
Load Balancing in the Bulk-Synchronous-Parallel Setting using Process

Migrations∗

Olaf Bonorden

Heinz Nixdorf Institute, Computer Science Department,
University of Paderborn, 33095 Paderborn, Germany,

bono@uni-paderborn.de

Abstract

The Paderborn University BSP (PUB) library is a powerful

C library that supports the development of bulk synchronous

parallel programs for various parallel machines. To utilize

idle times on workstations for parallel computations, we

implement virtual processors using processes. These pro-

cesses can be migrated to other hosts, when the load of the

machines changes. In this paper we describe the implemen-

tation for a Linux workstation cluster. We focus on process

migration and show first benchmarking results.

1. Introduction

Motivation. Nowadays there are workstations in nearly

every office spending most of their time on the idle task

waiting for user input. There exist several approaches to use

this computation power. First, there are programs for solv-

ing specialized problems, SEIT@home (search for extrater-

restrial intelligence, [26]) and distributed.net (e. g., break-

ing cryptographic keys, [12]) are two of the most famous

ones. These systems scan a large data space by dividing it

into small pieces of data, sending them as jobs to the clients,

and waiting for the results. There is no communication dur-

ing the calculation, or the communication is combined with

the job data and sent through the central server as in the

BSP implementation Bayanihan [24]. These loosely cou-

pled systems can efficiently be executed on PCs connected

by the Internet.

Achieving fault tolerance is very easy: If a client does

not return the result, a timeout occurs and the job is assigned

to another client. Although only a small, fixed number of

problems can be solved, these systems are very powerful in

∗Partially supported by DFG SFB 376 “Massively Parallel Computa-

tion” and by EU FET Integrated Project AEOLUS, IST-2004-15964

1-4244-0910-1/07/$20.00 ©2007 IEEE.

terms of computation power because of the huge number of

clients taking part.

Second, there are job scheduling and migration systems.

Here you can start jobs, either directly or using a batch sys-

tem. These jobs are executed on idle nodes and may migrate

to other nodes if the load in the system changes. Condor

[20] is one example for such a system implemented in user

space, MOSIX [3] is a module for the Linux kernel which

allows migrations of single processes. Kerrighed [21] goes

beyond this and provides a single system image of a work-

station cluster. It supports migration of processes and also

communication via shared memory.

Cao, Li, and Guo have implemented process migration

for MPI applications based on coordinated checkpoints [9].

They use an MPI checkpointing system for the LAM MPI

implementation [23] based on Berkeley Lab’s Linux Check-

point/Restart [14], a kernel level checkpointing system. As

MPI stores the location of the processes, they have to mod-

ify the checkpoints before restarting.

An implementation for migration of single threads, even

in a heterogenous network with different CPU types, is pro-

posed by Dimitrov and Rego in [11]. They extend the C lan-

guage and implement a preprocessor which automatically

inserts code for keeping track of all local data. Additionally,

the state in each function, i. e., the actual execution point, is

stored and a switch statement, which branches to the right

position depending on the state if a thread is recreated, is in-

serted at the beginning of each function. These changes lead

to an overhead of 61 % in their example, mainly due to the

indirect addressing of local variables. A similar approach

for Java is JavaGo [22], used in the BSP web computing

library PUBWCL [7].

Most of these systems support only independent jobs

(Condor can schedule parallel jobs using MPI or PVM, but

these jobs do not take part in load balancing and migration)

or affect parts of the operation system kernel like Kerrighed,

thus the user do not only need administrative access to the

.

.

.

P0

P1

P2

Pp−1

In
te

rc
o

n
n

ec
ti

o
n

N
et

w
o

rk

L
{

h ·g
{ communication

barrier

Superstep t

local computation

P0 P1 P2

wmax

P3 P4

Superstep
t +1

(a) BSP computer (b) superstep without migrations

Figure 1. BSP model

machines, they furthermore have to install a Linux kernel

with special patches, which has some drawbacks (usable

kernel versions are limited, e. g., not up-to-date).

There exists some work about checkpointing threaded

processes [10], which is useful to migrate parallel programs

for symmetric multiprocessor (SMP) machines, but as far

as we know there was no system for distributed parallel ap-

plications in user space.

