
Proximity-Aware Collaborative Multicast for Small P2P Communities

Francisco de Asís López-Fuentes*, Eckehard Steinbach

Technische Universität München

Institute of Communication Networks, Media Technology Group
80333 München, Germany

{fcoasis, Eckehard.Steinbach}@tum.de

Abstract

In this paper we describe a novel solution for delay
sensitive one-to-many content distribution in P2P
networks based on cooperative m-ary trees. Our scheme
maximizes the overall throughput while minimizing end-
to-end delay by exploiting the full upload capacities of the
participating peers and their proximity relationship. Our
delivery scheme is based on cooperation between the
source, the content-requesting peers and the helper peers.
In our solution, the source splits the content into several
blocks and feeds them into multiple m-ary trees rooted at
the source. Every peer contributes its upload capacity by
being a forwarding peer in at least one of the m-ary trees.
Our performance evaluation shows that our proposal
achieves similar throughput as the best known solution in
the literature (Mutualcast) while at the same time
reducing content delivery delay.

1. Introduction

Many delay sensitive applications such as TV over IP
or multi-party video conferencing require content
distribution from one source to multiple receiver nodes.
IP Multicast has been proposed as an efficient solution for
one-to-many content dissemination. However, IP
Multicast is not widely available in today’s Internet. The
construction of multicast trees at the application layer has
been proposed as an alternative and has received
considerable attention in the literature [1, 2, 3].
Application-level approaches provide more flexibility and
are easier to deploy compared to network-based multicast
support. In conventional tree-based distribution, the
interior nodes redistribute the content, while the leaf peers
receive the content only. Although multicast-tree based

*

This work has been supported by DAAD-CONACYT grant 68858

I-4244-0910-1/07/$20.00 © 2007

content distribution has shown to be highly scalable [3, 4,
5], it is not maximally efficient in collaborative
environments, because the upload capacity of the leaf
peers is not used during a multicast session. In order to
achieve maximum throughput we need to exploit the full
upload capacity of all participating peers. A solution is the
construction of multiple concurrent trees where peers
contribute with their upload capacity in at least one tree.
The determination of the number of required trees to
maximize the overall throughput is an open problem [6].

A scheme that fully exploits the upload capacity of all
participating peers is Mutualcast [7]. This scheme has
been shown to provably maximize the overall throughput
during a multicast session. Mutualcast engages as many
peers as possible and uses their full upload capacities in
order to maximize the overall throughput. Although
Mutualcast achieves the maximum possible multicast
throughput in P2P networks with constrained upload
capacities, it has some limitations for delay sensitive
applications, because it only considers the peer upload
capacity ignoring their proximity relationship.
Additionally, due to its fixed and fully connected
topology Mutualcast has limited scalability.

In this paper we present an algorithm to build multiple
m-ary trees in which the upload capacities of the peers are
fully exploited and proximity issues are explicitly
considered. In our proximity-aware collaborative
multicast scheme, the m-ary trees are rooted at the source
and they always maintain a height of two levels from the
root in order to avoid deep structures. The source splits
the content into blocks and distributes every block
separately by using a collection of m-ary trees. Every
participating peer can receive one or more data blocks
directly from the source. After this, every peer forwards
the data block to its children in the corresponding m-ary
tree. All peers contribute with their full upload capacity
by being a forwarding peer in at least one of the m-ary
trees. The goal of our scheme is to maximize the overall
throughput, while minimizing end-to-end delay by
considering peer proximity issues during a multicast

session. To our knowledge our approach is the first work
that combines upload capacities and proximity
information using multiple m-ary trees rooted at the
source in an efficient manner for delay sensitive one-to-
many content delivery. We compare the performance of
our approach with Mutualcast [7], which is the best
known scheme in terms of maximizing overall
throughput. Our results show that our approach achieves
an overall throughput similar to Mutualcast, while
maintaining a smaller end-to-end delay.

Our contributions in this paper are the following:
1. A cooperative multicast scheme based on a collection

of m-ary trees which achieves an overall throughput
similar to fully connected schemes such as
Mutualcast, while maintaining a reduced end-to-end
delay.

2. An algorithm to obtain a near optimal m-ary tree
collection rooted at the source which exploits the full
upload capacity of all participating peers in
combination with their proximity information during
a multicast session. Our m-ary tree collection is
different to the tree collection used by Mutualcast
because our scheme avoids that a single peer has to
forward its received blocks from the source to all
peers in the fully connected topology. Hence, the
worst case delay encountered in Mutualcast does not
apply to our scheme.

