
Explaining StGermain: An aspect oriented environment for building
extensible computational mechanics modeling software

Steve Quenette1, Louis Moresi2, P. D. Sunter1, Bill F. Appelbe1

1VPAC 2Monash University
Computational Software Development School of Mathematical Sciences
Melbourne, Victoria, 3053 Australia Melbourne, Victoria, 3800, Australia

{steve,pds,bill}@vpac.org louis.moresi@sci.monash.edu.au

Abstract

HPC scientific computational models are notoriously
difficult to develop, debug, and maintain. The reasons
for this are multifaceted — including difficulty of paral-
lel programming, the lack of standard frameworks, and
the lack of software engineering skills in scientific soft-
ware developers.

In this paper we discuss the drivers, design and
deployment of StGermain, a software framework that
significantly simplifies the development of a spectrum
of HPC computational mechanics models. The key
distinction between StGermain and conventional ap-
proaches to developing computational models is that
StGermain decomposes parallel scientific applications
into a hierarchical architecture, supporting applications
collectively built by a diverse community of scientists,
modelers, computational scientists, and software engi-
neers.

1. Introduction

StGermain [1] is a software infrastructure project
for developing computational fluid and solid mechan-
ics codes. It began in 2003, and is now the development
environment for a broad community of computational
geophysicists. Following an iterative development ap-
proach, the same environment is now being adapted to
research of multiscale metal forming processes.

StGermain’s organization is very different from ex-
isting libraries and frameworks for computational sci-
ence. This paper aims to explain the history and the
driving motivations of this environment. We then map
the environment objectives to the programming con-
structs that are the foundations of StGermain.

2. Background: The need for a paradigm
shift in computational science

Over the period of 2005 to 2006, the NSF coop-
erative Computational Infrastructure in Geodynamics
(CIG) [2] hosted several workshops soliciting commu-
nity direction on computational software infrastructure
for several disciplines of geodynamics. In particular, we
reference the NSF funded working group reports from
the Mantle Convection Workshop [3], the Workshop
on Tectonic Modeling [4], and the Magma Migration
Workshop [5]. These disciplines are distinct in that
computational mechanics computer simulation is used
and accepted as a means of supporting theories on the
processes of the Earth.

What is noteworthy from these reports is that sev-
eral “codes” have prevailed, deemed proven over time,
and accepted by the community for specifically scoped
problems. Each code is essentially differentiated by the
numerical schemes and constitutive models (equations)
adopted. Such codes tend to have just one primary de-
signer, and have evolved in an ad–hoc basis driven by
individual academic research needs and resources.

However, the common reported objective of these
communities is to broaden the scope of geological
signals modeled, incorporating phenomena that cross
temporal or spatial scales (including 3D parallel mod-
els). Yet, the existing codes presently do not have the
numerical schemes or the multi–physics capabilities to
enable such models. Hence, the working group recom-
mendations are largely directed at what numerics and
physics will enable these next generation models.

This problem of obsolete or hard to maintain codes
is not unique to computational geophysics or the NSF.
Equivalent problems are evident in programs within
NASA, ASCI and DARPA [6].

1-4244-0910-1/07/$20.00 ©2007 IEEE

3. A case–study of research code evolu-
tion: The path to Underworld

Our observation is that the discrete set of numerical
and constitutive capabilities of a code predominantly
determines the scope of modeling opportunities of that
code. This observation, predates the aforementioned
CIG initiative, and began with a study into the evo-
lution of the Ellipsis [8] code, as part of the develop-
ment of its parallel and 3D ultimate successor Under-
world [11, 12] largely within the Australian Computa-
tional Earth Systems Simulator (ACcESS) MNRF [9]
Snark project.

