the forwarding peers in the set of distribution trees. In 
every tree there are )( mK−  leaf nodes. Hence, the number 

of leaf peers in a set of m-ary trees, where the number of 
trees is the same as the number of requesting peers, is 
equal to )( mKK − .

4.1. Building a collection of m-ary trees 

Our approach is based on a heuristic construction of m-
ary trees where all the participating peers collaborate with 
their upload capacity and their proximity information. The 
initial number of distribution trees is identical to the 
number of requesting peers. To avoid deep structures we 
fix the height H  of the m-ary trees to two levels. Thus, 
the maximum number of requesting peers in each m-ary

tree is )1( +mm . Assuming that the number of requesting 

peers in the multicast group K  is known, the source 
determines the degree m  to be used as 

−+=
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After this, the source selects m  children as the 

forwarding peers for each distribution tree. The algorithm 
to select forwarding peers works as follows. The source 

calculates )( jD
n
i

 and n
jC  in (1) and (2) for each peer and 

the preliminary delivery rate PDR in (3). The source 
selects the m  peers with the largest normalized upload 

capacities 
n
jC  to be the forwarding peers in the first m-

ary tree. The )( mK− leaf peers are assigned to the 

forwarding peers based on the proximity information. At 
most m leaf peers can be assigned to one forwarding peer. 

If the number of leaf peers is smaller than 
2

m  we 

additionally balance the assignment of leaf peers to avoid 
exhausting one peer in one tree. For every leaf node, he 
source then subtracts one time the PDR from the upload 
capacity of the forwarding peers. Selected peers are used 
as forwarding peers in several distribution trees until their 
remaining upload capacity is no longer sufficient for 
building the next tree. The source then selects the next 

peer with the largest 
n
jC  from nC  which has not yet been 

used. When the next best peer has an upload capacity less 
than its number of children times PDR, the source 
calculates a new PDR which is obtained by dividing the 
peer’s upload capacity between the number of leaf peers 
that it must feed. After this, the source uses this peer and 
exhausts the peer’s upload capacity. Finally, when all 
peers have been used, but the m-ary tree collection is still 
not completed, the source reconsiders the peers that have 
still not been exhausted but this time using the most 
recent PDR value. In every step, when there are more 
than m peers with the same upload capacity, the source 
begins by selecting the m closest peers to it. 

Out of the m closest peers, each peer distributes the 
received block to those who still have not received the 
same block from another forwarding peer in the 
distribution tree. The selection of these children is based 
in their proximity in order to avoid adding long delay. 
This helps us to reduce the end-to-end delay. The 
collection is completed when the number of obtained m-
ary trees is equal to the number of peers K . After this, 
we detect and delete repeated m-ary trees in order to 
obtain a reduced m-ary tree collection. A reduced m-ary
tree collection allows us to reduce the number of blocks to 
be sent by the source and to increase their size. Once the 
reduced m-ary tree collection is obtained, linear 
programming (LP) can be used to compute the optimum 
block sizes that maximize the throughput f of the 
distribution tree collection. As explained later in this 
section, the set of multicast trees with their node upload 
capacities are translated to decision variables and 
constraints of the linear program. The delivery latency is 
the end-to-end delay from the source to the receivers. The 

(1)



delay minimization has already been taken care of during 
tree construction.  

We illustrate our algorithm for a multicast group with 
seven requesting peers K and a sender. The upload 
capacity of the requesting peers and their distance from 
the source is given in Table 1. The distances (RTT) 
among the requesting peers and to the source are obtained 
from the network coordinates model in [16] with data 
acquired from CAIDA’s Skitter project [17]. Initially, 
based on the number of requesting peers K, seven m-ary
trees are created to distribute the seven blocks X1 to X7.
Using equations (1) and (2), each peer and the source 
normalize the upload capacity and distance for every 
participating peer. Due to the limit of space, we show the 
normalized upload capacities and distances for the source 
only, and skip the details for the rest of the peers. The 
PDR and m values for the source are calculated from (3) 
and (4) to be 71.4 kbps and 3, respectively. Since our 
intention is to build m-ary trees which are balanced as 
much as possible, we then obtain in our example 
distribution trees with one forwarding peer feeding two 
leaf peers and two forwarding peers feeding one leaf peer 
each. In Figure 4, p2, p4 and p6 are used as forwarding 
peers in the first m-ary tree to distribute block X1. This is 
because peers p2, p4 and p6 have the largest upload 
capacities in the multicast group. Although peers p6 and 
p3 have the same upload capacity, p6 is preferred because 