The remainder of this paper is organized as follows.
We discuss related work in Section 2. In Section 3 we
declare our motivation and introduce our approach based
on m-ary trees. Then, we explain how to build the
collection of m-ary trees for a multicast session in Section
4. In Section 5 we evaluate the performance of our
approach. Section 6 concludes the paper.

2. Related work

Because IP multicast has not been widely deployed,
several application-level multicast schemes have been
proposed for different applications [1, 2, 3, 7, 8, 9, 10].
Some of them are based on a single multicast tree [2, 3, 8]
without considering the collaboration among peers to
maximize the throughput, while others split the data over
multiple trees to increase the overall throughput. Both
Coopnet [9] and SplitStream [1] split the content and
distribute the striped data using separate multicast trees.
Coopnet proposes a centralized scheme to manage the
multiple multicast trees from different sources, while
SplitStream uses a decentralized scheme to construct a
forest of multicast trees from a single source. Both
systems fail to utilize the full upload capacity of all the
participating nodes in the multicast group, limiting the
maximum overall throughput. In Balanced Multicasting
[10], the authors propose a balancing of the maximum
amount of upload capacity and achievable capacity in all

nodes and paths of a network. Although Balanced
Multicasting increases the throughput for grid
applications, it provides limited scalability and
adaptability. The authors in [2] have proposed to
construct an overlay mesh to maximize the throughput
during a concurrent data distribution. While some systems
[4, 5, 11] are designed for large-scale applications other
systems such as Overcast [3], Scattercast [12] or
Mutualcast [7] are designed for small-scale overlay
multicast approaches. All these approaches exploit the
peers’ upload capacity only, while proximity issues
(geographical position or connection quality) are ignored.
In particular, Mutualcast achieves provably the maximum
overall throughput during a multicast session. However,
this approach does not address delivery delay or

scalability when the multicast group size is increased.
Recently, proximity has been addressed as an

important issue in service and application distribution in
P2P networks. Some approaches [13, 14, 15] combine
transmission capacities and proximity issues. In [13]
Magellan is proposed, which is a multicast scheme based
on cooperative applications. This approach reduces the
total end-to-end hop distance in the distribution topology
by using balanced trees, but without exploiting the full
upload capacity of the participating peers. Also, the tree
depth is increased as the group size increases. In [14] a
distributed algorithm is presented to construct an overlay
network based on the capacity of each peer and proximity
information. The authors evaluate their proposed scheme
using application layer multicast, however, they do not
show the strategy to build the multicast tree. Zhu et al.
propose in [15] to combine node capabilities and
proximity relationship on load balancing schemes for
DHT-based P2P systems. Our work has some similarity to
[15] in the sense that we use node upload capacities and
proximity relationship in combination with an m-ary tree
for content delivery. However, several features make our
approach different. First, our approach addresses
multicast services and second, our approach uses a
reduced collection of m-ary trees in order to maximize the
overall throughput. Finally, our m-ary trees are built with
a height identical to the Mutualcast scheme but combining
proximity relationship with peer upload capacities.

3. Motivation

Our approach is inspired by [7], which presents a
mechanism to obtain the maximum possible multicast
throughput in P2P networks with constrained upload
capacities. Peers can greatly benefit from the capacity of
other requesting peers via collaboration, and hence the
need to collaborate for multicast applications in large-
scale and heterogeneous environments. However, the
participating peers are typically in different geographical
locations, such as is shown in Figure 1.

We extend the Mutualcast scheme in [7] by adding
proximity information. In this work we use as proximity
information the Round-Trip-Time (RTT) between two
peers. In Mutualcast, the source assigns each block of
content to a single peer for redelivery. Each peer
redelivers its assigned block to the rest of the requesting
peers. In this case, the distribution tree has two levels
from the source for each data block. Thus, when all
requesting peers have the same proximity among them, all
blocks are delivered within the same time to all peers. We
denote the number of peers participating in the multicast
group as K. This case is shown in Figure 2 where the
source S distributes the blocks X1 to X4 to K=4 requesting
peers. The distance d (our proximity measure) among
them is assumed to be identical.

