
Reliable Routing of Event Notifications over P2P Overlay Routing Substrate in
Event Based Middleware

Shruti P. Mahambre and Umesh Bellur
Indian Institute of Technology Bombay,

Mumbai, India
{shruti,umesh}@it.iitb.ac.in

Abstract

Event Broker Networks (EBN) are a scalable incarna-
tion of the publish subscribe paradigm for building asyn-
chronous systems. These take the form of overlays of broker
nodes and several routing schemes exist that deliver events
from publishers to subscribers efficiently on different over-
lay structures. However quality of service based routing
schemes are rare and our work addresses this gap. Specif-
ically we look into the prospect of routing events based on
reliability requirements of subscribers for an event type be-
ing delivered via the EBN. In this paper, we formally define
reliability and propose a multiplicative model which cal-
culates reliability of the P2P overlay routing substrate and
an algorithm based on this model, to deliver event notifi-
cations to the client. We employ a technique called ’prun-
ing’ by which we restrict flooding the entire overlay rout-
ing substrate, when finding a reliable path. The complexity
analysis of our algorithm shows that it finds a reliable path
with a lower message complexity, as compared to the flood-
ing approach. Our algorithm also determines a path with
higher reliability than the path established by Hermes [5].
We present initial simulation results, using the Hermes mid-
dleware simulator.

1. Introduction

Event based middleware is a powerful and scalable
paradigm, capable of building large scale distributed sys-
tems. It extends the notion of publish-subscribe, and also
facilitates the construction of an overlay routing substrate
over the publish-subscribe(pub-sub) [10] brokers. Overlay
routing substrate, provides decentralized, application-level
routing, that helps disseminate events from publishers to
subscribers. Middleware alleviates the heterogeneity of
large scale distributed applications, by enabling interoper-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

ability amongst its components.

In an event based middleware, information provided
by the producers is distributed in a timely manner to the
consumers. A common service interface provided by
event based systems is the publish-subscribe. In a pub-sub
paradigm, the producers publish information, consumers
subscribe to this information, and receive notifications for
the same. This information is encapsulated in a structure
termed as the event. This model relies on an event no-
tification service, provides storage and management for
subscriptions and efficient delivery of events. There is
anonymity amongst both, the senders and the receivers,
and the communication between them is asynchronous.
The fully decoupled nature in terms of time, space and
synchronization [10], makes this model highly suitable
for large scale distributed applications. In an event based
middleware, information provided by the producers is
distributed in a timely manner to the consumers.

Figure 1. Layered Broker Network

Pub-Sub systems are deployed on overlay networks.
An overlay network [6] constructs a user level graph on
top of an existing networking infrastructure, such as the
Internet, using a subset of the available network links
and nodes. An overlay link is a virtual link in this graph
and may consist of many actual links in the underlying
network, i.e., a single hop in the overlay network, could

result in multiple hops in the physical network. Overlay
nodes run applications in a distributed manner providing
middleware functionalities. Most event based middleware
are implemented using the two layers, as shown in Figure
1. The bottom layer represents the physical network
comprising of routers and links. The overlay network layer
represents the P2P overlay routing substrate which provides
an abstraction of the distributed hash table1 [7]. A node in
this P2P overlay routing substrate, may be mapped to an
event broker, which forms a part of the event dissemination
tree, used for routing events.

The main contribution of this paper, is a multiplica-
tive model that is proposed to compute the reliability of a
path in the overlay network, and to route event notifications
to client along a path meeting client specified reliability
requirements. The paper is organized as follows. In
Section 2, we provide a formal definition of reliability over
a P2P routing substrate in a publish-subscribe domain.
We compare our work with existing work in this field in
Section 3. Section 4 provides a formal definition of the
problem. In order to determine reliable paths for routing
event notifications, we propose a multiplicative model for
reliability measurement in Section 5. In Section 6 we
propose a Pruning algorithm, which relies on the reliability
model and finds a reliable path on the overlay routing
substrate. We compare our algorithm, with a flooding al-
gorithm in Section 6.2 and present the complexity analysis
of our algorithm in Section 7. We present initial simulation
results, in Section 8 that verify our claims and conclude
with a discussion regarding future work in Section 9.

