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Abstract

Computational grids clusters, provide powerful comput-
ing resources for executing applications of large scale. In
Grid (clusters) usually several applications run simulta-
neously.The originality of Grid’5000 is that each applica-
tion has characterized by its own specific requirement such
as operating system (OS) or library components. Deploy-
ing the adequate OS needs to reboot the processors on
which the application is executed. It is time-consuming and
moreover frequent reboots may damage machines. In this
work we investigate how to minimize the number of deploy-
ments, while keeping the running time as short as possible.
We present the multiprocssors scheduling with déployement
problem and provides a lis scheduling algorithm. The anal-
ysis details are presented in the worst case performence of
the algorithm.
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1 Introduction/Motivation

Computational clusters are more and more used to fulfill
computing needs of medium and small size organization.
Problems, such as electric consumption, price and gener-
ated heat, grow with the size of the cluster. In addition some
users use only sporadically their clusters. The interconnec-
tion of clusters is a way to share both computer costs and to
a comput problems of a large scale using the whole set of
clusters.

Grid’5000 project aims at building a highly config-
urable, controllable experimental Grid platform gathering
9 sites geographically distributed in France featuring a to-
tal of 5000 CPUs [6]. Grid’5000 belongs to a “novel” cat-
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egory of research tools for Grid research, it is highly recon-
figurable, controllable and monitorable real life time plat-
form. The prototype feture that Grid’5000 introduces is its
degree of reconfiguration, allowing researchers to deploy
and install the exact software environment they need for ev-
ery experiment.

The core of any automatic operating system deployment
is the bootstrap stage. It consists of starting a minimal op-
erating system being able to write on the hard disk and to
acces the network. The bootstrap downloads the system im-
age and writes it on the disk. One simple way to run the
bootstrap is to load it from the network too, using one of
the standard ways such as TFTP or PXE. Kadeploy [7] is
the grid5000 software stack in charge of the operating sys-
tem deployment. Kadeploy is a fast and scalable deploy-
ment system towards cluster and grid computing. It pro-
vides a set of tools, for cloning, configure (post installation)
and manage a set of nodes. Currently it deploys succefully
linux, *BSD, Windows, Solaris on x86 and 64 bits comput-
ers. Deploying multiple computing environment on clus-
ters or grids cannot be easily handled with current tools that
are often designed to deploy a single system on each node.
Nodes are rebooted during each deployment two times at
least. On hardware with gigabit of memory, rebooting is
a very long process, taking few minutes. On Gigabit net-
works, downloading the operating system image is less than
10 seconds. Thus whatever the operating system to install,
the deployment time is strongly dominated by the reboot
time [1]. Consequently, the time of installation does not de-
pend much on the numer of nodes. In our experiments in-
stalling an operating system on one node requires 200 sec-
onds, while installing an operating system on 100 proces-
sors is 300 seconds long. In this paper, the study is focused
on Grid’5000’s clusters.

A recent study of the availability of desktop machines
within a large industry network [10], which is a typical
large scale virtual PC farms targeted for global computing
platforms in industry and university demonstrates that from
5% to 10% of the machines become unreachable in a 24
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Figure 1. (a) Number of deployement Dsum =
4, (b) Number of deployement Dsum = 3

hour period. In the Grid’5000 the problem is similar. When
the requests for deployment is important, a simultaneous in-
teraction between the various servers can be a source of fail-
ure and the nodes become inaccessible for very long time.

Our goal is to achieve all together an efficient allocation
of parallel tasks on the cluster and to maximize the avaibil-
ity of of the cluster by minimizing the number of environ-
ment deployment.

The Multi-Processor Scheduling with Deployment prob-
lem; MPSD is a bi-objective problem, which the objectives
are to optimize both the completion time of tasks, i.e. the
makespan Cmax, and the number of deployment of operat-
ing systems Dsum necessary for the execution of the tasks.