Mutualcast does not control the delivery time. This is
because each peer forwards its block to all other peers
without considering that these peers may be distant from
it. On the contrary, our approach distributes a block
through two or more peers, but they evaluate the peer
proximity before forwarding their blocks to the rest of the
peers. The basic idea is illustrated in Figure 3 using one
source and K=5 requesting peers. The distance among
peers is indicated by d, while Xi indicates the block
management in each peer. Peers 1 and 2 have a distance
of d from the source. Peers 3 and 4 have a distance of 2d
from the source. Peer 5 is 3d away. The worst case
distance occurs when block X5 from the source is
delivered through peer 5 to peer 4. In Figure 3a, we can
see that block X5 travels a maximum distance of 8d when
the Mutualcast approach is used. On the other hand, we
can see in Figure 3b that when our approach is used block
X5 encounters at most a distance of 5d during delivery
from the source to all the requesting peers. How to build

the collection of m-ary trees that achieves the previously
described improved worst case distance is explained in
the following section.

4. System Architecture

In our system, we assume that all participating peers
collaborate by contributing their upload capacity. We
assume asymmetric network access speeds (e.g. DSL) and
hence the upload capacity is considered to be the limiting
resource. Each peer can contribute to the data distribution

in one or more m-ary trees. Similar to Mutualcast, the
source splits the content into blocks. After this, our
system builds a collection of m-ary trees over which the

source delivers the content blocks. Every peer receives
one or more data blocks from the source. Initially, peers
with large upload capacity are used as forwarding peers,
while peers with small upload capacity are placed as
leaves in most multicast trees within the tree collection.
When the remaining upload capacity of the best peers is
small, they become leaves in the remaining trees.

We assume that the source knows the IP address and
the upload capacity of all peers. Additionally, the distance
among peers is assumed to be known. In this case our
distance measure is the round-trip time (RTT). For each

participating peer jp the upload capacity
jC is stored in list

},..,,..,{ 1 Kj CCCC = while the distance)(jDi
 between

peers ip and jp is stored in list)}(),...,(),..,1({ KDjDDD iiii = .

1

6

5

S

4

3

2

7

Figure 1. Peers are located in several
geographical locations during a multicast
session

d d

d

d d
dd

d

d

d

1 2

3 4

S

X1 X2

X3 X
4

d d

d

d d
dd

d

d

d

1 2

3 4

SS

X1 X2

X3 X
4

Figure 2. Mutualcast with same distance d
(e.g., RTT) among peers

d d d
d

d

X5

x5

X1

X3

X2

X4

4 2 1 3 5S

x5

x5

d d d
d

d

X5

x5

X1

X3

X2

X4

4 2 1 3 5SS

x5

x5

 a) Mutualcast approach

d
d d

d
d

X5 X5

24 1 3 5

X5

X1, X4X2, X3

X3, X2

S

X5

X5

d
d d

d
d

X5 X5

24 1 3 5

X5

X1, X4X2, X3

X3, X2

S

X5

X5

 b) m-ary trees rooted at the source

Figure 3. Illustration of the worst case
distance for Mutualcast and our approach
when block X5 from the source is delivered

For each peer jp , every peer ip calculates the normalized

distance)(jD
n
i

as

)}({max

)(
)(

)(

jD

jD
jD

i
DjD

in
i

ii ∈

=

where 1)(0 ≤< jD
n
i

.

The normalized upload capacity n
jC for every

peer jp is computed as

}{max i

CC

jn
j

C

C
C

j ∈

= (2)

where 10 ≤< n
jC .

The normalized distance values)(jD
n
i

and the

normalized upload capacity values n
jC are stored in lists

)}(),..,(),..,1({ KDjDDD n

i

n

i

n

i

n

i = and },..,,..,{ 1
n
K

n
i

nn
CCCC = ,

respectively. These lists will be used by the tree-
construction algorithm to select peers. Peers with high

n
jC and low)(jD

n
i

 have a high preference to be selected.

We use a preliminary delivery rate (PDR) to
approximately determine how many times a peer can be
used as a forwarding peer in different distribution trees.
The PDR is computed as

)(

1

mKK

C

PDR

K

j
j

−
= = (3)

with mK > . K is the number of requesting peers in the

multicast group and m is the number of peers directly

connected to the root of an m-ary tree. The denominator
of (3) represents the number of leaf peers being served by
the forwarding peers in the set of distribution trees. In
every tree there are)(mK− leaf nodes. Hence, the number

of leaf peers in a set of m-ary trees, where the number of
trees is the same as the number of requesting peers, is
equal to)(mKK − .