2. Reliability in Publish Subscribe

Quality of Service [3] or QoS refers to the ability of a
system to provide services, such that the users expectations
for all non-functional criteria, are satisfied. Some of the
quality of service parameters, which an event based mid-
dleware may support are minimum bandwidth requirement,
order of event notifications, reliable delivery of event
notifications, delivery semantics of an event, latency and
availability.

In this paper our focus is on computing reliability of
paths, and setting up paths in the overlay network, that
meet the reliability requirement of the subscriber. We
define the delivery reliability of an event, in the context of a
pub-sub system, as the ratio of the number of notifications
delivered to the subscriber of a particular event type, against
the number of publications of the event type. In a type

1DHT is a building block for p2p applications, that enables a group of
distributed hosts to manage the mapping from keys to data values repre-
senting host nodes in the p2p overlay

based scheme, event subscriptions are filtered based on
their types. The notion of an event kind, is matched to an
event type [2]. A type based model facilitates type safety at
compile time and leads to closer integration of the language
and the middleware [10]. We run our simulations on the
Hermes middleware, which provides type-based [5] and
type-and-attribute-based [5] routing of events. We now
define reliability, in the context of a publisher-subscriber
system.

Definition of Reliability in Publish-Subscribe

We define reliability in publish-subscribe domain as fol-
lows.
Notation - n(eτ) is the number of notifications sent for an
event type τ . p(eτ) is the number of publications of an event
of type τ . τmax is the total number of event types in the
system. smax is the maximum number of subscribers in the
system. es

τ represents a subscriber s which has subscribed
for an event e of type τ . R is the Reliability value ranging
from [0..1] The reliability R attained at subscriber s is given
by 1.

R[es
τ] =

n(eτ)
p(eτ)

(1)

Using equation 1, reliability is measured at different levels
in an event based system as follows:

2.1. Per Subscriber Per Event Type

The delivery reliability for the notification of an event
type, is measured for a single subscriber subscribing for a
single event type. A subscriber may subscribe for multiple
event types. We can measure the reliability that the sub-
scriber attains for each event type that it has subscribed for,
as shown in equation 1.

2.2. Per Subscriber All Event Types

A subscriber can measure the total reliability it has at-
tained, by calculating the reliability it attains across all the
event types for which it has subscribed. The reliability at-
tained by a subscriber s for all the event types, it has sub-
scribed for, is given by equation 2

R[es] =
∑τmax

τ=1 R[es
τ]

τmax
(2)

2.3. All Subscribers for an Event Type

The reliability offered by the entire system for a specific
event type, can be calculated across all the subscribers, who
have subscribed for that event type. The reliability offered

by the system for an event type τ , across all the subscribers
is given by 3

R[eτ] =
∑smax

s=1 R[es
τ]

smax
(3)

2.4. Entire System

The reliability of the entire system, is defined as the re-
liability attained across all the subscribers and for all event
types, they have subscribed for. Using equations 2 and 3 the
reliability of the entire system is as given by equation 4

R[e] =
∑smax

s=1 [(
∑τmax

τ=1 R[es
τ])/(τmax)]

smax
(4)

3. Related Work

TAROM [9] finds a secondary overlay path that min-
imizes the joint failure probability for a given primary
overlay path between a source and destination. It performs
path probing to obtain loss rates in overlay paths and then
applies random sampling to estimate the link loss rates.
The secondary paths to (i.e. paths between pairs of two
non-interacting sources and destinations) two independent
primary paths may interfere. If both the primary paths fail
simultaneously, the secondary paths are used and hence
the common links between the alternative paths may get
excess traffic leading to high losses (both in links and at
corresponding nodes). Also TAROM is invoked ”on de-
mand”, i.e., when a node sees the need to establish multiple
paths. It is not tied to an event model, where factors such as
the arrival rate of event publication, and number of events
in the system are relevant. TAROM uses the secondary
overlay paths only as backup paths. This approach also
does not consider the node failure probabilities which may
be crucial as the message queues at each node are of finite
length and hence significant losses can occur at overlay
nodes with high incoming traffic.

RON [1] nodes also use active probing to infer qual-
ity of virtual links, and passive observation of the traffic,
and then propagate this information to other nodes. Each
node uses a variety of performance metrics, and an
application-specific path is selected on the basis of these
metrics.

