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Abstract 
In DHT-based P2P systems, Replication-based 
content distribution and load balancing strategies 
consists of such decisions as which files should be 
replicated, how many replicas should be created 
and where to replicate them in order increase the 
system performance in the presence of non-uniform 
data and access distribution. There are many works 
on replica placement policies; however, the impact 
of system workload on different replica placement 
strategies is not well studied. We investigate this 
problem under the context of content addressable 
overlay networks. We compare a trace based 
replica placement algorithm with two of its 
variations, namely random placement and priority 
based placement under different workloads. Our 
experimental results show that the effect of replica 
placement policy is highly affected by the workload 
of the system, which indicates that an adaptive 
replica placement strategy is desirable for content 
distribution in an overlay network. 

1. Introduction 

In recent years, decentralized search with the 

support of Peer-to-Peer (P2P) technologies draw 
lots of interests as it potentially enables us to 

organize distributed systems for information 

diffusion and storage in a very flexible manner. A 

structured P2P overlay network normally maps data 

and computer nodes into the same ID space. With a 

Distributed Hash Table (DHT) [5][6][7] like 

routing mechanism, it effectively reduces the cost 

of data search. In a structured overlay, data are 

mapped to nodes based on the relationships 

between their IDs. The ID of a data item is 

normally calculated from the attributes [12] of the 
data item or the digest of the data itself. However, 

this causes data items unevenly distributed among 

content nodes due to the difference in popularity of 

these data items. It also causes the workload of 

nodes that serve queries to these data items 

unevenly distributed. The former may lead to data 
skew where many data items corresponding to the 
same ID are mapped to one content node, the latter 

leads to access skew where queries to a popular 

data ID may overwhelm the hosting node.  Solving 

the skew problem is crucial to the scalability of 

systems built on P2P technologies. We discuss the 

different approaches for solving access skew 

problem in this paper. 

Constructing a content distribution network 

through replicating popularly accessed data is a 

common way for solving access skew problem. 

However, replication-based content distribution 

and load balancing strategies consist of such 
decisions as which data items should be replicated, 

how many replicas should be created and where to 

replicate them in order to enhance the system 

performance in the presence of non-uniform data 

distribution and dynamic data access pattern. In this 

paper, we first describe three replica placement 

algorithms for content distribution network 

construction on top of a structured overlay. We 

then investigate the effect of replica placement 

algorithms on the performance of content 

distribution network. We implement the following 
three replica placement algorithms on top of prefix 

routing based DHT overlay.   

The first algorithm, CDN-QueryStat, is a query 

route based replica placement algorithm. In a DHT 

routing mechanism, the routes of messages 

converge to nodes surrounding the destination node 

hop by hop exponentially in speed. This can be 

explained by that the destination node is only 

included in the routing tables of a limited number 

of nodes and messages have to be routed to the 

destination through one of these nodes. Putting 
number of hops a query has to travel.  

The second algorithm, CDN-Rand, is a random 

node selection algorithm for replica placement. The 

hosting node randomly generates an ID from the ID 

space and the content node that is responsible for the 

ID is selected to store the replica. The third 

algorithm, CDN-PR, is priority based. A content 
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node is likely responsible for multiple data IDs, and 

each data ID may have its own content distribution 

network which consists of all nodes holding data 

items with the same data ID, therefore the content 

node can be a member of multiple content 

distribution networks.  The CDN-PR gives priority 
to nodes that already store replicas. This algorithm 

clusters replicas of different IDs to a few content 

nodes. Only when the existing nodes with replicas 

are saturated, a new node is selected for replicas. 

This approach tries to minimize the number of 

nodes that store replicas, which may be useful for 

the maintenance of content distribution networks.   

The rest of the paper is organized as follows. 

Section 2 discusses related works. Section 3 

describes the system model. In Section 4, we detail 

the three replica placement algorithms mentioned 

above. Section 5 presents experiment results and 
Section 6 concludes the paper. 