it has a smaller normalized distance )( jD
n

i
 to the source 

than peer p3. The rest of the nodes receive block X1 from 
the closest forwarding peer. Thus, peer p2 selects peers p3

and p5 as its two closest leaf peers to forward block X1,
while p6 and p4 sends block X1 to peers p7 and p1,
respectively. The remaining upload capacity of p2, p4, and 
p6, becomes 357.2 kbps, 328.6 kbps and 218.6 kbps, 
respectively. Comparing the remaining peer upload 
capacity to the PDR, the source determines that peers p2,
p4 and p6 can still be used as forwarding peers in three 
additional distribution trees. In the forth distribution tree, 
the capacity of p2 is exhausted, while the available 
capacity of p4 and p6 is reduced to 43 kbps and 14.4 kbps 
respectively, which is smaller than PDR. Therefore, p4

and p6 cannot be used in another distribution tree for the 
time being. Now, the source determines that peers p3, p5

and p7 can be used as the next forwarding peers in the 
fifth and sixth distribution trees. Afterwards, the 
remaining upload capacity of peers p3, p5 and p7 becomes 
14.4 kbps, 57.2 kbps and 57.2 kbps, respectively. Because 
the remaining upload capacity in these peers is smaller 
than PDR, they cannot be used in another distribution tree 
for now.  The source then selects the next peer not yet 
used, which is peer p1. However, this peer has a capacity 
less than 2*PDR and thus in order to use this peer as 
forwarding peer, the source must adjust the PDR to half 
the capacity of the peer. After this, the source exhausts the 
capacity of the peer. Once all peers have been used as 
forwarding peers at least in one distribution tree, but the 
number of obtained m-ary trees is still different from the 
number of nodes, we need to exhaust the remaining 
upload capacity of peers p5 and p7 using the new PDR.
The source then selects p1, p5 and p7 as forwarding peers 
in this last distribution tree. Each forwarding peer sends 
their received block(s) to their closest leaf peers. Our 
obtained m-ary tree collection is shown in Figure 4. From 
Figure 4, we can see that the source uses the same m-ary
tree structure for the delivery of blocks X1, X2 and X3. The 
same situation holds for blocks X5 and X6. Here, we can 
eliminate duplicate trees in order to obtain a reduced m-
ary tree collection, and the source now can distribute its 
content using four m-ary trees only. Each distribution tree 
delivers a specific block to all requesting peers. 

The maximum throughput of our tree collection and 
the size of the blocks are determined using linear 
programming. Figure 5 shows the reduced m-ary tree 
collection from Figure 4 translated to a linear program. 
The source splits the content into five blocks. The blocks 
X1 to X4 are distributed from the source to the requesting 
peers through four m-ary trees, while the block X5 is 
distributed from the source to each requesting peer 
directly. We assume in this example that the source has an 
upload capacity of 2000 kbps. The first constraint 3X1 +

3X2 + 3X3+ 3X4 + 7X5 ≤ 2000 kbps considers the upload 
capacity of the source, which has to deliver three blocks 

Table 1.  Upload capacity and distance from the 
source for every requesting peer 

jp jC

(kbps) 

)( jDsource

(ms)

n

jC )( jD
n
source

1 100 1495 0.2 0.633 

2 500 2361 1.0 1.0 

3 300 1716 0.6 0.726 

4 400 1731 0.8 0.733 

5 200 913 0.4 0.386 

6 300 1200 0.6 0.508 

7 200 390 0.4 0.165 
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Figure 4. Preliminary m-ary tree collection. 
The data within parenthesis indicates the 
blocks which are reassigned for the 
reduced m-ary trees collection 



to every m-ary tree and additionally sends the block X5 to 
every peer directly. The rest of the constraints considers 
the upload capacity of the requesting peers p1, p2, p3, p4,
p5, p6 and p7. The solution gives a maximum throughput 
of 571.4 kbps, while the size of the blocks in kbits is X1 =
200, X2 = 100, X3 = 150, X4 = 50 and X5 = 71.42, 
respectively. 