Our contribution. We have extended the PUB library [8],

a C library for writing parallel programs for the Bulk Syn-

chronous Parallel Model [27], using virtual processors exe-

cuted on idle computers. These virtual processors can mi-

grate through the network to adapt to load changes. Our

implementation runs in user space and does not need to be

installed on the used computers.

Organization of paper. The paper is organized as fol-

lows: In Section 3 we describe the procedure of migration.

In Section 4 we present different strategies for load balanc-

ing. In Section 5 we show performance results from some

test programs.

2. The Bulk Synchronous Parallel Model with

migrations

In this section we describe how we extend the Bulk Syn-

chronous Parallel (BSP) Model [27] by migrations. We

start with a short introduction of the model (see [4] for a

textbook with a more detailed view and example programs).

The BSP model was introduced by Leslie G. Valiant as a

bridge between the hardware and the software to simplify

the development of parallel algorithms. It gives the devel-

oper an abstract view of the technical structure and the com-

L
{

h ·g
{

decision

communication

barrier

Superstep t

local computation

P0 P1 P2

wmax

P3 P4

migrations

to migrate

m ·g
{

Superstep
t +1

Figure 2. BSP model: extended by migrations

munication features of the hardware to use (e. g., a parallel

computer, a cluster of workstations, or a set of PCs inter-

connected by the internet).

A BSP computer is defined as a set of processors with

local memory, interconnected by a communication mech-

anism (e. g., a network or shared memory) capable of

point-to-point communication, and a barrier synchroniza-

tion mechanism (cf. Figure 1 (a)). A BSP program con-

sists of a set of BSP processes and a sequence of super-

steps—time intervals bounded by the barrier synchroniza-

tion. Within a superstep each process performs local com-

putations and sends messages to other processes; afterwards

it indicates by calling the sync method that it is ready for the

barrier synchronization. When all processes have invoked

the sync method and all messages are delivered, the next su-

perstep begins. Then the messages sent during the previous

superstep can be accessed by its recipients. Figure 1 (b))

illustrates this.

In the classical BSP model these BSP processes are ex-

ecuted on different processors, e. g., hosts in a workstation

cluster. To deal with the problem that these hosts are used

by others, i. e., they are not always available for our tasks,

we migrate the BSP processes (also known as virtual pro-

cessors) to suitable hosts. In the normal setting we assume

that we will always get a little amount of computation power

(like Linux processes started with nice-priority), so we are

able to do some calculations and leave a computer in a reg-

ular way but there is also a fault tolerant version that uses

checkpoints to restart aborted task.

Due to some technical reasons (cf. Section 3.2) migra-

tions are performed during the synchronization only, thus

we insert a migration phase after each synchronization (cf.

Figure 2). The length of this phase is m · g, whereas m is

the maximal sum of the sizes of all processes a processors

������

����	
��
	�
�����

��
	

��
	�
��
�

������
����	����

�

���������	��

���
��������������	�

������
�����	

������
����	����

�

������

����	
��
	�
�����

��
	

��
	�
��
�

������
����	����

�

���������	��

���
��������������	�

������
�����	

������
����	����

�

�	����� �������

�����	

��	

�����	

��	

�����	

�������

�����	

Figure 3. Structure of PUB with migratable
processes

will send or receive. To take migration latencies, caused by

the network and the migration of the memory used by PUB,

into account, we count each process memory smaller than a

value m0 as m0 (similar as hiding the latency for a h relation

in the standard BSP model, cf. [27])

3. Migration

Using PUB you can start virtual processors with the

function bsp migrate dup [5]. This will start one

new process for each virtual processor. Figure 3 gives

an overview of the processes, their threads and the con-

nections. The main process consists of three additional

threads: The receive thread reads all messages from the

network and sends them to the right destination by either

calling the proper message-handler or putting the message

into a shared memory queue to a virtual processor. The

send thread sends all messages from a shared memory send

queue to the network. The load balancing thread gathers in-

formation about the load of the system and decides when to

migrate a virtual processor. We have implemented several

algorithms for load balancing (cf. Section 4). The virtual

processors are connected to the main process by two shared

memory message queues, one for each direction.