Underworld’s ancestry is illustrative. A code by the
name of convect [10] began in 1989 for a PhD disser-
tation. It is a 2D mixed finite element / finite difference
code written in C developed for Stokes flow problems.
Experiences from this led to the development of cit-
com [13] in 1994 as part of a post–doctorial position.
citcom was a 2D and 3D finite element with Multigrid
code also written in C. It was designed for a spectrum of
mantle convection and Green’s functions analysis prob-
lems. That is, effort was made into making the code
extensible to new problem domains. Despite exhibiting
some build and function pointer facilities to enable ex-
tensibility, by 1997 at least four distinct flavors of cit-
com existed. CitcomT [14] incorporated a representa-
tion for lithosphere faults by means of zero width ele-
ments and became 3D–spherical (enabling whole Earth
not just regional models). Another variant was de-
veloped that incorporated sub–surfaces to represent
faults [15]. CitcomS [16] introduced parallelism, full
Multigrid, and then also became 3D–spherical. Cit-
comS is still in wide use today. Lastly, the citcom
creator’s own version [17] took the path of full Multi-
grid and further developed constitutive models, which
in–turn targeted the realm of emergent faulting. How-
ever, it did not become 3D–spherical.

This was followed in 1998 by the development of
Ellipsis. Largely inspired by the latter version of cit-
com, but with a significant numerical scheme addition:
the Particle In Cell (PIC) Lagrangian integration point
method (a form of material point method [18]). Ellip-
sis was hence better engineered for large deformation
models. It was however only developed in 2D, but a 3D
version [19] has since been made by another author.

These different code versions were each motivated
by new scientific objectives that spanned both numer-
ical and physical domains. The software differences
between them are significant. A source code merge
and patching by a “forest” of switch statements were
deemed impractical. Furthermore, the explicit faulting
versions have not shared the continued use and evolu-

tion of citcom and CitcomS — suggesting that some-
times code features are experimental and need to be an
omit–able part of the software infrastructure, yet still
remain readily maintained for potential future use.

In 2001 the ACcESS Snark project began, which was
to promote the concepts of Ellipsis, to be parallel, 3D
and ultimately spherical. Given the 12 years of legacy
behind citcom and Ellipsis, a significant decision was
made at that time to “start from scratch”, to utilize ex-
isting software infrastructure from the computational
sciences domains, and to carefully consider the soft-
ware architecture for successful extensibility and scal-
able parallelism. An example was the immediate use of
the mpich [22] flavor of MPI and PETSc [21], enabling
portability from laptops to large cluster and shared
memory machines. The software named Snark [20] was
our first evolution — driven primarily by the widely
ranged collective group’s need to learn the methods
and technologies involved. It achieved moderate paral-
lelism up to 16CPUs and 3D, but omitted spherical. It
was also written in C, utilizing object oriented design
for controlling code (similar to the Model View Con-
troller style of general application development [40]),
but the Fortran–paradigm of large arrays for efficient
data allocation and access.

The present evolution is named Underworld. It is
used to model a spectrum of long–term geophysics
problems. It is 3D, parallel, PIC, and has Multigrid.
It was created using the following approach.

4. Objectives and approach

The fundamental lesson learnt in the development
of Snark was that statically typed object–orientation,
in which all types are fixed at compile time, of the
controlling code was not going to be enough to sus-
tain extensibility beyond the implemented numerical
and constitutive schemes. That is, these scientific
numeric and physics concepts cross both controlling
and data aspects, a quality that traditional object
and component– oriented programming do not handle
well [23, 39]. Clean enscapsulation of these concerns is
non–trivial, yet our case study suggests that these con-
cerns should be implemented as interchangeable soft-
ware components (that is, manageable units of code
with clear interfaces and high cohesion [24]).

Thus the measure of success of adaptability is to be
able to change the implementation of either a numer-
ical scheme or constitutive model without needing to
change the phenomena model code.

Our experience was that the numerical schemes and
constitutive models have a significant bearing on the
internal structural boundaries of a code. In theoriz-

ing the mythical man–month Brooks [25] also suggests
that internal structural boundaries are the lowest point
of usable abstraction in a program, and that chang-
ing these structural boundaries is changing the very
essence of the program. That is, it is an expensive
operation.