2. Related work 

Recently, there are many efforts attempting to 

balance the load using replication-based strategies in 

the context of both unstructured [10][16][17] and 

structured [5][6][7] overlay networks. In the context 

of unstructured P2P networks, three replication 

strategies proposed in [2] rely on different replica 

placement strategies:  owner replication replicates a 

data items to the peer that has successfully received 

the service through a query. In other words, the 

receiver node becomes a service provider. Path 
replication replicates the data on all peers along the 

query forwarding route between the peer requesting 
the data and the peer having the data. The service-

providing peer receives the query which contains 

information about the sequence of peers that 

forwarding the query, then the service provider peer 

sends a reply and replica in the reverse direction of 

the query forwarding route. Path replication method 

has a good search performance and it is easy to 

implement [3][4].  Random replication replicates 

data objects randomly amongst other peers. 

However, the authors claimed that for unstructured 

p2p networks, random replication is superior to 
owner and path replication, and it is the most 

effective approach for achieving both smaller search 

delays and smaller deviations in search.  

Paper [4] proposed two replica placement 

methods derived from path replication: Path 
random Replication is straightforward extension of 

path replication. This method is a combination of 

path replication method coupled with a replication 

ratio. Based on the probability of the pre-determined 

replication ratio, each intermediate peer randomly 

determines whether or not a replica is created and 

placed there. Path adaptive Replication determines 
the probability of the replication in each peer based 

on a predetermined replication ratio and its resource 

status. Paper [9] proposed uniform and proportional 
replication strategies. In the uniform strategy, 

replicas are uniformly distributed over the network, 

while the proportional strategy replicates popular 

files more frequently to improve its availability. A 

proportional strategy improves the availability of the 
popular items. 

In the context of structured p2p networks, paper 

[8][14] proposed the “power of two choices” load 

balancing strategy for Chord. This strategy relies on 

different algorithm for replica placement. In order to 

provide load-balancing, multiple hash functions are 

used instead of only one, each object is hashed to 

multiple IDs, and placed on the least loaded node of 

the nodes responsible for those IDs, and the other 

nodes are given a redirection pointer to hosting 

node. Also, [15] proposed another replica placement 

strategy relies on utilizing multiple hash functions. 
When the demand for popular file exceeds the 

overall capacity of the current serving nodes, a 

previously unused hash function is used to obtain a 

new node ID where the file will be replicated.  A set 

of distributed algorithms proposed to choose an 

unused hash function when replicating a file and 

used function when requesting a file. Another 

replication-based load balancing strategy proposed 

in [11] relies on a fully distributed mechanism to 

maintain the file access history in order to predict 

the future file access frequencies. This strategy 
replicates the files on the peers adjacent to a group 

of peers which have high probability to access these 

files in the future. 

Comparing to existing replica placement 

algorithms, the algorithms given in this paper is 

based on decentralized decision making and can 

construct content distribution networks in a self-

organizing way. 

3. System Model 

A node in a structured overlay stores a number 

of data items mapped to it based on their IDs. Each 

content node in the overlay network runs a process 

for query processing. Query processing is FCFS
based. The maximum queue size defines the query 

processing capacity of a node. When the queue is 

full, the queries coming subsequently are either 
dropped or forwarded to a node that might be able to 

solve the query. When the data hosted by a node is 

popular, it is likely that the queue is full most of the 

time.  

Each node in the system is able to create 

replicas of its local data items onto other nodes 

selected by replica placement algorithm.  

The system contains the following components:  

- Query routes and access history collection 

mechanism to capture the temporal locality of 

incoming queries, in order to collect the most 

popular routes where queries come from.  



- A replica placement algorithm.  

- A mechanism that constructs and maintains a 

content distribution network for data items of 

popular IDs.  

- A load balancing mechanism that dispatches 
queries in the content distribution network in 

order to make efficient use of content nodes and 

to efficiently cope with dynamic query streams. 