The link-table is the routing table. For each virtual pro-

cessor of the system it stores the actual execution host and

the link id (used to distinguish the processes). This table

does not have to be up-to-date on all hosts, for example if a

process was migrated, but then the destination host stored in

the table knows the new location and will forward the mes-

sage to it. Thus a message sent to the location stored in the

table will reach its destination, although it might take some

additional hops.

3.1 Procedure of the migration

When the load balancer decides to migrate one process

to another host, the following steps are executed:

1. The load balancer writes the destination host id to a

migration queue.

2. The first process which enters the synchronization de-

queues this id. It sends a message to the main process.

3. The receive thread reads this message, marks the vir-

tual processor as gone and sends an acknowledgment

to it. From now on it will not send any messages to

the process. All messages for this destination will be

stored in a buffer in the main process.

4. The process to migrate reads this acknowledgment,

opens a TCP/IP server socket and sends a message to

the destination host.

5. The destination host creates two shared memory

queues and a new child process.

6. This new process connects directly via TCP/IP to the

old virtual processor.

7. The context of the process is transfered from the old

host to the new destination. The details of this step

are described in Section 3.2. After this the old process

terminates.

8. The new process sends its new link id to the main pro-

cess on the original host.

9. This host updates its link table and sends all messages

arrived during the migration to the new destination. If

any further messages arrive for this virtual processor,

they will be forwarded to the new location. Optionally

the migration can be broadcasted to reduce the number

of forwarded messages.

3.2 Migration of Linux Processes

This section deals with the technical aspects of migrat-

ing a Linux process from one computer to another. We con-

sider the parts of a process and look at its interaction with

the operating system kernel. The configuration of a pro-

cess consists of a user space and a kernel space part. As

we do not extend the kernel, we cannot access the data in

the kernel space unless we use standard system functions,

in particular we are not allowed to access the kernel stack.

In the following we have a closer look to the migratable

parts in the user space, and the dependencies to the kernel,

namely system calls and thread local storage.

Linux system calls. The access to the operating system

is done by syscalls. A syscall is like a normal function call,

but additionally the following steps are performed: the CPU

switches to supervisor mode (also known as kernel mode or

ring 0) and sets the stack pointer to the kernel stack. This

������

�
��
�
�	

�
	
�	

�
�
��
�
�
	
�
�

��
��
	
�
��
�	
�
�

�
	
�	

�
�
�
�

�
�	
�
�

_dl_sysinfo sysenter

�
�
	
��
�
�

�

�

0
0
0
0
0
0
0
0

a
0
0
0
0
0
0
0

b
0
0
0
0
0
0
0

c
0
0
0
0
0
0
0

sysreturn

f
f
f
f
f
f
f
f

������

�
��
�
�	

�
	
�	

�
�
��
�
�
	
�
�

��
��
	
�
��
�	
�
�

�
	
�	

�
�
�
�

�
�	
�
�

�
�
	
��
�
�

�

�

���������

���������

Figure 4. Virtual address space

is needed to allow the kernel to use all instructions and deal

with stack overflows of the user stack. There are two dif-

ferent ways for a system call in Linux: Traditionally Linux

uses a software interrupt, i. e., the number of the system

function and its arguments are stored into processors reg-

isters, and an interrupt is generated by the instruction int

0x80. This interrupt call is very slow on Intel Pentium IV

processors, the time for a system call is much higher on a

2 GHz Pentium IV than on a 850 MHz Pentium III [15] (see

[25] for a detailed view on measuring Linux kernel execu-

tion times). Intel has introduced a more efficient mechanism

for privilege switches, the sysenter instruction, available

since the Pentium Pro processors. But there was a hardware

bug in early CPUs, so it took a long time until operating sys-

tems started using sysenter. Linux supports sysenter since

version 2.5.53 from December, 2002.