For this specific example, our solution reaches the 
same maximum throughput as Mutualcast. However, this 
is not always the case since we use heuristics to find a 
near-optimal solution. Calculating the optimal set of 
multicast trees on the fly is a hard task, because an exact 
solution requires to evaluate all possible combinations for 

all co-existing sessions in the overlay network and the 
number of combinations and constraints grows 
exponentially with the number of participating peers.

4.2. Throughput comparison with Mutualcast 

The Mutualcast approach in [7] uses three distribution 
routes. These are (1) through the content-requesting peer 
nodes; (2) through the helper nodes and (3) directly from 
the source. The route 3 is chosen only when the source 
still has upload capacity after exhausting routes 1 and 2. 

Assuming that the source has an upload capacity SC ,

the N requesting peers have an average capacity 

NC and M helper peers have an average capacity
MC , the 

maximum throughput f  is obtained as [7] 
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Because our collection of m-ary trees is based on 
heuristics an exact solution is not always possible. 
However, we found through extensive simulations that in 
cases when balanced m-ary trees are used and the source 

capacity is abundant our approach can achieve an overall 
throughput identical to the maximum throughput given by 
Mutualcast.  

5. Performance evaluation 

We evaluate our approach in terms of overall 
throughput and delivery latency. We compute the 
maximum overall throughput using linear programming 
as explained in Section 4.1. The maximum required time 
so that all the nodes receive all data blocks is obtained 
too.  The results obtained with our approach are compared 
with the results when using the Mutualcast approach.  

We simulate different cases for multicast groups with 
6, 7 and 10 requesting peers.  In every case, we vary the 
source capacity from 1000 to 6000 kbps, while the upload 
capacity of each requesting peer is fixed. Heterogeneous 
upload capacities and proximity relationships are used for 
every peer in the different cases. The upload capacity of 
the requesting peers p1, p2, p3, p4, p5, p6, p7, p8, p9 and p10

in kbps is 100, 500, 300, 400, 200, 300, 200, 400, 300 and 
100, respectively. The round trip times between peers and 
the source are obtained from [16] and [17]. A comparison 
between m-ary trees rooted at the source and Mutualcast 
in terms of overall throughput for theses cases is shown in 
Table 2.  The results show that for a heterogeneous 
multicast group, our proposed m-ary trees based approach 
achieves almost the same overall throughput as the 
Mutualcast approach. For both approaches we consider 
that the source has enough capacity and it can distribute 
extra content blocks directly to all requesting peers. We 
can see that both approaches lead to identical throughput 
if the source capacity has enough upload capacity. 

We compare our approach and the Mutualcast 
approach in terms of delivery latency. Delivery latencies 
achieved by our approach and Mutualcast are compared in 
Figures 6 and 7. Figure 6 shows the maximum delivery 
delay by our approach and the Mutualcast approach for 
the delivery of all content blocks to all requesting peers in 
the multicast group. This delay is determined by the 
slowest distribution tree. The results show that when our 

Table 2. Overall Throughput Comparison  
Mutualcast Throughput 

(kbps) 
Reduced    m-ary trees 

Throughput (kbps) 

Number of requesting 
peers 

Number of requesting 
peers 

Source 
Capacit

y
(kbps) 6 7 10 6 7 10 

1000 467 428 380 467 333 333 

2000 633 571 480 633 571 480 

3000 800 714 580 800 714 580 

4000 967 857 680 967 857 680 

5000 1133 1000 780 1133 1000 780 

6000 1300 1142 880 1300 1142 880 

Maximize 
   f =  X1 + X2 + X3 + X4 + X5

subject to 

c1: 3X1+3X2+3X3+3X4+7X5 <= 2000 
c2:  2X3 <= 100.0 
c3: 2X1 +2X3 <= 500.0 

c4: 2X2  <= 300.0 
c5: 2X1 <= 400.0 
c6: 2X4 <= 200.0 

c7: 2X2 <= 300 
c8: 2X4 <= 200 

Figure 5. A reduced m-ary tree collection is 
translated into a linear program for 
throughput maximization 



approach is used, the maximum end-to-end delay is 
smaller in comparison to Mutualcast. We attribute this 
improvement to the fact that our algorithm based on m-
ary trees avoids deep structures and incorporates 
proximity information into the overlay topology. Figure 7 
shows the average delivery time for all blocks for all 
peers. This delay is the sum of the maximum end-to-end 
delay in each distribution tree divided by the number of 
distribution trees. We can see that our approach based on 
m-ary tree rooted at the source shows a better average 
end-to-end delay than the Mutualcast approach.  