Both RON and TAROM do not take into account node
failure probabilities. We propose a reliability model, that
considers both, the node and the link reliabilities when
establishing reliable paths in an overlay network. Unlike
TAROM, we establish secondary paths in order to achieve
higher reliability in the network, by increasing redundancy,
and not merely for establishing backup paths. If the

primary path (i.e. the path established by the middleware)
also meets the reliability requirements of the subscriber,
then we send notification along the primary path to the
subscriber.

Hermes reliability model has two aspects — the robustness
of the middleware against failures and the reliability that
is explicitly demanded by clients through a Quality of
Service(QoS) specification. Hermes uses Pastry [8] which
is a routing substrate for wide area P2P applications. Pastry
performs object location, and application level routing in an
overlay network. Each node in Pastry has a unique numeric
node identifier. Assuming a network of N nodes, Pastry
can route a message in logN steps to any destination.
Hermes routing algorithms are built over Pastry and they
use built-in fault-tolerance features which enable event
brokers to recover to a consistent system state after failure.
However Hermes does not provide support for reliability
specified by the client as a service guarantee. We focus on
the second aspect of the reliability model of Hermes, i.e.,
providing reliability, as a QoS requirement specified by the
client.

4. Problem Statement

• pi is a publisher i, s.t. pi ∈ P, where P is the set of
publishers and si is a subscriber i, s.t. si ∈ S, where S
is the set of subscribers.

• λ is the reliability threshold requested by the sub-
scriber for an event it has subscribed for.

• τ is an event type

• pi(τ) is a publisher i, s.t. pi ∈ P, which has published
an event of type τ and si(τ) is a subscriber i, s.t. si ∈
S, which has subscribed for an event of type τ

• ni is a node i, s.t. ni ∈ N,∀i = 1..N, where N is the
set of brokers in the overlay network and li,j is a link
between nodes ni and nj , s.t. li,j ∈ L, where L is the
set of links in the overlay network.

• Θ represents the path between nodes i and j. This path
comprises of intermediate nodes and links, i.e., Θ =
{ni li,x nx lx,y nw lw,j nj} i.e., Θ is a set of nodes
and links on a reliable path established between a pub-
lisher and subscriber for an event type.

• R [Θ] is the reliability of the path

Given a single subscriber si(τ), single publisher
pi(τ) and λ, we determine a path Θ s.t.

R[Θ] ≥ λ (5)

5. Multiplicative Model for Reliability

In order to compute reliability of a path, we consider,
the path of an event notification to be a series system [11],
in which all components (broker nodes) are so interrelated
that the entire system fails if any one of its components fail.

Consider a system with N components, i.e., N broker
nodes. All these nodes lie in the path from the subscriber
to the publisher for an event type. The probability that the
node i, will drop a packet (i.e. the blocking probability)
is given by P(ωi). Hence the probability that the node is
reliable is [1- P(ωi)]. The probability that the link li,j , will
drop a packet (i.e. the link loss) is given by P(φi). Hence
the probability that the link is reliable is [1 - P(φi)]. The
reliability R[Θ] of the entire path is given by the following
equation

R[Θ] = ΠN
i=1[1− P (ωi)]ΠN−1

i=1 [1− P (φi)] (6)

Any algorithm can rely on this model, to find a reliable path
in an overlay network. The broker network is responsible
for ensuring the reliability requirement specified by the sub-
scriber. In the next section we discuss the proposed algo-
rithm in detail.

6. Our Approach

In this section, we propose an algorithm which lever-
ages the Pastry [8] routing algorithm, based on the relia-
bility measurement model proposed in Section 5. Given a
threshold value for reliability, by the subscriber, our algo-
rithm tries to determine the most reliable path2, for deliv-
ery of an event notification, with minimum possible mes-
sage complexity. We can determine a highly reliable path
in the overlay network, by flooding the entire network. This
results in a high message complexity. The Pastry overlay
substrate has the property that it is able to route a message
to a given destination in maximum logN hops, where N is
the number of nodes in the overlay network. We use this
property of the Pastry overlay routing substrate, in order to
control the message complexity introduced by the flooding
approach. We modify the Pastry routing algorithm to deter-
mine a set of paths, along with their reliabilities and send an
event notification only along paths which meet the reliabil-
ity requirement of the subscriber. The Pruning Algorithm
described in Section 6.1, is discussed at the level of a single
event broker, and is applicable to every broker in the reliable
paths being established.