Figure 1 details an example with 2 processors, 3 environ-
ments (represented by different geometrical patterns) and
4 tasks Each task must be executed on one processor,and
needs an environment. Case (a) shows that if we do not
take care about the number of deployment, the processor P2
makes two environments installation leading to the comple-
tion time Cmax = 6 . Case (b) shows that the makespan
is the same when reducing the number of deployments i.e.
Cmax = 6 and the number of deployments is 3.

In some case, minimizing the number of deployment,
can not change the makespan value or make this value larger
or smaller.

Our goal is to find a strategy which makes it possible to
minimize the makespan and the numbers of deployment.

In this paper we present the Group List Scheduling algo-
rithm, GLS. Given an arbitrary parameter λ as a makespan,
the algorithm can construct a schedule whose makespan is
less than 4λ and a number of deployment less than 2Dλ

where Dλ is the minimum number of deployments for given
λ.

After a short recall of some fundamental results in rigid
multiprocessors scheduling in related work section 3, we
define the scheduling problem with deployment in section 4.
We present in section 5 a bi-criteria algorithm for schedul-
ing with deployement for multiprocessors rigid tasks and
we prove its guarantee before concluding.

2 The Multiprocessors Scheduling Problem
with Deployment

We consider a cluster architecture composed of m iden-
tical processors and a set of environments of work E =
{e(Ti) = j\j = 1, · · · , s}. The system executes the set
Γ = {T1, T2, .., Tn} of independents tasks.

Each multiprocessor task Ti needs to be run on qi pro-
cessors with the environment e(Ti) = j/j = 1, · · · , s. The
processing time of Ti is pi and the amount of work of each
task is piqi = wi.

The operation of the system is assumed to be non-
preemptive. A task must start on all the processors in the
same time.

Before a processor proceeds to execute the task, the re-
quired environment must be installed.

The finishing time Cmax of the scheduling is defined to
be the time at which all tasks have been completed:

Cmax = max
Ti∈Γ

Ci

where Ci is the completion time of task Ti for the schedul-
ing. Let a deployment function D : E 7→ N, counts for
each environment e the number of processor’s deployment.
Then the total number of deployment for scheduling is :

Dsum =
n∑

i=1

D(e(Ti))

The problem of scheduling computation on processors to
minimize the total execution time of a program which con-
sists of a set of independents multiprocessor tasks has been
widely studied [9, 8]. Given m processors, the Multipro-
cessors Scheduling Problem with Deployment is to deter-
mine when and where every task is executed while optimiz-
ing the makespan and the number of deployment. As for
most scheduling problem, optimal solutions are generally
difficult to obtain unless P = NP [3].

3 Related Work

We tried to model our problem on graphe representation.
Such as, the tasks are represented by the vertex and the de-
ployment by the edge. We realized, that graph representa-
tion can not take care about the allocation of the multipro-
cessors tasks. The particular case of multiprocessors tasks
(malleables tasks) can be represented like a DAG, the inter-
ested reader can find more information on [8].

Like the majority of scheduling problems to optimize
the makespan, our problem includes the traditional problem
P2||Cmax , which consists in scheduling sequential tasks
on 2 processors and is equivalent to the well-know NP-Hard
PARTITION problem. When the number of processor is
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Figure 2. (a) Minimizing the makespan, (b)
Minimizing the number of deployment

limited, to m = 2 or 3, this problem can be solved in a
pseudo-polynomial time but for m ≥ 5 it becomes strongly
NP-Hard [2].

In practice, instances with large amount of data cannot
be solved optimally in a reasonable time unless P = NP .
That is why heuristics technics were designed. Among the
first heuristic with performance guarante, Graham proposed
List Scheduling [4, 5].

List scheduling [4] is a class of low complexity schedul-
ing algorithms in which tasks are placed in a list, ordered
as decreasing priority. The selection of tasks to be imme-
diately processed is done on the basis of priority with the
higher priority tasks executable being assigned processors
first. [5] showed that for an instance using S resources,
any list scheduling algorithm provides a solution more than
S + 1 of the optimal solution. Our problem corresponds to
the case using only one resource (S = 1), the processors.