The question then becomes how does one achieve
such an extensible environment? In particular, how is
it achieved in a scalable parallel HPC environment?

Our approach was to consider the expectations and
interactions of the types of people involved in creating
a code base to the prescribed capability from an as-
pect oriented perspective. This drove the creation of
programming features that would enable such an en-
vironment. These are implemented in an open source
package named StGermain.

5. A conceptual model of the nature of
computational code development

The diversity of citcom illustrates that the devel-
opment of scientific codes often occurs as a distributed
community effort. That is, no one person created the
collective citcom and descendants’ capability. Rather,
with respect to academic code development, a powerful
base–line code is founded of which others build upon
to suit their research purpose [26]. The establishment
of the base–line code is usually through peer accep-
tance of a significant resultant publication. As others
undertake research derived from this publication, it is
natural that changes to the code are needed. Hence, a
research code needs to be extensible.

citcom’s case is also illustrative of the leveraged
computational science disciplines, and how different re-
searchers extended citcom with a different geological
phenomena context in mind:

• CitcomT and citcom-with–faults added the two
different forms of explicit faulting, within the
scope of finite element method techniques (clas-
sifiable as a computational mathematician con-
cern), to enable research into larger scale geo-
physical phenomena (the Tonga–Kermadec sub-
duction zone [14] and the role of faults in gen-
erating tectonic plates from mantle flow models
respectively [15]).

• CitcomS targeted efficient global scale mantle
modeling through the provision of parallelism
(classifiable as a computer science concern) and
a spherical discretisation scheme (classifiable as a
computational mathematician concern) well suited
to this problem.

Figure 1. Competencies of a computational
mechanics code — suggests that many skills
are involved in developing such a code, and
that these are research areas within them-
selves. However, as competencies, they are
related to each other, and these competen-
cies need to be aware they have “users”.

• citcom’s 2nd generation focused on the emergent
generation of faults through macro–scale constitu-
tive behavior [27] (classifiable as a computational
physicist concern), which in turn are strongly non–
linear behavior which produce systems of linear
equations that are harder to solve [28], and hence
the emphasis on improved numerical scheme tech-
nology (a computational mathematician concern).

In [26] we proposed a roles or competency based
conceptual model of how researchers within these vir-
tual communities of a computational mechanics code
interact (see Figure 1). When contributing to or using
the code, a member assumes the role of a particular dis-
cipline. Users may assume more than one role, based
on their competencies.

5.1. Scientist

Our definition of a scientist, or “end scientist / en-
gineer”, is one who uses an established tool to under-
take research or study of scientific or engineering rel-
evance. Scientists can be modeling or even computer
illiterate, but have strong scientific domain knowledge.
They use a computational model developed by a “mod-
eler”, changing only well understood parameters. As
scientists are not programmers, their interaction with
the model is via “input decks”, not programming.

5.2. Modeler

A modeler, or “phenomena modeler”, has an under-
standing of the mathematical and physical abstractions
used in modeling (for example the established partial
differential equations and constitutive behavior for a
class of problems). When creating a new model, they
create a conceptual composition of these numerical and
physical concerns. The modeler may switch roles, us-
ing a fabricated model as a scientist engaging in a re-
search study. If a desired numerical or physical feature
is not available, they switch to become a computational
physicist or mathematician, and undertake some cod-
ing to add or modify that feature.

The natural language to this competency is mathe-
matics (partial differential equations (PDEs) and con-
stitutive behavior is described mathematically, e.g.
[13], [14], [16]). Modellers use tools such as Mat-
lab in geophysical modeling (e.g. for verification [29]
and for analysis [30]). However, HPC performance of
tools such as Matlab is often a limiting factor.