3.1 Query Routes and Access History Collection 

Mechanism 

Algorithms CDN-QueryStat and CDN-PR rely 

on a simple and efficient mechanism to maintain 

data access history information and to further 

capture the temporal locality of incoming queries to 

make content distribution and load balancing 

decisions. This mechanism collects the pattern of 

paths from recent queries as follows: Each 

individual peer manages its own data access history 

in order to cope efficiently with the distributed 

nature of p2p networks, and to reduce the effects of 
the disappearance of peers on the overall 

functionality of the network. Each peer uses 

QueryStat table to record the last-hop nodes 

incoming queries travel through, as well as the count 

of queries coming from these last-hop nodes in the 

latest time frame. The time frame is defined to 

reflect recent query arriving patterns, all the access 

history before the latest time frame has no much 

usage and should be removed to limit the size of the 

QueryStat table. In this QueryStat table, we only 

need to keep records for a certain period which is 
enough to estimate the highly demanded data IDs 

and help selecting nodes for data replication.

3.2 CDN Construction and Load 

Balancing 

We denote a set of content nodes which hold 

the data items with ID k as cdnk. A content node N is 

likely to be responsible for multiple data IDs. We 

denote the set of content nodes that store data items 

of IDs held in node N as cdnA. Node N’s capacity of 

processing queries is described by a query queue 

bounded by the maximum number of queries it can 

process within a time frame, denoted by CN. Node N
also has a watermark WN, which is a certain 

percentage of its capacity. A content node is 

considered as overloaded if the workload assigned 

to it is above the watermark. When the number of 

queries in the queue is above the watermark, the 

node will forward the subsequent incoming queries 

to selected nodes in cdnk to prevent message from 

being dropped from the queue.  

There is a pre-defined value called acceptance 
margin, denoted by m to help determining whether a 

query should be forwarded to another content node. 

A procedure for query forwarding and replicas 

creation is described in Procedure 1. This procedure 

is activated only when access frequency exceeds the 

watermark WN. Nodes in cdnk form a complete 

graph where each node maintains the direct address 

of other nodes that store the same data. Workload is 
exchanged among these nodes periodically. The 

load of a content node is defined as the number of 

queries in its queue. A node that hosts multiple data 

IDs maintains a set of content nodes. The maximum 

times that a query can be forwarded inside a CDN is 

bounded by a constant max_fwds.

The New_Content_Node() function in 

Procedure 1 uses ContentNet protocol to negotiate 

with a candidate content node for replica creation of 

a selected key. ContentNet protocol defines 8 types 

of messages, four of which are exchanged between a 

node requesting new content nodes and the 
candidate new nodes, one is used for query 

forwarding among content node, one is used for 

exchanging load information among content nodes 

and the rest two used for removing rarely used

content nodes. These messages and the ContentNet 
protocol are described in [1]. 

Procedure 1: Query forwarding and content node 

creation 

if the query’s forwarding count has reached max_fwds
insert the query into the query queue 
return 

endif 

find the least loaded node n from cdnk\{t}
if loadn  <  Wn - m

forward the query to n and increase its 

forwarding count by 1 

return 

endif 
insert the query into the query queue 
// create a new content node 
create new content node via function 
New_Content_Node( ) 
return 

4. Replica Placement Algorithms 

In this section, we give three different replica 

placement algorithms CDN-Rand, CDN-PR and 

CDN-QueryStat algorithms which can be described 
as aggressive, conservative and moderated 

algorithms, respectively, in terms of the number of 

replica nodes created by these algorithms. Because 

CDN-Rand, CDN-PR and CDN-QueryStat replica 

placement algorithms create relatively large, small 

and medium number of replica nodes, respectively. 

The first algorithm CDN-QueryStat, as shown in 

Algorithm 1, places replicas on nodes where queries 

frequently come from. Algorithm 2 and 3 are CDN-
Rand and CDN-PR, respectively. The CDN-



QueryStat relies on simple and efficient mechanism 

to maintain data access history information and 

further capture the nodes from which the queries 

come from. Replicas are therefore created along the 

query incoming paths. CDN-QueryStat most likely 

places replicas on nodes one hop a way from the 
overloaded node.  