4 The Idea of Trade-Offs

The problem of minimizing the number of deployments
is an easy problem. To obtain the optimal solution it is suffi-
cent to sort task by environment and schedule them sequen-
tially. However, it does not minimize the makespan. In Fig-
ure 2, the instance is composed of n single-processors tasks,
each one requiring p processing time and all tasks used the
same environment. Minimizing the number of deployments
is achieved by scheduling all tasks of a particular environ-
ment on a single processor. The makespan in the worst case
is as worse n times the optimal makespan. The optimal
makespan is achieved by scheduling all tasks of a particular
environement on n processors.

The two criteria are antagonistic, the approche is to find
a trade-offs between the criteria, such as find a “good”
makespan for a “good” number of deployement, figure 3.

This article presents a scheduling algorithms which pro-
vide efficient trade-offs between the makespan and the num-
ber of deployments
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Figure 3. Goal : Minimizing both the
makespan and the number of deployment

4.1 Lower bounds

We denote by the parameter λ the makespan value which
is taken as reference. A feasible scheduling is enough if it is
larger than the size of the greatest task and the average of ex-

ecution time of all tasks. λ ≥ C∗
max ≥ max

1≤i≤n

( n∑
1

Wi

m
, pi

)
Let us denote Dλ our lower bound on the number of de-

ployment. Dλ is a function of a given makespan. If we
choose an arbitrary value λ for the makespan, for all envi-
ronments, Dλ fulfills two properties:

• The task Ti of a particular environment e using the
largest number of processors qe

max must be scheduled,
thus at least qe

max deployments of environment e are
done in any solution.

• All tasks of environment e must be scheduled before
λ. Thus enough processors need to be provided in any
solution with a makespan lower than λ.

Thus,

Dλ =
∑
e∈E

max

(
qe
max,

⌈∑
Ti∈e

W e
i

λ

⌉)

5 Bi-Criteria Algorithm

There is a trade-off between the number of deployments
and the makespan, the greater the makespan, the smaller
the number of deployments. The idea is to build a rectan-
gle with length λ and width m and then schedule the tasks
inside the rectangle trying to minimize the number of de-
ployments.

List Scheduling Group, algorithm (LSG) is made of two
phases. The first phase consists of building the groups. Dur-
ing the second phase those groups are scheduled. The tasks
are partitioned according to their environment.

Two classes of groups are defined :
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• The canonical groups whose class will be noted Gc

• The layered group whose class will be noted Gl

Each group g use qg number of processors during pg time
units.

5.0.1 Layered Group

The tasks belonging to a layered group are scheduled se-
quentially in the order of decreasing number of processors.
Each task of the group uses strictly more than half of the
processors used by the first task of the group (cf Figure 4,
part (a) and (b)).

If there is a layered group with processing time higher
than 2λ, i.e.

∑
Ti∈g pi > 2λ then it is changed to canonical

group.
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Figure 4. Layered Group

5.0.2 Canonical Group
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Figure 5. Canonical Group

We call a canonical number of processors (qc
g) the num-

ber of processors necessary to execute the amount of work
of a set of tasks in time lower than λ.

qc
g =

⌈∑
E(Tk)=e Wk

λ

⌉
A group is canonical if all the tasks of this group use less

then qc
g processors.

Then tasks can thus be scheduled on qc
g processors by

any list algorithm in time lower than 2λ [4].

It should be noted that any task using less qc
g processors

can be added to this canonical group, thus defining a new
value for qc

g .

5.1 The Group’s Properties and Schedul-
ing

Any group belonging to Gc or Gl has the following prop-
erties:

• Property 1 :
∑

Ti∈g Wi ≥ pgqg

2

• Property 2 : pg ≤ 2λ and qg ≤ m

The first property shows that the total amount of tasks’s
work requires more than half of the area of the each group.
In the second, the processing time of each group has to be
less than 2λ and the number of processors used by each
group must be less m.