To provide a portable interface to different CPUs, Linux

uses a technique called vsyscall. The kernel maps a page

of memory (4096 bytes) into the address space of user pro-

grams. This page contains the best implementation for sys-

tem calls, thus programs just do a simple subroutine call to

this page. The page is called VDSO, its address can be found

in the file maps in the proc-filesystem (cf. Table 1). The ad-

dress is also noted in the ELF header of dynamically linked

programs and can be viewed with the command ldd, here

the page looks like a dynamic library called linux-gate.so.

Before Linux version 2.6.18 (September, 2006) the ad-

dress of the page was fixed to 0xffffe000. This is the last us-

able page in the 32 bit address space; the page at 0xfffff000

is not used because illegal memory accesses (pointer un-

derruns) should lead to a page fault. Recent Linux ver-

sions use a random address[19] to complicate some kind

of buffer overflow attacks. The C library stores the address

in a variable, dl sysinfo, the kernel also stores the ad-

dress because sysenter does not save a return address, so

the sysreturn instruction used to return to the userspace

needs this address as an argument, i. e., no user process can

change the address of the VDSO page, because the kernel

will always jump back to the old address.

If we migrate a process, we cannot guarantee that the

source and the destination use the same address, but we

have to keep the old VDSO page. So we do not migrate

this page and adapt the address in the C library, such that

it uses the old page. If this is not possible because of user

data is mapped to the same address (cf. Figure 4), we free

the VDSO page, and change the dl sysinfo address to

our implementation for system calls using the old interrupt

method.

Randomization of the VDSO page can be dis-

abled with the sysctl command (sysctl -w ker-

nel.randomize va space=0) or directly using the proc

filesystem (echo 0 > /proc/sys/kernel/randomize va space).

Thread local storage. Although virtual processors are

not allowed to use threads, we have to deal with thread local

storage (TLS), because the ancestor of our processes, the

main process, uses threads, i. e., all the processes in PUB

are forked of a threaded process. TLS is used for global

variables (accessible from all functions), that have differ-

ent values for each thread. The C library uses this feature

among other things for the errno variable: errno is a variable

that is set to the error code of operations. Instead of using

the function return value, the POSIX IEEE Std 1003.1 [18]

uses a global variable.

As all threads share the same address space, these vari-

ables must have different addresses for different threads, so

the linker cannot insert a normal memory reference here.

The Linux implementation uses a Thread Control Block

(TCB), which stores all the information about TLS data.

A pointer for the actual thread is accessible at offset 0 of

the segment stored in the GS segment register (see [13] for

details). This segment is mapped to a part of the stack of

the actual running thread. We create new processes for the

migration by forking the receive thread, i. e., although we

do not use threads inside virtual processors and have our

own stack, we cannot free the stack of the receive thread,

and furthermore we have to guaranty that the stack is at the

same address on all hosts. Thus we allocate our own stack

at a fixed address and assign it to the receive thread with

the function pthread attr setstack from the POSIX

thread library.

Migratable resources. When we migrate a process, we

transfer all its resources to the new destination, namely the

state of the processor, the used memory, and some other

data stored inside the kernel, e. g., open files.

Processor state: The processor state contains all data

stored in the processor, e. g., the registers. These data have

to be migrated. We save the registers in the data segment

(we use the word “segment” for parts of memory, not to

be mixed up with segments in the context of Intel proces-

sors) of our process. Litzkow et. al. suggest to use a signal

Table 1. Example of memory a map read from

maps of the proc-filesystem

virtual address perm offset mapped file

08048000-08108000 r-xp 00000000 03:05 4432424 /tmp/migtest

08108000-08109000 rw-p 000bf000 03:05 4432424 /tmp/migtest

08109000-081c9000 rw-p 08109000 00:00 0 [heap]

a0000000-a0100000 rwxp a0000000 00:00 0

b0000000-b2000000 rw-s 00000000 00:07 305790982 /SYSV00000000

b7e00000-b7e21000 rw-p b7e00000 00:00 0

b7e21000-b7f00000 ---p b7e21000 00:00 0

b7ffc000-b7ffd000 r-xp b7ffc000 00:00 0 [vdso]

bffb7000-bffcd000 rw-p bffb7000 00:00 0 [stack]

handler for the migration [20]. Inside a signal handler one

can use all registers freely, i. e., the operating system has to

store and restore all registers by itself and the code can be-

come more portable. Older versions of our implementation

use this technique, too. But this is not compatible with the

handling of signals in recent Linux kernels. If a signal is

sent to a process, the kernel saves some data onto the ker-

nel stack, and writes a system call to the kernel function

sys sigret onto the user stack. So when the signal han-

dler returns, the kernel function restores the data from the

kernel stack, but we cannot modify or migrate this data on

the kernel stack. See [2] for more details.