Algorithm 1: Content node creation - CDN-

QueryStat 

function New_Content_Node( ) 

if new content node creating flag is not set 
set new content node creating flag 

 find the node n from Query_Stat table  

  with maximum query rate, assume n
passes most queries to key k and 

kcdnn∉

if not found  

  randomly select node n from the DHT 

ID space, kcdnn∉ .

 assign n the most requested Key  in
Query_Stat table

endif 

 send cdn_request message to n

endif

In CDN-Rand, the new content node is selected 

randomly from the ID space of the overlay. 

Therefore, this algorithm shows a tendency of 

distributing the replicas uniformly across the 

network. Furthermore, some replicas may be placed 

far away from the overloaded node. Therefore, the 

negotiations and communications between the node 

requesting new content nodes and the candidate 
nodes may consume longer time. On the other hand, 

that may increase the query travel time between the 

source nodes and the destination nodes as well.  

Algorithm 2: Content node creation -  CDN-Rand 

function New_Content_Node( ) 

if new content node creating flag is not set 
set new content node creating flag 

 randomly select node n from the DHT ID space, 

kcdnn∉ .

 assign n the most requested Key  in Query_Stat 
table

 send cdn_request message to n

endif 

Algorithm CDN-PR selects the new content 

nodes using CDN-QueryStat algorithm, and then 
keeps replicating different data index keys on the 

same node until that node is saturated, then another 

new content node is selected using the CDN-
QueryStat algorithm again. Assume that a new 

replica of data ID k is to be created; new content 

nodes will not be selected for storing the replica 

until there is a clear evidence that the current 
content replica nodes cdnA of all data index keys 

hosted by the same node Nhost are saturated or 

included in the content delivery network of data ID 

k, cdnk. CDN-PR differs from CDN-QueryStat by 

showing a tendency of replicating data index keys 

on less number of content nodes in order to reduce 

the overhead of load updating between the nodes in 

content distribution networks. 

Algorithm 3: Content node creation - CDN-PR 

function New_Content_Node( ) 

if new content node creating flag is not set 
set new content node creating flag 

find the node n from cdnA , where Acdnn ∈ ,

and load n <  Wn – m  and assign n the next 
most requested Key  in Query_Stat table

if not found  

  randomly select node n from the DHT 

ID space  , kcdnn ∉

assign n the most requested Key  in Query_Stat 

table

endif 

send cdn_request message to n

endif 

In order to explain in details the differences 

between these algorithms, we give a simple example 

to describe the behaviour of each algorithm. In this 

example we assume that content node N0 

responsible for hosting a certain range of data index 

keys {K0, K1, K2, K3, K4, K5}, was overloaded, 

and replicated the following data index keys {K0, 
K1, K2, K3} in order to relieve itself. Node N0 

created the following number of replicas: 2 replicas 

of K0, 2 replica of K1, 2 replicas of K2 and 1 

replica of K3, and in the following order: K0, K1, 

K2, K3, K2, K0 then K1.   

Algorithm CDN-QueryStat replicates the data 

index keys based on the information from the 

QueryStat table. Table 1 shows the current 

QueryStat table of the original hosting node N0, this 

QueryStat table records top-3 frequently query 

routing nodes. As mentioned before, only top-x 
nodes are kept in each list. In this table, K0 has been 

queried 65 times recently, while 25 of them are 

routed via node N1, 20 of them are routed via N2, 

10 are routed via node N4 and the rest 10 are routed 

via other nodes. As shown in Fig. 1, QueryStat
algorithm replicated each key on the top frequently 



routing nodes of that key; K0 was replicated on N1 

and N2 because those nodes are the top two 

frequently routing nodes of K0. K1 was replicated 

on N2 and N3, K2 on N3 and N4, and K3 on N2. 