The numerical scheme evolution in the developments
of convect–to–Snark is suggestive of why highly ex-
pressive environments fail to perform and scale as well
as purpose built C and Fortran codes. The numeri-
cal schemes, which improved with each evolution, had
significant bearing on the speed and scalability of the
code. That is, in computational mechanics users have
to be concerned with how the problem is solved, not
just what the problem is. Thus, there is a tradeoff be-
tween expressiveness and performance. In HPC this
performance and respective developer productivity re-
lationship is not well understood [31].

With this in mind, our approach is to moderately
distance from the mathematical expressiveness of the
phenomenological model. Instead we provide the mod-
eler with both an environment to declaratively describe
the model and how it is solved.

5.3. StGermain’s Model Description Files

Declarative languages [32] are languages where the
programmer describes what to do as opposed to how
to do it (for example SQL). Declarative languages are
considered safer and more productive than 3rd genera-
tion languages (such as C). In StGermain this language
is a weakly typed XML schema (see Figure 2).

A modeler uses this language to compose a model
application by describing the associations across nu-
merical, constitutive, governing and computational
concerns. Each aspect is implemented as a software
component (refer to section 5.4) within a toolbox or
plugin, which in–turn is dynamically loaded. Tool-

Figure 2. Modelers describe the composi-
tion of numerical and physical concepts that
make a desired phenomenalogical model in
an XML based model description file. The
back image shows an example of how field
operators are composed. These compo-
nents have parameters and associations to
other components, exampled by the gener-
ated graph in the front image.

boxes are a collection of StGermain components. For
example, Underworld is a toolbox of long–term geo-
physics boundary conditions and rheologies. It lever-
ages upon three other toolboxes in a layered soft-
ware approach [33]. StgDomain contains components
such as parallel 3D meshes and swarms (our equiva-
lent of meshes for a managed collection of particles).
The StgFEM toolbox houses constructs for defining
finite element systems, with several template PDEs
and appropriate solvers for them. PICellerator is
both a framework for developing Lagrangian integra-
tion schemes, and a toolbox that contains the PIC [8]
implementation. Underworld is also an application
with examples. Plugins differ from toolboxes predom-
inantly by the order they are loaded: the input file(s)
is read, toolboxes are loaded (populating the StGer-
main factories), the input file components are instanti-
ated, then the plugins are loaded and subsequent com-
ponents instantiated. Plugins hence allow a modeler
to leverage an existing model, isolating their desired

changes into a small plugin (encapsulation), which then
adds these artifacts to the StGermain factories. This
helps prevent users from directly modifying the layers
of utilized toolboxes.

5.4. StGermain’s Lightweight components

StGermain components are intended for the con-
trol (management and algorithms) of fine grain com-
putational concerns. They differ from the concept of
self–describing service architectures, such as the Com-
mon Component Architecture (CCA) [34]. They ex-
hibit six pre–defined services: a default constructor for
use in the resource broker, and then the five phases
of construction, build, initialize, execute and destroy.
They are implemented as virtual functions, in the C++
sense, through StGermain’s optimized implementation
of inheritance in C. They are available only to the local
memory of a process.

A component must implement all its phases and has
no mechanisms for publishing more capabilities. This
limitation aligns with the fine–grain nature and HPC
concerns. Hence the resource broker is merely an in-
stance of the factory design pattern. Also, due to the
memory intensiveness and book keeping of (for exam-
ple) finite element codes, the build and initialization
occurs in distinct phases.

StGermain components, written as C “.c” and “.h”
pairs, are required to provide a supplementary “.meta”
description file. This requirement is enforced by the
StGermain build system. Some of this metadata is
auto–generated into string symbols and linked into the
relevant library. This provides the ability to audit the
copyright or referenced papers per component at run–
time, for example. Some are used for run–time type
information, which for example, can be used to vali-
date parameters and associations. This information is
also used to generate a component reference document.
The entities include: copyright, licenses, description,
parameter documentation, and association documen-
tation. A possibility is to make this schema Dublin
Core [35] compliant, where ultimately each component
is sufficiently self–described and instantiable from an
RDF [36] perspective. Another possible approach is
via MDS [37].