4.1. Building a collection of m-ary trees

Our approach is based on a heuristic construction of m-
ary trees where all the participating peers collaborate with
their upload capacity and their proximity information. The
initial number of distribution trees is identical to the
number of requesting peers. To avoid deep structures we
fix the height H of the m-ary trees to two levels. Thus,
the maximum number of requesting peers in each m-ary

tree is)1(+mm . Assuming that the number of requesting

peers in the multicast group K is known, the source
determines the degree m to be used as

−+=
2

1
14

2

1
Km (4)

After this, the source selects m children as the

forwarding peers for each distribution tree. The algorithm
to select forwarding peers works as follows. The source

calculates)(jD
n
i

 and n
jC in (1) and (2) for each peer and

the preliminary delivery rate PDR in (3). The source
selects the m peers with the largest normalized upload

capacities
n
jC to be the forwarding peers in the first m-

ary tree. The)(mK− leaf peers are assigned to the

forwarding peers based on the proximity information. At
most m leaf peers can be assigned to one forwarding peer.

If the number of leaf peers is smaller than
2

m we

additionally balance the assignment of leaf peers to avoid
exhausting one peer in one tree. For every leaf node, he
source then subtracts one time the PDR from the upload
capacity of the forwarding peers. Selected peers are used
as forwarding peers in several distribution trees until their
remaining upload capacity is no longer sufficient for
building the next tree. The source then selects the next

peer with the largest
n
jC from nC which has not yet been

used. When the next best peer has an upload capacity less
than its number of children times PDR, the source
calculates a new PDR which is obtained by dividing the
peer’s upload capacity between the number of leaf peers
that it must feed. After this, the source uses this peer and
exhausts the peer’s upload capacity. Finally, when all
peers have been used, but the m-ary tree collection is still
not completed, the source reconsiders the peers that have
still not been exhausted but this time using the most
recent PDR value. In every step, when there are more
than m peers with the same upload capacity, the source
begins by selecting the m closest peers to it.

Out of the m closest peers, each peer distributes the
received block to those who still have not received the
same block from another forwarding peer in the
distribution tree. The selection of these children is based
in their proximity in order to avoid adding long delay.
This helps us to reduce the end-to-end delay. The
collection is completed when the number of obtained m-
ary trees is equal to the number of peers K . After this,
we detect and delete repeated m-ary trees in order to
obtain a reduced m-ary tree collection. A reduced m-ary
tree collection allows us to reduce the number of blocks to
be sent by the source and to increase their size. Once the
reduced m-ary tree collection is obtained, linear
programming (LP) can be used to compute the optimum
block sizes that maximize the throughput f of the
distribution tree collection. As explained later in this
section, the set of multicast trees with their node upload
capacities are translated to decision variables and
constraints of the linear program. The delivery latency is
the end-to-end delay from the source to the receivers. The

(1)

delay minimization has already been taken care of during
tree construction.

We illustrate our algorithm for a multicast group with
seven requesting peers K and a sender. The upload
capacity of the requesting peers and their distance from
the source is given in Table 1. The distances (RTT)
among the requesting peers and to the source are obtained
from the network coordinates model in [16] with data
acquired from CAIDA’s Skitter project [17]. Initially,
based on the number of requesting peers K, seven m-ary
trees are created to distribute the seven blocks X1 to X7.
Using equations (1) and (2), each peer and the source
normalize the upload capacity and distance for every
participating peer. Due to the limit of space, we show the
normalized upload capacities and distances for the source
only, and skip the details for the rest of the peers. The
PDR and m values for the source are calculated from (3)
and (4) to be 71.4 kbps and 3, respectively. Since our
intention is to build m-ary trees which are balanced as
much as possible, we then obtain in our example
distribution trees with one forwarding peer feeding two
leaf peers and two forwarding peers feeding one leaf peer
each. In Figure 4, p2, p4 and p6 are used as forwarding
peers in the first m-ary tree to distribute block X1. This is
because peers p2, p4 and p6 have the largest upload
capacities in the multicast group. Although peers p6 and
p3 have the same upload capacity, p6 is preferred because

it has a smaller normalized distance)(jD
n

i
 to the source

than peer p3. The rest of the nodes receive block X1 from
the closest forwarding peer. Thus, peer p2 selects peers p3

and p5 as its two closest leaf peers to forward block X1,
while p6 and p4 sends block X1 to peers p7 and p1,
respectively. The remaining upload capacity of p2, p4, and
p6, becomes 357.2 kbps, 328.6 kbps and 218.6 kbps,
respectively. Comparing the remaining peer upload
capacity to the PDR, the source determines that peers p2,
p4 and p6 can still be used as forwarding peers in three
additional distribution trees. In the forth distribution tree,
the capacity of p2 is exhausted, while the available
capacity of p4 and p6 is reduced to 43 kbps and 14.4 kbps
respectively, which is smaller than PDR. Therefore, p4