2Most reliable path is one which has a reliability value greater than or
equal to the threshold specified by the subscriber

6.1 The Pruning Algorithm

Notation - Rp represents the reliability of the partial
path, or the path upto which the reliability has been calcu-
lated so far. List[PartialPathnodes] represents a list of nodes
occurring in the partial path established so far. We can add()
and remove() nodes from this list. The PartialPath() oper-
ation, returns the list containing the PartialPathnodes. The
PastryRouting() operation refers to the routing algorithm of
the Pastry overlay substrate.

Algorithm 1 PRUNING

Require: Rp, currentNode,DestId,
Ensure: The value of Rp

1: Nbors← GetNeighboorhoodSet(currentNode)
2: for all i such that 1 ≤ i ≤ Nbors do
3: if currentNodei /∈ List[PartialPathnodes] then
4: P (ωi)← GetNodeBlocking()
5: P (φi)← GetLinkLoss()
6: Rp ← Rp ∗ [1− P (ωi)][1− P (φi)]
7: List[PartialPathnodes].add(currentNodei)
8: CurrentLevelflooded ← Levelflooded + 1
9: end if

10: if Nborsi /∈ List[PartialPathnodes] then
11: if CurrentLevelflooded <= Flevel then
12: SendMessage(Rp, Nborsi)
13: Pruning(Rp, Nborsi,DestId)
14: else
15: PastryRouting(Rp,DestId)
16: List[PartialPathnodes]← PartialPath()
17: end if
18: end if
19: end for
20: PastryRouting(List(Rp), SourceId)
21: SendNotification(List(Rp))

The Pruning algorithm is divided into three stages. Ini-
tially the Hermes middleware determines a path for sending
an event notification. This path does not taken into consid-
eration the reliability requirement of the subscriber. Once
this path is established, the next stage of the Pruning algo-
rithm, involves partial flooding, followed by Pastry routing.
We will now describe algorithm in 1 in detail.

• stage 1:- We determine the primary path for event
delivery. Primary path is the path along which the
event notification travels by default using the Hermes
middleware routing algorithm [5]. However instead of
sending a notification to the subscriber, we return the
identifier of the destination node to the event publisher
source, along with the reliability value of the path.
This is done, since it is possible that the primary path,
may not be meeting the reliability threshold specified

by the subscriber.

• stage 2:- With this we ensure that the source is aware
of the destination. We now proceed to the second stage
of the pruning algorithm, in which we establish multi-
ple paths between the source and destination. In step 1
of algorithm 1, we get the set of neighborhood nodes
[8] for the current node, which is being flooded and
perform partial flooding (i.e., flooding upto a particu-
lar level only and not the entire network). Flooding
enables the establishment of multiple paths, and in-
creases the chances of finding a path which has a reli-
ability value meeting the threshold reliability require-
ments of the subscriber. In step 3 we check to see if
the node being flooded already exists in the path that
has been established so far. If the current node is in the
list, then we do not add it to the list once again. This
prevents cycles. In step 4, we obtain the node blocking
probability for a node which is occurring on the path
for the first time, and in step 5, we obtain the link loss
rate. We calculate partial path reliability3 as given in
the formula in step 6. This node now becomes a part of
the partial path established so far(step 7). In step 8 we
increment the level of flooding. We now continue the
flooding process, i.e., we find nodes in the neighbor-
hood node set of the current node, flood each neigh-
borhood node, if it is not already a part of the partial
path established so far (steps 10, 11). If a neighbor-
hood node is not in the partial path established so far,
it implies that the neighborhood node has not yet been
flooded. We continue flooding, till the level of flooding
that has been specified, and recursively call the Prun-
ing algorithm (step 14).
With this, we complete the partial flooding, which is
necessary to introduce redundancy in the system in
order to meet the reliability requirements of the sub-
scriber.