The use of this generic component abstract type,
and the ability to interchange components, prompts the
question of “what is a valid phenomenological model”.
This issue is known as composability [38]. It is an
emerging issue in the real–time simulation and web
services domains, where new applications are being
built from an established component base. In StGer-
main, syntactic composability is addressed through the

validation of component associations by means of the
meta information. However, semantic composability is
not address thus far. Semantic composability asks the
question: does the association of any two components
make sense? In Underworld’s case an example of this is
using both the Arrhenius and FrankKamenetskii tem-
perature rheology components at the same time.

5.5. Computational Physicist

A computational physicist is concerned with the de-
velopment of constitutive models. This includes the
implementation of laws for viscosity, plasticity, elas-
ticity, and the respective parameterization of materi-
als. Often the adjoining test or benchmark to a new
or modified constitutive model is based on laboratory
experiments. We tend to encourage using them as part
of the regression test suite. Computational physicist
typically wish to work in an environment that hides
explicit parallelism. However some physical concepts
are inherently global, which in turn can be limited to
light parallel programming, and in turn may effect par-
allel scaling. A modeler can chose whether they wish
to use such a feature.

Here entails a long–standing complication: let us
assume a computational physicist wishes to add a new
yielding model (i.e. a model for describing how and
when a material becomes plastic as a function of the
present strain and stress state), for example Drucker–
Prager. Structured and typed–based object–oriented
programming would require that the original source be
modified in three ways. It would include adding the
new behavior in the section of code that associates con-
stitutive behavior to material types. It would imple-
ment the behavior itself. It would also add the neces-
sary parameters to the material model (which can take
the form of a lookup table, and/or history variables
on the discretised material). However, to the compu-
tational physicist, this yielding model is one distinct
concept. Furthermore, such coding practice is against
our objectives.

5.6. Separation of concerns

Jacobson and Ng [39] highlights two crosscutting
concerns that are evident in the example above: peers
and extensions. Concerns are functional and non–
functional requirements (e.g. memory access speed and
numerical ideas are concerns that are typically not con-
sidered as functional requirements). Ideally one aims
to encapsulate all concerns with classes or components.
However, inevitably some concerns are incompatible
with the object model, and consequently impact mul-

tiple classes. The yielding model and the concept of a
material are peers, that is, they are distinct concerns.
Similarly the yielding model is a concern implemented
on an established constitutive matrix builder (i.e. an
extension of an another concern). An implementation
that will have better separation of concerns, and ar-
guably better extensibility, is to have the yielding code
localized. Where parts of this yielding model encom-
pass other concerns, those parts are patched into the
appropriate concerns at compile– or run–time. This is
in essence the aspect–oriented methodology [39].

5.7. StGermain entry points and extensions

StGermain supports an aspect oriented methodol-
ogy through means of entry points and extensions, for
behavioral and state patching respectively.

An entry point is essentially a container of function
pointers (hooks), which by default execute in order.
The containers can add, replace all, insert before, and
other such operations typical of containers. The im-
plementation of concerns that have known crosscuts
instantiate entry points during the build phase and ex-
ecute them at the appropriate spot (the runtime over-
head is at most 20% and is considered acceptable [7]).

Extensions aim to mimic dynamic typing, where by
one concern/component may extend a data structure
on another concern/component at runtime. Similarly
to entry points, concerns with known crosscuts need to
instantiate an extension for the data structure. If ex-
tension contributions are added before the data struc-
ture is instantiated, then the extension is a natural
extension of the data structure. Otherwise, a sepa-
rate memory block for the extension is allocated. The
component phases and association construction order-
ing are used to promote the former case, increasing
memory locality.

Having to know the crosscuts is a shortfall of this
implementation. However, given the objectives of HPC
performances, and layered software, this technical lim-
itation is deemed acceptable. An alleviating feature is
the StGermain context, which is essentially a compo-
nent implemented by only entry points. Its purpose is
to help nurture dynamic coding.