Memory: The virtual address space of a Linux process

contains different parts which must be handled separately.

Table 1 shows a memory mapping of one virtual proces-

sor. This mapping can be read from the maps file of the

Linux proc filesystem. First there is the program code seg-

ment, which is marked as read-only and is the execution file

mapped into the address space. We do not need to migrate

this because the program is known to all the nodes. Second,

there are two data segments: One is for the initialized data;

it is mapped from the execution file, but only copied on first

write access. Next there is the real data segment; this data

segment grows when the application needs more memory

and calls malloc. The size of this segment can be adjusted

directly by brk. If the user allocates large blocks of data,

the system creates new segments. We have to migrate the

data segments and all these new segments.

The last segment type is the stack. It used to start at

address PAGE OFFSET defined in page.h of the Linux

kernel, normally 0xc0000000 (32 bit Linux splits the 4 GB

address space into 3 GB user space from 0x00000000–

0xbfffffff and 1 GB reserved for the kernel), and grows

downwards. For security reasons Linux uses address space

randomization [1] since kernel version 2.6.12, i. e., the

stack starts at a random address in the 64 KB area below

PAGE OFFSET, so we need to find the stack and restore it

at the same address on the destination node. During the mi-

gration we use a temporary stack inside the shared memory.

Data stored in the Linux kernel: There is some data

stored in the kernel, e. g., information about open files, used

1

10

100

1000

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

m
ig

ra
ti

o
n

ti
m

e
(m

s)

size of user data (bytes)

local Core2 Duo
2 hosts Core2 Duo
4 hosts Core2 Duo
local Pentium4 D

Figure 5. Time needed for migrations

semaphores, etc. We have added support for regular files

which exists on all the hosts, e. g., on a shared file system

like the network file system (NFS). We gather information

about all open files and try to reopen them on the destination

host.

All other information stored in the kernel will be lost

during migration, so you must not use semaphores, net-

work connections etc. during the migration (i. e., during the

synchronization of BSP). If such resources are needed over

more than one superstep, the migration of that virtual pro-

cessor can temporarily be disabled.

3.3 Performance

To measure the performance of migrations we disable

load balancing and force one process to migrate. Due to dif-

ferent local clocks, we send the process via all hosts in the

network and back to the original location, i. e., like a ping-

pong test for two nodes and a round trip for more hosts.

For our benchmark we use a Linux cluster at our insti-

tute (pool for students). We choose up to 4 idle PCs with

Intel Core2 Duo 2.6 GHz processors connected by a Cisco

Gigabit Ethernet Switch. To evaluate the influence of the

local system (CPU, mainboard, memory), we also used one

PC with an Intel Pentium D 3 GHz CPU.

The benchmark program allocates a block of mem-

ory and migrates one virtual processor from host 0 to

1,2, . . . p− 1 and back to host 0. These migrations are re-

peated 20 times. Figure 5 shows the mean time for one mi-

gration. The bandwith grows up to 111 MB/s for large data

sets, which is nearly optimal for Gigabit Ethernet. Without

network we achieve 850 MB/s (Core2Duo, 412 MB/s Pen-

tium4 D) for migrations whereas a plain memory copy ob-

tains 3.123 GB/s (resp. 1.926 GB/s).

4. Load balancing

Load balancing consists of three decisions: 1. Do we

need to migrate a virtual processor? 2. To which destina-

tion node? 3. Which virtual processor? The library contains

some loadbalancing strategies, but it is also possible to add

new strategies for the first and second question. The virtual

processor for a migration is always chosen by PUB: When

the load balancer decides to migrate a virtual processor, it

writes the destination to a queue and PUB will migrate the

first virtual processor that looks into this queue, i. e., the first

executed on this computer that reaches the synchronization.