• stage 3:- Once the flooding is complete, the mes-
sage is then routed to the destination using Pastry
Routing(step 15). The PartialPath routine, returns
the partial path, upto the point from where we need
to resume flooding(step 15). Once all the paths are
established, the set of reliable paths, along with their
reliability values is sent back to the publisher source
node, using pastry routing as shown in step 20. Once
the reliable paths have been determined, the source
node, takes a decision and sends notification along
a route, whose reliability is in conformance with
the reliability requirement of the subscriber. The
SendNotification routine in step 21 does the following

3Partial Path Reliability, is the reliability of the path being established,
from the source node till the current node in the route

stage 3a:- Find a set of paths, having reliability
values, which are greater than or equal to the threshold
reliability requirement specified by the subscriber.
Send the notification along the path having maximum
reliability value, from this set.

stage 3b:- If no single path exists which meets
the reliability requirement of the subscriber, then we
combine paths in the system, such that the reliability
of the combined paths, is greater than or equal to
the threshold. Notification is then sent in parallel,
along all the combined paths. We use the greedy
approach when selecting paths, i.e., we select paths in
descending order of reliability values. Two cases arise
out of this scenario.

Case 1: Disjoint Paths - In this case all the paths
being combined are disjoint, i.e., they do not have
any common nodes and links. If R is the reliability
of path Θh, and there are H paths which need to be
combined in order to attain a reliability value greater
than threshold, then the combined reliability of the
parallel paths Rc is given by equation 7.

Rc = 1− [ΠH
h=1(1−R[Θh])] (7)

Case 2: Intersecting Paths - Here the paths being
combined are non-disjoint, i.e., subsets of the paths,
intersect with each other. We take a union of all the
intersecting paths in order calculate the joint reliabil-
ity. Given R is the reliability of path Θi, and there are
H paths which need to be combined in order to attain
a reliability value greater than threshold, we obtain a
union of all the paths, and calculate the reliability as
shown in equation 8.

Rc =
∑

i

R[Θi]−
∑

i

∑

j>i

R[Θi ∩Θj] (8)

+
∑

i

∑

j>i

∑

k>j

R[Θi ∩Θj ∩Θk]−

... + (−1)H+1R[Θ1 ∩Θ2 ∩Θ3.... ∩ΘH]

We use an incremental approach when calculating multi-
path reliability, i.e., we keep on adding one path at a time
to the existing set of paths, till we attain the reliability spec-
ified by the subscriber. At each step, we store reliabilities
of the paths which have been combined so far. Therefore,
when we add a new path, we only need to calculate the joint
reliability of the new path with the existing ones as shown
in equation 8. Since Pruning restricts the level of flooding
in the system, we compare our approach with the Flooding
approach, which we discuss in the next section.

6.2 The Flooding Algorithm

In the flooding algorithm, we send messages to all nodes
occurring in the neighborhood set [8] of the current node.
This process is continued till we reach the destination. The
flooding approach differs from Pruning, since it does not re-
strict flooding to a particular level. Every node is flooded,
till the destination node, occurs in the leaf set [8] of a node.
The procedure for calculating reliability of the path, and
sending notification, is similar to that discussed in the Prun-
ing algorithm in Section 6.1. The flooding algorithm has
been discussed in detail in [4].

7 Complexity Analysis of Pruning Algorithm

In this section, we determine the message complexity for
the Pruning algorithm, and discuss its implications.

• The Hermes middleware determines a path for notifi-
cation of the event, using the Pastry routing algorithm,
which we call as the Primary Path. The messages gen-
erated are twice (logN),(assuming that the network
consists of N nodes) because, once the primary path
is established, the destination node collects the relia-
bility value of the path and routes it back to the source,
using Pastry routing.

• If n is the number of neighborhood nodes for each bro-
ker in the network, and k is the level to which we flood,
then

∑k
i=1 ni indicates the total number of messages

introduced in the network, when flooding. And for
each of the paths established when flooding, we use
Pastry routing to route message to destination. There-
fore, the total number of messages introduced in the
system currently are (logN)nk. An additional (logN)
messages are introduced, to route the reliability values
back to the source using Pastry Routing algorithm.

• Once the paths are established, the notification is sent
along the paths, which meet the reliability require-
ment of the subscriber. The maximum number of
paths along which the event notification can be sent
are (logN)nk (in case of multipath routing).

The total number of messages M generated in the system,
when establishing routes using the pruning algorithm, is
given by the following expression.

M = 2(logN) +
k∑

i=1

ni + (logN)nk + (logN)

We can infer that, the message complexity of the Pruning
approach is of O((logN)nk).

We find that the message complexity is influenced by
the number of neighbors for each node, and the level of
flooding in the network. So we see that, as the levels of
flooding in the Pruning algorithm increase, the Pruning
algorithm, will have a message complexity similar to that
introduced in the network by flooding the entire network.
We verify our claims with simulation results presented in
the next section.