5.8. Computational Mathematician

A computational mathematician is concerned with
the discretisation and numerical schemes of computa-
tional problems. Unfortunately, there is an invariable
exposure to parallelism to some facets of this compe-
tency. Whereas code to use an operator on a field (e.g.
taking a gradient) requires no exposure to parallelism,

Figure 3. A snopshot of a slab subduction
model, illustrating the inherently 3D phenom-
ena. The visualisation was produced by gLu-
cifer a parallel compute–time visualisation
toolbox built upon StGermain.

implementing a new operator may as the field is de-
composed over the processor space. Changes made by
a computational mathematician typically involve low
level constructs and in turn typically have significant
impact. It further compounds the need to have an ef-
fective method for ensuring the separation of concerns.

5.9. Computer Scientist

In this scheme, the computer science competency is
concerned with performance, parallelism and facilitat-
ing this environment. That is, it encompassed software
design and computational science fundamentals. The
development of StGermain is by this competency.

6. Underworld Examples

We present two examples based on the Underworld
toolbox. They share very many components, but differ
mostly in exact consititutive behavior used.

6.1. Slab subduction

One of the Geodynamics modeling applications that
the StGermain–to–Underworld framework has been ap-
plied to is an important area of plate tectonics: the sub-
duction of tectonic plates or “slabs” [12]. In particular,
researchers wished to investigate the three dimensional
flow and rollback regime as a result of different plate
geometries and material models (see Figure 3).

Figure 4. Emergent shear bands from rheo-
logical behaviour models.

This modeling goal required capabilities from, and
drove improvements to, the framework at all levels,
such as checkpointing very large 3D datasets for both
restart and analysis; and methods to visualise very
large particle sets as isovolumes. Models range from
150,000 to 1,500,000 unknowns on up to 32CPUs. Prior
work in this field had typically been constrained to 2D
models.

6.2. 3D faulting

Another example is the scaling of rheological models
based on [11] to scales of geological relevance in 3D (see
Figure 4). This model needs upwards of 2 million un-
knowns, which would be more practical with scalability
to over one hundred CPUs. To reach this objective, we
have identified that despite StGermain meshing being
able of 3D decomposition, the original finite element
equation numbering component is not. A current ac-
tivity is the development of this feature. When ready,
using it should be as easy as declaratively substituting
it in the model description file, as was proven when the
multi–grid component became available.

7. Conclusion

As demonstrated in the examples, distinctive and
ever increasingly scalable models are being developed
in the StGermain environment. The driving objectives
are founded on an established community need, and
demonstrated through the 12year evolution and divar-
ication of convect to Underworld.

The mixture of fine grain components for controller
code over an array based data model, a declarative lan-

guage for phenomenological model composition, and
aspect oriented technologies for encapsulating scien-
tific concepts are the programming constructs used to
facilitate this environment. By creating an environ-
ment that nurtures interoperable numerical schemes
and constitutive behavior, and encouraging their de-
velopment by a broad community, real reuse of HPC
ready computational mechanics software is possible.

8. Acknowledgements

Funding for StGermain has been predominantly pro-
vided by: VPAC, the ACceSS MNRF Snark project,
the APAC CTT program. We would like to thank the
significant contributions to StGermain from Compu-
tational Infrastructure in Geodynamics, Caltech’s Ge-
oFramework NSF ITR, and the University of Deakin’s
Xanthus project. We would also like to thank Alan Lo,
Luke Hodkinson, Raquibul Hassan and Kathleen Hum-
ble for their contributions to StGermain, Julian Gior-
dani and Kent Humphries for their meta data work,
and linear algebra, FEM, PIC and Underworld contri-
butions of Matt Knepley, Dave May, Mirko Velic, Rob
Turnbul. Dave Stegman and Justin Freeman have been
instrumental in driving the development of the infras-
tructure with their slab models 3. gLucifer is main-
tained by Cecile Duboz.