In the following we describe the implemented strategies:

one centralized one with one node gathering the load of all

nodes and making all migration decisions, and some dis-

tributed strategies without global knowledge.

The global strategy: All nodes send information about

their CPU-Power and their actual load to one master node.

This node calculates the least (Pmin) and the most (Pmax)

loaded node and migrates one virtual processor from Pmax

to Pmin if necessary.

Simple distributed strategy: Every node asks a constant

number c of randomly chosen other nodes for their load.

If the minimal load of all the c nodes is smaller than the

own load minus a constant d ≥ 1, one process is migrated

to the least loaded node. The waiting time between these

load balancing messages is chosen at random to minimize

the probability that two nodes choose the same destination

at exactly the same time. If a node is chosen, it will be

notified by a message and increases its load value by one to

indicate that the actual load will increase soon.

Conservative distributed strategy: As in the simple strat-

egy, c randomly chosen nodes are asked for their load li and

for their computation power ci. Next we compute the ex-

pected computation power per process if we would migrate

one process to the node i for i = 1, . . . ,c: ci
li+1 . If the max-

imal ratio of all c nodes is greater than the local ratio, the

program would run faster after the migration. But this strat-

egy only migrates a process, if the source is the most loaded

node of the c + 1 ones, i. e., that ci
li

is greater than the own

ratio. This conservative strategy gives other more loaded

nodes the chance to migrate and thus leads to less migra-

tions than the simple strategy.

Global prediction strategy: Each node has an array of

the loads of all other nodes but these entries are not up to

date all the time, but each node sends its load periodically

to k uniformly at random chosen nodes in the network. In

[16] Hill et al. analyse this process using Marcov chains:

the mean age of an entry in the array is O(p/k).

All these strategies use the one minute load average in-

creased by one for each expected task. This is needed be-

cause migrations are executed at the synchronization only,

and an unloaded machine should not be chosen by many

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

ut
ili

za
tio

n

time

Figure 6. Simulated load profile

 0.1

 1

 10

 1 10 100 1000 10000

tim
e

fo
r

su
pe

rs
te

p
(in

 s
ec

on
ds

)

superstep length (in 10 million multiplications)

no migrations (threads for virt.proc.)
conservative distributed

simple distributed
global

Figure 7. Computation benchmark

other nodes without noticing that other processes will mi-

grate to the same destination.

5. Experiments

Hardware. For our experiments we used the PCs in our

office and in the students pools. There are computers of

different speed: Intel Pentium III with 933 MHz and one or

two processors (each processor 1867 bogomips1), Intel Pen-

tium IV with 1.7 GHz (3395 bogomips), and 3.0 GHz (5985

bogomips). During the first experiment the computers were

partially used by their owners, for the second experiment we

chose unused computers and simulated the external work-

load by generating artificial load on the computers with a

higher scheduling priority than our jobs. We used the same

1bogomips is a simple measuring unit for the speed of CPUs provided

by the Linux kernel. We show this unit here because our loadbalancing

algorithms use it for approximating the power of the processors.

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

tim
e

[s
]

run

no migration (threads for virt.proc.)
migration disabled
conservative distr. migration
global migration
global migration, broadcast
cons. distr. migration, broadcast

(a) 32 nodes

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35 40 45

tim
e

[s
]

run

no migration (threads for virt.proc.)
migration disabled
conservative distr. migration
global migration
global migration, broadcast
cons. distr. migration, broadcast

(b) 64 nodes

Figure 8. execution time of 3-SAT with differ-
ent load balancing strategies

load profiles as in [6]. One load profile is shown in Figure

6. Each entry represents the load of one host, the red curve

aggregates the total utilization of the workstations.