Table 1: QueryStat table of the original node 

Key (msg rate) Node-Id ( msg rate) 

K0(65) N1(25) N2(20) N4(10) 

K1(60) N2(24) N3(22) N6(14) 

K2 (50 ) N3(20) N4(18) N9(12 ) 

K3( 30) N2(15) N5(10 ) N8(5 ) 

CDN-PR relies on CDN-QueryStat algorithm to 
select only the new replica nodes. Therefore, CDN-
QueryStat was used to select the first replica node to 

host replica of K0 based on the information from the 

QueryStat table. As shown in Fig. 2, Node N1 was 

selected because it’s the first top frequently routing 

node of K0. Then CDN-PR algorithm replicated K0, 

K1, K2, and K3 on the same node N1. Then CDN-
QueryStat algorithm was used again to select 

another replica node to host a replica of K2 because 

the current content node N1 was already hosting a 

replica of K2. Therefore, N2 was selected because 

it’s the second top frequently routing node of K2. 
Then CDN-PR algorithm replicated K0 and K1 on 

the same node N2. If there is more than one content 

node meet the required criteria to host a new replica 

to choose from, the least loaded node will be 

selected to host the new replica.  

Algorithm CDN-Rand most likely replicates 

every data index key on different randomly selected 

node using uniform random replica node selection 

mechanism. Fig. 3 shows one of the possible 

replicas distribution scenarios. 

Fig. 1 Construction of content delivery network 

using CDN-QueryStat algorithm 

Fig. 2 Construction of content delivery network 

using CDN-PR algorithm 

Fig. 3 Construction of content delivery network 

using CDN-Rand algorithm 

5. Experiment Results 

We measure the performance of the three 
replica placement algorithms with a simulator built 

on top of FreePastry 1.4.1, in which the routing base 

is set to 2. Our simulation consists of 1000 nodes. 

The node IDs are randomly generated based on 

uniform distribution. Data items of 10,000 IDs 

published on the overlay are generated based on zipf

distribution with α =0.5. Queries select these keys 

as targets based on zipf distribution with α = 1.0. In 

this scenario, some data nodes are likely to host many 

hot keys each. Queries are submitted to the whole 

overlay in a Poisson process with varying average 
query arrival rate. The source nodes of these queries 

are randomly selected from the overlay based on 

uniform distribution. The hop-to-hop latency is set 

to 9ms. The query processing time is 20ms/query. In 

the experiment, we assume homogeneous node 

query processing capacity and set the maximum 

queue size to 50. The watermark of the load in a 

content node is set to 80% of its capacity, i.e., 40 

queries in its queue. A load-updating message is 

sent out when there is a workload change of 20%. 

Different query arrival rate defines different 
workload of the system. Query arrival rates vary 

from 1000 to 20000 queries per second in our 

experiment. 

Query Dropping Rate: In Fig. 4, CDN-
QueryStat, CDN-Rand and CDN-PR show 

comparable performance in terms of reducing query 

dropping rate. The experiment results show that 

CDN-QueryStat outperforms CDN-Rand under all 

workload circumstances; it is about 2-30% better 

than CDN-Rand. This is due to two main factors; 

firstly, requests to create new content nodes may be 

affected by the distance between the overloaded 
content node and the selected candidate content 

nodes. CDN-QueryStat selects the new candidate 

content nodes from a group of nodes one hop away 

from the overloaded content node. These nodes are 

most likely closer to the overloaded content nodes 

than the candidate content nodes selected randomly 



by CDN-Rand from the ID space. Therefore, not 

surprisingly, CDN-QueryStat was able to select a 

new content node and serve the coming queries 

faster than CDN-Rand. Secondly, Using CDN-

Rand, most likely the queries will be forwarded to 

the key node which is responsible for dispatching 
them to other content nodes within the content 

distribution network, if it is overloaded. The 

dispatching incurs additional cost which reduces the 

query processing capability of the content network. 