and p6 cannot be used in another distribution tree for the
time being. Now, the source determines that peers p3, p5

and p7 can be used as the next forwarding peers in the
fifth and sixth distribution trees. Afterwards, the
remaining upload capacity of peers p3, p5 and p7 becomes
14.4 kbps, 57.2 kbps and 57.2 kbps, respectively. Because
the remaining upload capacity in these peers is smaller
than PDR, they cannot be used in another distribution tree
for now. The source then selects the next peer not yet
used, which is peer p1. However, this peer has a capacity
less than 2*PDR and thus in order to use this peer as
forwarding peer, the source must adjust the PDR to half
the capacity of the peer. After this, the source exhausts the
capacity of the peer. Once all peers have been used as
forwarding peers at least in one distribution tree, but the
number of obtained m-ary trees is still different from the
number of nodes, we need to exhaust the remaining
upload capacity of peers p5 and p7 using the new PDR.
The source then selects p1, p5 and p7 as forwarding peers
in this last distribution tree. Each forwarding peer sends
their received block(s) to their closest leaf peers. Our
obtained m-ary tree collection is shown in Figure 4. From
Figure 4, we can see that the source uses the same m-ary
tree structure for the delivery of blocks X1, X2 and X3. The
same situation holds for blocks X5 and X6. Here, we can
eliminate duplicate trees in order to obtain a reduced m-
ary tree collection, and the source now can distribute its
content using four m-ary trees only. Each distribution tree
delivers a specific block to all requesting peers.

The maximum throughput of our tree collection and
the size of the blocks are determined using linear
programming. Figure 5 shows the reduced m-ary tree
collection from Figure 4 translated to a linear program.
The source splits the content into five blocks. The blocks
X1 to X4 are distributed from the source to the requesting
peers through four m-ary trees, while the block X5 is
distributed from the source to each requesting peer
directly. We assume in this example that the source has an
upload capacity of 2000 kbps. The first constraint 3X1 +

3X2 + 3X3+ 3X4 + 7X5 ≤ 2000 kbps considers the upload
capacity of the source, which has to deliver three blocks

Table 1. Upload capacity and distance from the
source for every requesting peer

jp jC

(kbps)

)(jDsource

(ms)

n

jC)(jD
n
source

1 100 1495 0.2 0.633

2 500 2361 1.0 1.0

3 300 1716 0.6 0.726

4 400 1731 0.8 0.733

5 200 913 0.4 0.386

6 300 1200 0.6 0.508

7 200 390 0.4 0.165

X2 S

3 7

2

5

64

1

X3 S

3 1

2

5

64

7

(X1)

X1 S

3 7

2

5

64

1

X4 (X2) S

1 7

4

5

2

3

6

 X5 S

4 2

3

1

7

6

5

 X6 S

4 6

3

1

57

2

X7 (X4) S

4

51

6

7

3 2

(X3)

Figure 4. Preliminary m-ary tree collection.
The data within parenthesis indicates the
blocks which are reassigned for the
reduced m-ary trees collection

to every m-ary tree and additionally sends the block X5 to
every peer directly. The rest of the constraints considers
the upload capacity of the requesting peers p1, p2, p3, p4,
p5, p6 and p7. The solution gives a maximum throughput
of 571.4 kbps, while the size of the blocks in kbits is X1 =
200, X2 = 100, X3 = 150, X4 = 50 and X5 = 71.42,
respectively.

For this specific example, our solution reaches the
same maximum throughput as Mutualcast. However, this
is not always the case since we use heuristics to find a
near-optimal solution. Calculating the optimal set of
multicast trees on the fly is a hard task, because an exact
solution requires to evaluate all possible combinations for

all co-existing sessions in the overlay network and the
number of combinations and constraints grows
exponentially with the number of participating peers.

4.2. Throughput comparison with Mutualcast

The Mutualcast approach in [7] uses three distribution
routes. These are (1) through the content-requesting peer
nodes; (2) through the helper nodes and (3) directly from
the source. The route 3 is chosen only when the source
still has upload capacity after exhausting routes 1 and 2.