Applications. Our first example application is a BSP im-

plementation of a divide and conquer algorithm for the 3-

SAT problem ([17], pp. 169–173). In the first step processor

0 executes the algorithm sequentially until c · p subproblems

are created for some constant c (we use c = 4 in our exper-

iments). These branches are distributed evenly among the

processors. Then all processors try to find a solution se-

quentially for their subproblems. Every 10000 divide-steps

the processors enter a new superstep. If a solution is found,

it is broadcasted and the computation stops at the end of the

actual superstep. On the one hand these synchronizations

are necessary to detect whether a solution is found, on the

other hand they are needed because migrations only occur

during synchronizations. The second example is a simple

all-to-all-communication. Since in the 3-SAT solver the cal-

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

tim
e

[s
]

run

no migration (threads for virt.proc.)
migration disabled
simple distributed migration
conservative distr. migration
global migration
global migration, broadcast
cons. distr. migration, broadcast

32 nodes

Figure 9. execution time of total exchange
with different load balancing strategies

culations dominate the communication, its benefit from mi-

gration is natural. In an all-to-all comunication the network

is the bottle-neck, so we have to minimize the number of

forwarded messages to reduce the network congestion. The

last benchmark is a simple computation test: each host cal-

culates an increasing number of multiplications (from 107

up to 1011).

Results. The running time for 3-SAT on 32 and 64 proces-

sors is shown in Figure 8. The 3-SAT solver benefits from

migrations in our office cluster as expected. There were

some nodes in the system with some load of other users

greater than 1, so it was reasonable to migrate the processes

from such nodes to other idle nodes. The cost of the migra-

tions itself is small due to the small memory contexts, and

updating the routing tables is not of big importance.

Figure 9 shows the results for the communication bench-

mark all-to-all on 32 nodes. Here, updating the routing ta-

bles by broadcasting migrations is necessary.

Figure 7 shows that migrations are profitable for large

supersteps. The total execution time of our benchmark de-

creases from 8 hours to 4 hours with migrations.

6. Concluding Remarks

In this paper we have presented a system to use idle times

in workstation clusters for parallel computations. Process

migrations are a powerful technique to cope with chang-

ing availability of the machines. First experiments show

the benefit using migrations. We are working on more ex-

periments with different load profiles to learn more about

the behavior of our load balancing algorithms in practice.

Furthermore we are implementing different checkpointing

strategies (When to create checkpoints? At which comput-

ers should the data be stored?) for fault tolerance.

One can also extend the library to be able to use new

unloaded computers, e. g., when a faulty system is working

again or new computers are available. For some applica-

tions it seems to be reasonable that the application itself can

control the number of virtual processors to adapt to chang-

ing environments; currently the number of virtual proces-

sors stays constant or increases, whereas the number of used

computers can only go down.

References

[1] Address space randomization in 2.6.

http://lwn.net/Articles/121845/, 2005. LWN.net.

[2] M. Bar. The Linux Signals Handling Model. Linux

Journal, 2000.

http://www.linuxjournal.com/article/3985.

[3] A. Barak and O. La’adan. The MOSIX multicom-

puter operating system for high performance cluster

computing. Journal of Future Generation Computer

Systems, 13(4–5):361–372, March 1998.

[4] R. H. Bisseling. Parallel Scientific Computation: A

Structured Approach using BSP and MPI. Oxford

University Press, Oxford, UK, Mar. 2004.

[5] O. Bonorden and J. Gehweiler. PUB-Library -

User Guide and Function Reference. Available at

http://www.upb.de/~pub, Jan. 2007.

[6] O. Bonorden, J. Gehweiler, and F. Meyer auf der

Heide. Load balancing strategies in a web comput-

ing environment. In Proceeedings of International

Conference on Parallel Processing and Applied Math-

ematics (PPAM), pages 839–846, Poznan, Poland,

September 2005.

[7] O. Bonorden, J. Gehweiler, and F. Meyer auf der

Heide. A web computing environment for parallel al-

gorithms in Java. Scalable Computing: Practice and

Experience, 7(2):1–14, June 2006.

[8] O. Bonorden, B. H. Juurlink, I. von Otte, and

I. Rieping. The Paderborn University BSP (PUB) li-

brary. Parallel Computing, 29(2):187–207, 2003.

[9] J. Cao, Y. Li, and M. Guo. Process migration for MPI

applications based on coordinated checkpoint. In Pro-

ceedings of the 11th International Conference on Par-

allel and Distributed Systems, volume 1, pages 306–

312, 2005.