On the other hand, CDN-QueryStat pushes the 

content closer to the requestor. Therefore, queries 

most likely will arrive to some content nodes which 

hold the required data items before they arrive in the 

key node. Those content nodes will be responsible 

for dispatching queries to other content nodes if they 

are overloaded and not able to serve them. That 

most likely will distribute the query dispatching load 
among many content nodes and reduce the query 

forwarding delay. As a result, that increased the 

capability of the content distribution network to 

process those queries faster and reduced the number 

of dropped queries. 

Under heavy workload, CDN-PR performed the 

worst in terms of query dropping rate. CDN-
QueryStat is about 11-71% better than CDN-PR
when the load was above 5000 queries/second, and 

CDN-Rand is about 50-60% better than CDN-PR
when the load was above 10000 queries per second.  
This can be explained as follows: Firstly, as 

mentioned in section 3, as CDN-PR algorithm based 

on concentrating replicas on a minimum number of 

content nodes, and as the nodes in the network are 

heavily loaded, these nodes are most likely saturated 

faster and are not able to accept hosting more 

replicas as required by this algorithm. Fig. 8 shows 

that CDN-PR algorithm has the maximum number 

of rejected CDN-Requests which increased the delay 

of new content node creation and affected the 

performance of this algorithm. Secondly, as shown 
in Fig. 5, under heavy workload, CDN-PR 

performed the worst in terms of Queuing delay, 

CDN-QueryStat and CDN-Rand are about  (16-

34%),  (6-10%), respectively,  better than CDN-PR 

in terms of reducing Queuing delay. Therefore, as 

we mentioned before, less queuing delay results 

from short waiting queues which decreases the 

probability of dropping queries. 

Under light workload, CDN-PR achieved the 

best performance in terms of reducing the query 

dropping rate when the load was below 10000 
queries per second. CDN-PR performed similar to 

CDN-QueryStat when the load was below 5000 

queries/second, and is about (17-93%) better than 

CDN-Rand when the load was below 10000 queries 

per second. The performance of CDN-PR algorithm 

was improved because the number of rejected CDN-

Requests of CDN-PR was reduced as shown in Fig. 

8, due to the low query incoming rate which 

improved the ability of the candidate content nodes 

to accept more CDN-Requests. 

Average query traveling distance: as shown 

in Fig. 6, the experiments results show that CDN-PR 
and CDN-QueryStat algorithms outperform CDN-

Rand algorithm in terms of reducing query travel 

distance (number of hops) between the source node 

of the query and the destination content node. The 

results show that CDN-QueryStat is about (3-

12.5%) better than CDN-Rand. Also, CDN-PR is 

about (1-7%) better than CDN-Rand as well, 

because both of CDN-QueryStat and CDN-PR
algorithms most likely select candidate content 

nodes from a group of nodes one hop away from the 

overloaded content node. Therefore, replicating the 
content to these nodes will not only relieve the 

overloaded content but also will push the content 

closer to the requestor to reduce the travel time of 

many queries. Therefore, many queries will be able 

to get the required data items before they arrive in 

the key node.  

Furthermore, The reason which makes CDN-
QueryStat outperforms (1-7%) better than CDN-PR
is, as we mentioned before, CDN-QueryStat 

algorithm relies completely on QueryStat table to 

select candidate content nodes, Therefore, CDN-
QueryStat algorithm was able to select the best 

location to place the replicas and was able to push 

more replicas to be closer to the requestor than 

CDN-PR.

Query forwarding hops: As shown in Fig. 7, 
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Fig. 4 Number of dropped messages under different 
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Fig. 5 Average queuing time,  network size: 1000 
node, # keys: 10,000 
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number of hops, network size: 1000 node, #keys: 
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Fig. 7 Average of query forwarding hops among the 