We seek to build the layered groups with different size
those which use the majority of processors. Remaining
tasks are gathered in the maximum canonical group. If the
processing time of a layered group is longer than 2λ, it is
converted to a canonical group.

Any layered group using fewer processors than a canon-
ical group it is merged into a larger canonical group. By
construction there cannot be more log2 m layered groups
by environment. Finaly, for each environment, at most one
canonical group remains and all layered groups use more
processors than the canonical group.
Indeed, each group can be seen like a rigid parallel Meta-
task excuting the tasks of the group. Then, the algorithm
schedules meta-tasks using the list scheduling algorithm on
m processors.

Theorem 5.1 GLS Algorithm constructs a schedule hav-
ing a makespan less than 4λ time and the number of de-
ployment less than 2Dλ.

5.1.1 Makespan’ s approximation ratio

We will recall one of the [4] result for our case in order
to highlight its properties which we used it to design our
algorithm.

Theorem 5.2 Any list algorithm, schedules a succession of
independent rigid parallel tasks with 2 guarantee of perfor-
mance for the makespan

Proof 5.3 Using the Graham’s results in algorithm’s con-
struction, both of group respect the basic properties :
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Data: Set of Tasks Γ = {T1 = (e(T1), p(T1), q(T1)), T2 = (e(T2), p(T2), q(T2)), ..., Tn = (e(Tn), p(Tn), q(Tn))}
Ej Environments such as j = 1, .., s
m Number of processors
Result: Scheduling of tasks on m processors
begin

λ ≥ max
1≤i≤m

( n∑
Wi

m
, pi

)
Let Wi = p(Ti)q(Ti) Amount of work using by the task Ti

Gc ←− ∅
Gl ←− ∅
for j = 1 to s do

ΓEj = {Ti/e(Ti) = j}
for each ΓEj

do
Sort tasks according to decreasing number of processors:
ΓEj = {T1, T2, · · · , Tr} such as q(T1) > q(T2) > · · · > q(Tr)
BeginLayered←− T1

EndLayered←− T1

LayeredGroup = [BeginLayered,EndLayered]
pLayered = p(T1)
Gl

j ←− ∅
while EndLayered 6= Tr do

if pLayer ≤ 2λ then
if q(EndLayered + 1) > 1

2q(BeginLayered) then
EndLayered + +
pLayered = pLayered + p(EndLayered)

else
Gl

j ←− Gl
j ∪ {[BeginLayered,EndLayered]}

BeginLayered←− EndLayered + 1
EndLayered←− BeginLayered
playered = p(BeginLayered)

else
Gc

j ←− {[BeginLayered, Tr]}

qcanonical =

⌈ ∑
Ti∈Gc

j

Wi

λ

⌉
for All LayeredGroup ∈ Gl

j in reverse order do
if qcanonical > q(BeginLayered) then

Add all tasks of LayeredGroup in Gc
j

Gl
j ←− Gl

j\LayeredGroup

qcanonical =

⌈ ∑
Ti∈Gc

j

Wi

λ

⌉
List Scheduling of tasks in Gc

j using qcanonical processors

Let Gl
j set of MetaTasks such that MetaTask = ([BeginLayered,EndLayered], playered, qLayered);

Gc ←− Gc ∪Gc
j

Gl ←− Gl ∪Gl
j

List Scheduling of MetaTask in Gl, Gc using m processors
end

Algorithm 1. GLS Algorithm
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• max pgi ≤ 2λ

•
∑

Ti∈g
Wi

m ≤ 2λ

And C∗
max ≤ λ ≤ 2C∗

max Let the optimal makespan for
an instance with Meta-task MetaC∗

max = 2C∗
max ≤ 2λ.

And now consider the new scheduling problem of a rigid
multiprocessors Meta-tasks i.e. groups.