References

[1] http://www.stgermainproject.org

[2] http://www.geodynamics.org

[3] S. Zhong, et al., Report to the CIG from the
Boulder Mantle Convection Workshop, http://www.

geodynamics.org

[4] D. Harry, L. Lavier, and S. Willet, Report to CIG
from the NSF Workshop on Tectonic Modeling, http:
//www.geodynamics.org

[5] M. Spiegelman and L. Montesi, Report to the CIG
from the 2006 Magma Migration Workshop, http://

www.geodynamics.org

[6] D. E. Post and L. G. Votta., Computational Science De-
mands a New Paradigm, Phys. Today, January (2005)
35.

[7] S. M. Quenette and B. F. Appelbe and M. Gurnis and L.
J. Hodkinson and L. Moresi and P. D. Sunter”, An in-
vestigation into design for performance and code main-
tainability in high performance computing, ANZIAM
J., 46, C1001-C1016, 2005

[8] L. Moresi, F. Dufour, and H. B. Muhlhaus., Mantle con-
vection modeling with viscoelastic/brittle lithosphere:
Numerical methodology and plate tectonic modelling,
Pure And Applied Geophysics, 159(10) pp 2335-2356,
August 2002.

[9] http://access.edu.au

[10] Moresi, L. and Parsons, B., Interpreting gravity,
geoid, and topography for convection with temperature-
dependent viscosity - application to surfacefeatures on
venus, J. Geophys. Res.-Planets, 100, 21155-21171,
1995

[11] Moresi, L. and Muhlhaus, H.-B., Anisotropic vis-
cous models of large-deformation Mohr-Coulomb fail-
ure, Philosophical Magazine, 86, 3287-3305, 2006

[12] Stegman, D. R. and Freeman, J. and Schellart, W. P.
and Moresi, L. and May, D. A., Influence of trench
width on subduction hinge retreat reates in 3D mod-
els of slab rollback, Geochem. Geophys. Geosys., 7,
Q03012, 2006

[13] Moresi, L. and Solomatov, V. S., Numerical investi-
gations of 2D convection with extremely large viscosity
contrasts, Phys. Fluids, 7, 2154-2162, 1995.

[14] Billen, Magali I., Gurnis, Michael and Simons, Mark.,
Multiscale dynamics of the Tonga-Kermadec subduc-
tion zone, Geophysical Journal International, 153 (2),
359-388, 2003.

[15] Zhong, S., M. Gurnis, and L. Moresi., The role of
faults, nonlinear rheology, and viscosity structure in
generating plates from instantaneous mantle flow mod-
els, J. Geophys. Res., 103, 15255-15268, 1998

[16] Zhong, S., M. T. Zuber, L. Moresi, and M. Gurnis.,
Role of temperature-dependent viscosity and surface
plates in spherical shell models of mantle convection,
J. Geophys. Res., 105, 11063-11082, 2000.

[17] Moresi, Louis and Solomatov, Viatcheslav., Mantle
convection with a brittle lithosphere: thoughts on the
global tectonic styles of the Earth and Venus, Geophys-
ical Journal International, 133 (3), 669-682, 1998.

[18] D. Sulsky, and H. Schreyer, Antisymmetric form of the
material point method with applications to upsetting
and taylor impact problems, Comput. Methods Appl.
Mech. Eng., 139 (1996) 409-429.

[19] O’Neill, C., Moresi, L., Mller, R.D., Albert, R. and
Dufour, F., Ellipsis 3D: a particle-in-cell finite element
hybrid code for modelling mantle convection and litho-
spheric deformation, Computers and Geosciences, 32,
1769-1799, 2006.

[20] L. Moresi, D. May, J. Freeman and B. Appelbe, Man-
tle convection modeling with viscoelastic/brittle litho-
sphere: Numerical and computational methodology
Computational Science, ICCS 2003, Pt III, Proceed-
ings 2659, pp 781-787, 2003.