[10] W. R. Dieter and J. E. Lumpp, Jr. User-level

checkpointing for LinuxThreads programs. In Pro-

ceedings of the 2001 USENIX Technical Conference,

http://www.engr.uky.edu/~dieter/publications.html,

June 2001.

[11] B. Dimitrov and V. Rego. Arachne: A portable threads

system supporting migrant threads on heterogeneous

network farms. IEEE Transactions on Parallel and

Distributed Systems, 9(5):459–469, 1998.

[12] distributed.net project homepage.

http://www.distributed.net.

[13] U. Drepper. ELF Handling For Thread-Local Stor-

age. http://people.redhat.com/drepper/tls.pdf, Dec.

2005. Version 0.20.

[14] J. Duell. The design and implementation of Berke-

ley Lab’s Linux checkpoint/restart. Technical Report

LBNL-54941, Apr. 2005.

[15] M. Hayward. Intel P6 vs P7 system call performance.

http://lkml.org/lkml/2002/12/9/13, 2002. LWN.net.

[16] J. M. Hill, S. R. Donaldson, and T. Lanfear. Process

migration and fault tolerance of BSPlib programs run-

ning on networks of workstations. In Euro-Par ’98:

Proceedings of the 4th International Euro-Par Con-

ference on Parallel Processing, pages 80–91, London,

UK, 1998. Springer-Verlag.

[17] J. Hromkoviĉ and W. M. Oliva. Algorithmics for Hard

Problems. Springer-Verlag New York, Inc., 2001.

[18] IEEE. 1996 (ISO/IEC) [IEEE/ANSI Std 1003.1, 1996

Edition] Information Technology — Portable Oper-

ating System Interface (POSIX®) — Part 1: System

Application: Program Interface (API) [C Language].

IEEE, New York, NY, USA, 1996.

[19] Kernel Newbies: Linux 2.6.18.

http://kernelnewbies.org/Linux 2 6 18.

[20] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.

Checkpoint and migration of unix processes in the

condor distributed processing system. Technical Re-

port 1346, University of Wisconsin-Madison Com-

puter Sciences, April 1997.

[21] C. Morin, P. Gallard, R. Lottiaux, and G. Vallée. To-

wards an efficient single system image cluster oper-

ating system. Future Generation Computer Systems,

20(4):505–521, 2004.

[22] T. Sakamoto, T. Sekiguchi, and A. Yonezawa. Byte-

code transformation for portable thread migration in

Java. Technical report, University of Tokyo, 2000.

[23] S. Sankaran, J. M. Squyres, B. Barrett, A. Lums-

daine, J. Duell, P. Hargrove, and E. Roman. The

LAM/MPI checkpoint/restart framework: System-

initiated checkpointing. International Journal of High

Performance Computing Applications, 19(4):479–

493, 2005.

[24] L. F. G. Sarmenta. An adaptive, fault-tolerant imple-

mentation of BSP for JAVA-based volunteer comput-

ing systems. In Proceedings of the 11 IPPS/SPDP’99

Workshops Held in Conjunction with the 13th Interna-

tional Parallel Processing Symposium and 10th Sym-

posium on Parallel and Distributed Processing, pages

763–780, London, UK, 1999. Springer-Verlag.

[25] S. Schneider and R. Baumgartl. Unintrusively measur-

ing Linux kernel execution times. In 7th RTL Work-

shop, pages 1–5, Nov. 2005.

[26] SETI@home project homepage.

http://setiathome.ssl.berkeley.edu.

[27] L. G. Valiant. A bridging model for parallel compu-

tation. Communications of the ACM, 33(8):103–111,

Aug. 1990.

Biography

Olaf Bonorden is a research assistant at the Algorithms

and Complexity research group of Prof. Dr. Meyer auf der

Heide at the Heinz Nixdorf Institute and the Computer Sci-

ence Department, University of Paderborn, Germany. He

received his diploma degree at the University of Paderborn

in 2002. Main research topics are parallel models, espe-

cially the Bulk Synchronous Parallel Model, for all kind

of parallel architectures—from a parallel system on chip to

web computing. Since 1999 he also takes part in the devel-

opment of the Paderborn University BSP (PUB) library.