We will show this result by contradiction. Let q(t)
amount of processors used by the Meta-tasks at time t, one
of the consequences of list algorithms is that

∀t1, t2 ∈ [1,MetaCmax) t1 ≤ t2 −MetaC∗
max

q(t1) + q(t2) > m (1)

It should initially be noted that the processing time of all
the meta-tasks are smaller than MetaCmax, if not, optimal
scheduling could not schedule them on time MetaC∗

max. If
the equation 1 were false, the Meta-tasks scheduled at the
moment t2 could all be scheduled earlier at the moment t1.

Let us suppose that the makespan of a meta-tasks is
MetaCmax > 2MetaC∗

max.
The optimal having scheduled the tasks on m processors

in a time equal to MetaC∗
max, we can write:∫ MetaCmax

0

q(t)dt ≤ mMetaC∗
max

what is equivalent to

∫ 2MetaC∗
max

0

q(t)dt +
∫ MetaCmax

2MetaC∗
max

q(t)dt ≤ mMetaC∗
max∫ MetaC∗

max

0

(q(t) + q(t + 1))︸ ︷︷ ︸
> m

dt +
∫ MetaCmax

2MetaC∗
max

q(t)︸︷︷︸
>0

dt

≤ mMetaC∗
max

The second term is strictly positive and according to the
equation 1 the first term is strictly higher than m which is a
contradiction. Thus MetaCmax ≤ 2MetaC∗

max ≤ 4λ

5.1.2 Number of deployement’s approximation ratio

Suppose we use Dsum =
∑

e∈E De
sum to denote the num-

ber of deployments of a scheduling given by the GLS algo-
rithm and Dλ to denote the minimum number of deployment
for given λ.

First, if only one group remains i.e. canonical group for
each environment then :

Dsum =
∑
e∈E

∑
Ti∈e

⌈W e
i

λ

⌉
=
∑
e∈E

qe
c

2 ) > mq(t 1 ) + q(t

t t 2

t

m

1

q(t)

Figure 6. Graham resources constraints

and second,

Dsum =
∑
e∈E

qe
max

since this lower bound represents the best possible sit-
uation in which for each environment at the maximum, we
deploye a number of processors used by the largest task.
In the general case, the single canonical group uses fewer
processors than the smallest layered group, then :

De
sum ≤ qmax +

qmax

2
+

qmax

4
+ . . . +

qmax

2i
+ qe

c

De
sum ≤ qmax +

qmax

2
+

qmax

4
+ . . . +

qmax

2i
+

qmax

2i+1

De
sum ≤ 2qe

max∑
∀e

De
sum ≤ 2

∑
e∈E

qe
max

Dsum ≤ 2Dλ

6 Conclusion and perspectives

We presented in this article the problem of scheduling
Bi-criterion of independent, rigid and multiprocessors tasks.
Before execution, each task required an environment de-
ployment on their dedicated processors. We considered
two criteria to optimize, the date of total termination i.e.
makespan and the number of deployments (OS reboot).

We presented a polynomial algorithm GLS in two
phases: The first phase consists of building the groups. Dur-
ing the second phase those groups are scheduled. The tasks
are partitioned according to their environment. We built
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groups of tasks which check Graham’s properties [4]. We
schedule these meta-tasks i.e. groups using the list schedul-
ing on m processors.

Given an arbitrary parameter λ as a makespan, the algo-
rithm can construct a schedule whose makespan is less than
4λ and a number of deployment less than 2Dλ where Dλ is
the minimum number of deployments for a given λ.

One of the important issues for this work consists to de-
sign the “on-line” scheduling in order to be able to establish
this type of scheduler in Grid 5000. It would also be neces-
sary to evaluate its performances on average with realistic
models of tasks. The first experiments of deployment in
Grid 5000 being held for a few months on a large scale, it
has seemed possible to design an approximate model of the
tenders.

Our execution model supposes that one installs only one
system at the same time. On the Grid 5000 platform it
is possible to install several systems simultaneously. That
takes a little more time, but saves phases of reboot. From
this point of view of Nodes having several states simultane-
ously, it is the number of reboot which becomes probably
the good criterion.

Lastly, it will be probably possible to consider also an-
other criteria : the average time of termination of each task
and to build an algorithm tri-criterion thus.
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