[21] S. Balay, V. Eijkhout, W. D. Gropp, L. C. McInnes,
and B. F. Smith., Efficient Management of Parallelism
in Object Oriented Numerical Software Libraries, Mod-
ern Software Tools in Scientific Computing. E. Arge, A.
M. Bruaset, and H.P. Langtangen, editors, Birkhauser
Press, pages 163-202, 1997

[22] W. Gropp and E. Lusk and N. Doss and A. Skjellum, A
high-performance, portable implementation of the MPI
message passing interface standard, Parallel Comput-
ing, 22, 6, 789-828, 1996.

[23] Grundy, J., Aspect-oriented requirements engineer-
ing for component-based software systems, Require-

ments Engineering, 1999. Proceedings. IEEE Interna-
tional Symposium on, vol., no.pp.84-91, 1999

[24] Brown, A.W.; Wallnan, K.C., Engineering of
component-based systems, Engineering of Complex
Computer Systems, 1996. Proceedings., Second IEEE
International Conference on, vol., no.pp.414-422, 21-25
Oct 1996

[25] F. Brooks, Jr., The Mythical Man-Month (20th An-
niversary edition), Addison-Wesley, 1995.

[26] S. M. Quenette, L. Moresi, P. D. Sunter, L. J. Hod-
kinson, R. Hassan, A. Lo, B. F. Appelbe, R. Turnbull.,
Supporting community based computational code de-
velopment, Proceedings of APAC05, 2005

[27] Fullsack, Philippe., An arbitrary Lagrangian-Eulerian
formulation for creeping flows and its application in tec-
tonic models, Geophysical Journal International. Vol.
120, no. 1, pp. 1-23. Jan. 1995

[28] Moresi, L. and Zhong, S. J. and Gurnis, M., The ac-
curacy of finite element solutions of Stokes’ flow with
strongly varying viscosity, Phys. Earth Planet. Inter.,
83-94, 97, 1996

[29] Kaus B.J.P. (2005). Modelling approaches to geody-
namic processes, PhD-thesis. ETH-Zurich, Switzerland.

[30] Gorbatov, A., Limaye, A. and Sambridge, M., To-
moeye: A Matlab package for visualization of three-
dimensional tomographic models, Geochem. Geophys.
Geosyst., 5, No. 4, 9 April 2004.

[31] J. Kepner, HPC Productivity: an Overarching View,
International Journal of High Performance Computing
and Applications: Special Issue on HPC Productivity
(ed. Kepner), vol. 18, no. 4, Winter 2004.

[32] Diomidis Spinellis, Choosing a Programming Lan-
guage, IEEE Software, vol. 23, no. 4, pp. 62-63,
Jul/Aug, 2006

[33] Bill Appelbe, Louis Moresi, Steve Quenette, and
Patrick Sunter., Scientific Software Frameworks and
Grid Computing: Improving Programming Productiv-
ity, WoCo9: Grid-Based Problem Solving Environ-
ments: Implications for Development and Deployment
of Numerical Software, in press, 2006

[34] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna
Keahey, Scott Kohn, Lois McInnes, Steve Parker, and
Brent Smolinski., Toward a common component ar-
chitecture for high performance scientific computing,
In Proceedings of the 8th High Performance Distributed
Computing (HPDC’99), 1999.

[35] http://dublincore.org

[36] http://www.w3.org/RDF

[37] http://www.globus.org/toolkit/mds

[38] M. D. Petty and E. W. Weisel, A Composability Lex-
icon, Proceedings of the Spring 2003 Simulation Inter-
operability Workshop, Orlando FL, March 30-April 4
2003, 03S-SIW-023.

[39] Ivar Jacobson and Pan-Wei Ng, Aspect-Oriented Soft-
ware Development with Use Cases, Addison-Wesley,
2005.

[40] E. Gamma, R. Helm, R. Johnson, J. Vlissides., Design
Pafterns, Addison-Wesley, 1995.