Assuming that the source has an upload capacity SC ,

the N requesting peers have an average capacity

NC and M helper peers have an average capacity
MC , the

maximum throughput f is obtained as [7]

+≥
+−

++

+≤
=

,,
)(

)(

,,

21
1

21
21

21

CCC
N

CCC
CC

CCCC

f
S

S

SS
 (5)

with)
1

(1 NC
N

N
C

−
= and).(2 MC

N

M
C =

Because our collection of m-ary trees is based on
heuristics an exact solution is not always possible.
However, we found through extensive simulations that in
cases when balanced m-ary trees are used and the source

capacity is abundant our approach can achieve an overall
throughput identical to the maximum throughput given by
Mutualcast.

5. Performance evaluation

We evaluate our approach in terms of overall
throughput and delivery latency. We compute the
maximum overall throughput using linear programming
as explained in Section 4.1. The maximum required time
so that all the nodes receive all data blocks is obtained
too. The results obtained with our approach are compared
with the results when using the Mutualcast approach.

We simulate different cases for multicast groups with
6, 7 and 10 requesting peers. In every case, we vary the
source capacity from 1000 to 6000 kbps, while the upload
capacity of each requesting peer is fixed. Heterogeneous
upload capacities and proximity relationships are used for
every peer in the different cases. The upload capacity of
the requesting peers p1, p2, p3, p4, p5, p6, p7, p8, p9 and p10

in kbps is 100, 500, 300, 400, 200, 300, 200, 400, 300 and
100, respectively. The round trip times between peers and
the source are obtained from [16] and [17]. A comparison
between m-ary trees rooted at the source and Mutualcast
in terms of overall throughput for theses cases is shown in
Table 2. The results show that for a heterogeneous
multicast group, our proposed m-ary trees based approach
achieves almost the same overall throughput as the
Mutualcast approach. For both approaches we consider
that the source has enough capacity and it can distribute
extra content blocks directly to all requesting peers. We
can see that both approaches lead to identical throughput
if the source capacity has enough upload capacity.

We compare our approach and the Mutualcast
approach in terms of delivery latency. Delivery latencies
achieved by our approach and Mutualcast are compared in
Figures 6 and 7. Figure 6 shows the maximum delivery
delay by our approach and the Mutualcast approach for
the delivery of all content blocks to all requesting peers in
the multicast group. This delay is determined by the
slowest distribution tree. The results show that when our

Table 2. Overall Throughput Comparison
Mutualcast Throughput

(kbps)
Reduced m-ary trees

Throughput (kbps)

Number of requesting
peers

Number of requesting
peers

Source
Capacit

y
(kbps) 6 7 10 6 7 10

1000 467 428 380 467 333 333

2000 633 571 480 633 571 480

3000 800 714 580 800 714 580

4000 967 857 680 967 857 680

5000 1133 1000 780 1133 1000 780

6000 1300 1142 880 1300 1142 880

Maximize
 f = X1 + X2 + X3 + X4 + X5

subject to

c1: 3X1+3X2+3X3+3X4+7X5 <= 2000
c2: 2X3 <= 100.0
c3: 2X1 +2X3 <= 500.0

c4: 2X2 <= 300.0
c5: 2X1 <= 400.0
c6: 2X4 <= 200.0

c7: 2X2 <= 300
c8: 2X4 <= 200

Figure 5. A reduced m-ary tree collection is
translated into a linear program for
throughput maximization

approach is used, the maximum end-to-end delay is
smaller in comparison to Mutualcast. We attribute this
improvement to the fact that our algorithm based on m-
ary trees avoids deep structures and incorporates
proximity information into the overlay topology. Figure 7
shows the average delivery time for all blocks for all
peers. This delay is the sum of the maximum end-to-end
delay in each distribution tree divided by the number of
distribution trees. We can see that our approach based on
m-ary tree rooted at the source shows a better average
end-to-end delay than the Mutualcast approach.

To compare the simulated RTT values from the
network coordinates model with real RTT values, we
measure the RTT between different nodes in the Internet
(e.g., Universities and Internet Providers) using
SmokePing [18]. We evaluate our approach using nodes
in the USA (San Diego, Berkeley, UC Davis and Boston)
and Europe (Amsterdam, Zurich, Paris and Estonia) and
assume upload capacities of 100, 500, 300, 1000, 400,
200, 300 and 200 kbps for the nodes respectively such as
our evaluation based on the network coordinates model.
We assume that the source is in Boston, while the
requesting peers are allocated in the rest of the sites. The
source capacity is varying from 1000 to 6000 kbps.
Overall throughput and maximum delay for our approach
and Mutualcast are compared in Figures 8 and 9,
respectively. For our approach based on m-ary trees, we
evaluate two cases. Case 1 is based on RTT only, while
Case 2 considers RTT and geographical location. Here,
the geographical location is used first to avoid that the

source sends the same block iX to two peers with similar

RTT, that are close to each other when a third peer with
similar upload capacity presents a better location for the
rest of the requesting peers, and second to limit the
connection of the children peers within a local region in
order to reduce the end-to-end delay.