8 Simulation Results

In this section, we present initial simulation results, ob-
tained with an implementation of the Pruning routing al-
gorithm. The parameters for our simulations are as shown
in the table. All experiments were performed using an un-
derlying transit-stub topology [5] with 5 autonomous sys-
tems, each having 20 nodes. This represents the physical
network as shown in Figure 1. We assumed a static overlay
network, and generated random values for reliabilities of
nodes and links. The results of our simulations have been
averaged across the values obtained for algorithm runs for
10 different publishers distributed across the overlay rout-
ing substrate for an event type. The event notification was
sent to a single subscriber, subscribing for an event type. In
our experiments, the main focus has been on determining
the reliability of the path attained by the Pruning algorithm,
and the number of messages generated when achieving this
reliability as compared to flooding the entire network. The

Simulation Parameters
Transit Stub Topology 100 nodes

Number of Event Brokers 25
Neighborhood Set Size 4

Leaf Set Size 3
Level of Flooding 2

Number of Publishers 10
Number of Subscribers 1
Number of Event Types 1

Reliability Value between 0 and 1

reliability attained by the subscriber, was evaluated against
the reliability the subscriber originally requested in Section
8.1. We then compare the message complexity of Pruning
and Flooding to determine a reliable path in Section 8.2.In
Section 8.3 we take a look at how the Pruning algorithm
tends to Flooding, with increase in the levels of flooding.
Finally, in Section 8.4, we study the influence of the con-
nectivity of the overlay routing substrate, on the message
complexity of the Pruning algorithm.

Figure 2. Actual v/s Expected Reliability for a
Subscriber

8.1 Actual Reliability Attained at Sub-
scriber

In this experiment (Figure 2), we plot the reliability value
specified by the subscriber (Expected Reliability) versus the
reliability that our algorithm is able to attain (Obtained Re-
liability). As expected, Hermes, does not take into account,
the reliability requirement of the subscriber, hence the reli-
ability of the path established by Hermes remains constant.
For a given reliability threshold, Pruning chooses a path that
has maximum reliability amongst those paths which have a
reliability value greater than or equal to the threshold. It is
observed that, as we increase the reliability threshold, both
Pruning and Flooding combine paths in order to meet the
reliability requirement of the subscriber. Combining paths,
sometimes results in a higher reliability than the specified
threshold, as seen in the graph. Our experiment shows that
with an increase in the reliability threshold, Pruning and
Flooding always manage to attain a path with higher re-
liability than the path established by Hermes and that the
Pruning algorithm manages to achieve the threshold relia-
bility even with a flooding level of 2. We now compare
the number of messages generated by Pruning and Flood-
ing when determining reliable paths.

8.2 Message Complexity of Pruning and
Flooding

Here we compare Pruning and Flooding in terms of their
message complexities for determining reliable paths, given
a reliability threshold requirement by the subscriber. We
infer from this experiment (Figure 3) that, although both
Pruning and Flooding attain the reliability requested by the
subscriber, the Pruning algorithm is far more efficient, since
it does so with a much lower message complexity as com-
pared to the Flooding algorithm. In the next section, we
evaluate the performance of the Pruning algorithm in terms
of message complexity with increasing levels of flooding.

Figure 3. Comparison of Message Complex-
ity for Pruning and Flooding

8.3 Pruning Performance

Figure 4. Percentage of Messages Generated
by Pruning, in Comparison to Flooding

In this experiment, for a given value of reliability for a
subscriber, we increase the flooding levels for the Pruning
algorithm and determine the number of messages generated
at each level. The graph in Figure 4 depicts the percentage
increase in the number of messages of pruning in terms of
flooding. It is observed that pruning performance degrades
with increasing levels of flooding. We conclude from this
experiment, that the Pruning algorithm is efficient only if
we find a reliable path with an average level of flooding.

8.4 Message Complexity of Pruning with
respect to Connectivity of the Overlay
Nodes

In this experiment (Figure 5), we study how the Prun-
ing algorithm is affected by the connectivity of nodes in
the overlay network. We run our experiments, for an over-
lay network, with nodes having neighborhood set sizes 2, 3
and 4. We assume a fixed value for the reliability require-
ment specified by the subscriber. It is observed that with a
high level of flooding, a densely connected overlay network
(n=4), has a much higher message complexity, as compared

Figure 5. Message Complexity of Pruning
with Varying Sizes of Neighborhood Sets

to a sparsely connected overlay (n=2), in order to attain the
threshold reliability specified by the subscriber. The mes-
sage complexity increases exponentially for a densely con-
nected overlay, with increase in level of flooding. The Prun-
ing algorithm, shows optimal performance for all levels of
flooding, when the network is sparsely connected.