CDN-Nodes, network size: 1000 node, #keys: 10,000 
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Fig. 8 Average number of 

rejected CDN-Requests, network 
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Fig. 9 Number of CDN-Nodes 

under different workloads 

Fig. 10 Number of load update 

messages, network size: 1000 node 

CDN-QueryStat algorithm performed the best in 

terms of reducing query forwarding hops among the 

content nodes which hold data items with the same 

data ID. On the other hand, CDN-PR outperforms 
CDN-Rand as well, because both of CDN-QueryStat
and CDN-PR select the candidate content nodes to 

be closer to the overloaded content node than the 

candidate content nodes selected by CDN-Rand to 

be uniformly distributed over the network. Also, 

CDN-QueryStat outperforms CDN-PR because, 

using CDN-PR, the content nodes most likely will 

be hosting more replicas, and may become saturated 

and heavily loaded faster, and the load update 

messaging mechanism will not be able to provide 

instant accurate load information to the other 

content nodes due to communication time. 
Therefore, those queries will be forwarded based on 

inaccurate information to some overloaded content 

nodes which may cause re-forwarding those queries 

again 

Rejected CDN-Requests: We compare the 

number of rejected CDN-Requests under different 

workloads in Fig. 8. The results of our experiments 

show that CDN-PR performed the worst in terms of 

rejected CDN-Requests because CDN-PR algorithm 

based on concentrating replicas on a minimum 

number of content nodes, these nodes most likely 
will be saturated soon and will not be able to accept 

hosting more replicas as required by this algorithm. 

As a result, as shown in Fig. 8, CDN-PR algorithm 

has more rejected CDN-Requests than CDN-
QueryStat and CDN-Rand. Furthermore, the 

experiment results show that CDN-QueryStat
algorithm has more rejected CDN-requests than 

CDN-Rand as well, because this algorithm also 

shows a tendency of replicating many data index 

keys on the same node. Therefore, under heavy 

workload, some nodes were saturated faster and 

rejected more CDN-Requests.  

Content nodes: Also, we compare the number 

of content nodes in Fig. 9 under different workloads. 

CDN-PR algorithm created the minimum number of 

content nodes, about 56-65% less content nodes 

than CDN-Rand and 32-34% less than CDN-
QueryStat, because CDN-PR based on concentrating 
hosting replicas on less number of content.  On the 

other hand, CDN-QueryStat shows about 16-36% 

less content nodes than CDN-Rand as well because 

CDN-QueryStat also shows a tendency of 

replicating many data items on the same node while 

CDN-Rand shows a tendency of distributing the 

replicas uniformly over the network. 

Load update messages: Decentralized content 

distribution and load balancing systems rely on 

periodic load updates from individual content nodes 

to balance the load and expand the content 
networks. However, more frequent load updates 

increases freshness of the load information at the 



cost of higher overhead. Fig. 10 shows that 

decreasing the number of content nodes does not 

necessarily lead to a drop in the number of load 

updating messages. Our experiments results show 

that CDN-QueryStat outperforms the other two 

algorithms in terms of reducing the overhead by 
achieving the minimum number of load updating 

messages when the query arrival rate was less than 

10000 queries per second. When the load exceeded 

10000 queries per second, Fig. 10 shows that CDN-
PR had less number of load update messages, but it 

does not necessarily mean that CDN-PR
outperforms the other two algorithms in terms of 

reducing load update messages; Because CDN-PR
dropped high number of queries under heavy 

workload which leaded to less number of queued 

and served queries by the network. As a result, the 

number of load update messages was reduced.

6. Conclusions 

The replica placement problem has drawn lots 

of attentions in unstructured overlay networks. 

However, it is not well studied in a structured 
overlay. In this paper, we gave three replica 

placement algorithms proposed for solving the 

access skew problem in a data index DHT overlay.  

We compared the performance of three 

algorithms. We detailed the advantages and 

disadvantages of each algorithm through simulation. 

Our simulation results revealed that system 

workload has great impact to the performance of 

replica placement algorithms. The results indicated 

that an adaptive mechanism that combines the three 

algorithms together is likely to improve the 

performance of content distribution and load 
balancing. Our results also showed that reducing the 

number of content nodes does not necessarily lead 

to reduced overhead of exchanging load update 

messages between the content nodes.  
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