Figures 8 and 9 show that when there are six
requesting peers (3 peers in USA and 3 peers in Europe)
in the multicast group and the source has an upload
capacity of 1000 kbps, the overall throughput using Case
1 and 2 is same as the Mutualcast throughput, while the
maximum delay is reduced by 53% with respect to
Mutualcast. Here, Case 1 and Case 2 lead to the same
overall throughput and delay by using both an identical
set of balanced and complete m-ary trees. When there are
seven requesting peers in the group, Case 1 and Case 2
use different sets of m-ary trees. Case 1 achieves 98.3%
of the Mutualcast throughput, while the overall
throughput using Case 2 is 91.66% of the Mutualcast
throughput. However, in both cases the maximum end-to-
end delay is reduced by 26.5% and 46% compared to
Mutualcast, respectively. Latencies shown in Figure 9 are
smaller than latencies shown in Figure 6, because these
are obtained from sites located in the Internet core.

Finally, we evaluate the delivery rate achieved by each
distribution tree in our approach and the Mutualcast
scheme during a multicast session. For this comparison
we specifically consider the case of six peers when the
source capacity is 1000 kbps. Here, both evaluated
approaches achieve the same overall throughput. We

assume that each block iX is delivered by a distribution

tree. The results are shown in Figure 10. For both

3161 3161 3122

3310

3795 3795

0

500

1000

1500

2000

2500

3000

3500

4000

Mutualcast

(6 peers)

Reduced m-

ary_trees

(6 peers)

Mutualcast

(7 peers)

Reduced m-

ary_trees

(7 peers)

Mutualcast

(10 peers)

Reduced m-

ary_trees

(10 peers)

E
n

d
-t

o
-E

n
d

 D
e

la
y

 (
m

s
)

Figure 6. Maximum delay comparison

2673

2437

2335

2656 2654

2562

2100

2200

2300

2400

2500

2600

2700

Mutualcast

(6 peers)

Reduced m-

ary_trees

(6 peers)

Mutualcast

(7 peers)

Reduced m-

ary_trees

(7 peers)

Mutualcast

(10 peers)

Reduced m-

ary_trees

(10 peers)

E
n

d
-t

o
-E

n
d

 D
e

la
y

 (
m

s
)

Figure 7. Average delay comparison

0

200

400

600

800

1000

1200

1400

1000 2000 3000 4000 5000 6000

Source capacity (kbps)

O
v

e
ra

ll
th

ro
u

g
h

p
u

t
(k

b
p

s
)

Mutualcast (6 peers) Reduced m-ary trees (6 peers)

Mutualcast (7 peers) Reduced m-ary trees (7 peers)
Mutualcast (10 peers) Reduced m-ary trees (10 peers)

Figure 8. Overall throughput comparison

157.7

116.15

149.42

69.85 69.85

85.25

0

20

40

60

80

100

120

140

160

180

Mutualcast

(6 peers)

m-ary

Trees

Case 1

(6 peers)

m-ary

Trees

Case 2

(6 peers)

Mutualcast

(7 peers)

m-ary

Trees

Case 1

(7 peers)

m-ary

Trees

Case 2

(7 peers)

E
n

d
-t

o
-E

n
d

 D
e

la
y

 (
m

s
)

Figure 9. Maximum delay comparison

approaches, the blocks 1X to 5X within the square

represent the blocks delivered by each distribution tree,

while the block 7X is delivered by the source to each

requesting peer directly. While in our approach the source
splits the total content in five blocks, Mutualcast requires

to use an extra block 6X . This is because in Mutualcast

each block iX is assigned to one single node for

redelivery. The results show that both models use
different delivery rates in each distribution tree to
maximize the overall throughput. Most distribution trees
in our approach allow a bigger delivery rate than
Mutualcast during a multicast session. This is because our
approach uses fewer blocks but with a bigger size by
distributing via five distribution m-ary trees only, while
Mutualcast uses six distribution trees.