To compare the simulated RTT values from the 
network coordinates model with real RTT values, we 
measure the RTT between different nodes in the Internet 
(e.g., Universities and Internet Providers) using 
SmokePing [18]. We evaluate our approach using nodes 
in the USA (San Diego, Berkeley, UC Davis and Boston) 
and Europe (Amsterdam, Zurich, Paris and Estonia) and 
assume upload capacities of 100, 500, 300, 1000, 400, 
200, 300 and 200 kbps for the nodes respectively such as 
our evaluation based on the network coordinates model. 
We assume that the source is in Boston, while the 
requesting peers are allocated in the rest of the sites. The 
source capacity is varying from 1000 to 6000 kbps. 
Overall throughput and maximum delay for our approach 
and Mutualcast are compared in Figures 8 and 9, 
respectively.  For our approach based on m-ary trees, we 
evaluate two cases. Case 1 is based on RTT only, while 
Case 2 considers RTT and geographical location. Here, 
the geographical location is used first to avoid that the 

source sends the same block iX  to two peers with similar 

RTT, that are close to each other when a third peer with 
similar upload capacity presents a better location for the 
rest of the requesting peers, and second to limit the 
connection of the children peers within a local region in 
order to reduce the end-to-end delay. 

Figures 8 and 9 show that when there are six 
requesting peers (3 peers in USA and 3 peers in Europe) 
in the multicast group and the source has an upload 
capacity of 1000 kbps, the overall throughput using Case 
1 and 2 is same as the Mutualcast throughput, while the 
maximum delay is reduced by 53% with respect to 
Mutualcast. Here, Case 1 and Case 2 lead to the same 
overall throughput and delay by using both an identical 
set of balanced and complete m-ary trees. When there are 
seven requesting peers in the group, Case 1 and Case 2 
use different sets of m-ary trees. Case 1 achieves 98.3% 
of the Mutualcast throughput, while the overall 
throughput using Case 2 is 91.66% of the Mutualcast 
throughput.  However, in both cases the maximum end-to-
end delay is reduced by 26.5% and 46% compared to 
Mutualcast, respectively. Latencies shown in Figure 9 are 
smaller than latencies shown in Figure 6, because these 
are obtained from sites located in the Internet core.   

Finally, we evaluate the delivery rate achieved by each 
distribution tree in our approach and the Mutualcast 
scheme during a multicast session. For this comparison 
we specifically consider the case of six peers when the 
source capacity is 1000 kbps.  Here, both evaluated 
approaches achieve the same overall throughput. We 

assume that each block iX  is delivered by a distribution 

tree. The results are shown in Figure 10. For both 
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approaches, the blocks 1X  to 5X  within the square 

represent the blocks delivered by each distribution tree, 

while the block 7X is delivered by the source to each 

requesting peer directly. While in our approach the source 
splits the total content in five blocks, Mutualcast requires 

to use an extra block 6X . This is because in Mutualcast 

each block iX  is assigned to one single node for 

redelivery. The results show that both models use 
different delivery rates in each distribution tree to 
maximize the overall throughput. Most distribution trees 
in our approach allow a bigger delivery rate than 
Mutualcast during a multicast session. This is because our 
approach uses fewer blocks but with a bigger size by 
distributing via five distribution m-ary trees only, while 
Mutualcast uses six distribution trees.  

6. Conclusion 

Finding a good tree topology that maximizes the 
overall throughput and limits delivery delay is critical in 
delay sensitive multicast applications. We have proposed 
and evaluated a content distribution approach based on m-
ary trees.  We compare our proposed approach with the 
Mutualcast scheme which achieves the maximum possible 
throughput, but potentially leads to large delivery delays. 
Our heuristic tree construction approach generates a 
collection of m-ary trees rooted at the source by 
combining the full upload capacities of all participating 
nodes and their proximity relationship. Our results 
demonstrate that our proposed multicast scheme provides 
a good balance between reduced end-to-end delay and 
maximum overall throughput while maintaining a scalable 
structure by avoiding a fully-connected topology. 
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