9 Conclusion and Future Work

In this paper, we have presented a multiplicative model
for determining reliability of paths in a P2P overlay rout-
ing substrate, in order to route event notifications. We have
also proposed an algorithm which leverages the Pastry rout-
ing algorithm, to determine a path having reliability, greater
than or equal to the threshold, between a pair of overlay bro-
ker nodes. We have tested this algorithm using the Hermes
middleware simulator. The algorithm has a higher message
complexity in comparison to the Hermes routing algorithm,
however unlike Hermes, it ensures a reliable event notifica-
tion guarantee to subscribers. We have compared our rout-
ing algorithm with a Flooding approach. The simulation re-
sults show that our algorithm, determines a more reliable
path as compared to Hermes, and with a lower message
complexity as compared to the Flooding approach. As part
of the future work, we plan to test the algorithm for multi-
ple subscriptions and event types and for different topolo-
gies of the P2P routing substrate. We also plan to study
the effect of hierarchical and compositional relationships
between the event types on reliable event notification. As
discussed in Section 5, we consider the reliability of both
nodes and links, when calculating the reliability of a path.
We are currently building an analytical model to measure
the reliability of a node on an overlay routing substrate. In
our model we will measure the node reliability, and assume
the reliability values for links, obtained from the link re-
liability measurement models in [9] and [1]. We plan to
incorporate this model to measure reliability of the nodes
in an overlay substrate, and test the algorithm, in a system

with dynamically changing values for reliability of nodes
and links.

Acknowledgments

We thank Mahak Patidar for the insightful discussions
during the initial phase of this work and Punit Rathod for
the very helpful comments on the paper draft.

References

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. The case for resilient overlay networks. In Pro-
ceedings of Eighth workshop on Hot Topics in Operating
Systems (HotOS 2001), pages 152–157. IEEE Computer So-
ciety, 2001.

[2] P. T. Eugster, R. Guerraoui, and C. H. Damm. On objects
and events. In Proceedings of the 16th ACM SIGPLAN
conference on Object Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 2001), pages 254–269.
ACM Press, 2001.

[3] C. Irvine and T. Levin. Quality of security service. In Pro-
ceedings of the 2000 Workshop on New Security Paradigms,
pages 91–99, Ballycotton, County Cork, Ireland, 2001.
ACM Press.

[4] S. P. Mahambre and U. Bellur. QoS in event based middle-
ware. Technical Report - No:28, KReSIT, IIT Bombay, 2006.

[5] P. Pietzuch. Hermes - A scalable event-based middleware.
PhD thesis, Queens College, University of Cambridge, UK,
2004.

[6] P. Pietzuch and J. Bacon. Peer-to-Peer overlay broker net-
works in an event based middleware. In Proceedings of 2nd
International Conference on Distributed Event Based Sys-
tems (ICDCSW 2003), pages 1–8. IEEE Computer Society,
2003.

[7] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A public DHT
service and its uses. In Proceedings of the ACM SIGCOMM
Conference (SIGCOMM 2005), pages 73–84. ACM Press,
Aug. 2005.

[8] A. Rowstron and P. Druschel. Pastry: scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems. In Proceedings of 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware
2001), volume 2218/2001, 2001.

[9] C. Tang and P. K. McKinley. Improving multipath relia-
bility in topology-aware overlay networks. In Proceedings
of 25th International Conference on Distributed Computing
Systems Workshops (ICDCSW 2005), pages 82–88. IEEE
Computer Society, 2005.

[10] P. Th.Eugster, P. Felber, R. Guerraoui, and A. M. Kermar-
rec. The many faces of publish/subscribe. ACM Computing
Surveys(CSUR), 35(2):114–131, 2003.

[11] K. S. Trivedi. Probability and statistics with reliability queu-
ing and computer science applications. Prentice-Hall of In-
dia Private Limited, New Delhi, 2004. ISBN:81-203-0508.