6. Conclusion

Finding a good tree topology that maximizes the
overall throughput and limits delivery delay is critical in
delay sensitive multicast applications. We have proposed
and evaluated a content distribution approach based on m-
ary trees. We compare our proposed approach with the
Mutualcast scheme which achieves the maximum possible
throughput, but potentially leads to large delivery delays.
Our heuristic tree construction approach generates a
collection of m-ary trees rooted at the source by
combining the full upload capacities of all participating
nodes and their proximity relationship. Our results
demonstrate that our proposed multicast scheme provides
a good balance between reduced end-to-end delay and
maximum overall throughput while maintaining a scalable
structure by avoiding a fully-connected topology.

7. References

[1] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A.
Rowstron, and A. Singh, “SplitStream: High-Bandwidth

Multicast in Cooperative Environments”, In Proc. of ACM
SOSP, pp. 298-313, October 2003.

[2] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat,
“Bullet: High Bandwidth Data Dissemination Using an
Overlay Mesh”, In Proc. of ACM SOSP, pp. 282-297,
October 2003.

[3] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O'Toole Jr., “Overcast: reliable multicasting with
an overlay network”, In Proc. of the OSDI’00, pp. 197-212,
October 2000.

[4] B. Banerjee, B. Bhattacharjee and C. Kommareddy,
“Scalable Application Layer Multicast”, In Proc. of ACM
SIGCOMM, pp. 205-217, August 2002.

[5] M. Castro, P. Druschel, A. M. Kermarrec and A. Rowstron,
“SCRIBE: a large-scale and decentralized application-level
multicast infrastructure”, In IEEE JSAC, pp. 100-110,
Vol.20, No.8, 2002.

[6] Y. Cui, B. Li, K. Nahrstedt, “On Achieving Optimized
Capacity Utilization in Application Overlay Networks with
Multiple Competing Sessions”, In Proc. of ACM SPAA
2004, pp. 160 – 169, June 2004.

[7] J. Li, P. A. Chou, C. Zhang, “Mutualcast: An Efficient
Mechanism for One-To-Many Content Distribution”, In
Proc. of ACM SIGCOMM ASIA Workshop, April 2005.

[8] R. Cohen and G. Kempfer, “An Unicast-based Approach
for Streaming Multicast”, In Proc. of IEEE INFOCOM, pp.
160-169, April 2001.

[9] V. N. Padmanabhan, H. Wang, P. Chou, K.
Sripanidkulchai, “Distributing Streaming Media Content
Using Cooperative Networking”, In Proc. of ACM
NOSSDAV, pp. 177-186, May 2002.

[10] M. Burger, T. Kielmann, H. E. Bal, “Balanced
Multicasting: High-throughput Communication for Grid
Applications”, In Proc. of ACM/IEEE SC’05, pp. 46-54,
November 2005.

[11] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz and J.
Kubiatowicz“, Bayeux: An Architecture for Scalable and
Fault Tolerant Wide-area Data Dissemination,” In Proc. of

ACM NOSSDAV, pp. 11-20, June 2001.
[12] Y. Chawathe, “Scattercast: an Architecture for Internet

broadcast distribution as an infrastructure service”, PhD
thesis, University of California, Berkeley, August 2000.

[13] S. Birrer, F. E. Bustamante, “Magellan: Performance-
based, Cooperative Multicast”, In Proc. of IEEE WCW, pp.
133-143, 2005.

[14] J. Zhang, L. Liu, C. Pu, “Constructing a Proximity-aware
Power Law Overlay Network”, In Proc. of IEEE
GLOBECOM, pp. 636-640, 28 Nov.-2 Dec., 2005.

[15] Y. Zhu, Y.Hu, “Efficient Proximity-Aware Load Balancing
for DHT-Based P2P Systems”, In IEEE TPDS
Volume 16, Issue 4, pp. 349 – 361, April 2005.

[16] T. S. Eugene Ng and H. Zhang, “Predicting Internet
Network Distance with Coordinates-based Approaches”, In
Proc. of IEEE INFOCOM, pp. 170-179, June 2002.

[17] Cooperative association for internet data analysis (CAIDA)
http://www.caida.org.

[18] SmokePing. http://oss.oetiker.ch/smokeping/

20

60

80

40

60

107

150

100

50

100

50

17

100

0

20

40

60

80

100

120

140

160

X1 X2 X3 X4 X5 X6 X7

ID_Block

D
e

li
v
e

ry
 R

a
te

 (
K

b
p

s
)

Mutualcast Reduced m-ary trees

Figure 10. Delivery rate on each distribution
tree

