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Abstract

This paper investigates the utilization of the master-slave
(MS) paradigm as an alternative to domain decomposition
(DD) methods for parallelizing lattice gauge theory (LGT)
models within distributed memory environments. The moti-
vations for this investigation are twofold. First, LGT mod-
els are inherently difficult to parallelize efficiently with DD
methods. Second, DD methods have proven useful for ho-
mogeneous environments, but are impractical for heteroge-
neous and dynamic environments. Besides, many modern
supercomputer architectures that look homogeneous (such
as multi-core or SMP), are in fact heterogeneous and dy-
namic environments. We highlight this issue by comparing
a traditional first-come first-served MS implementation to
a simple but yet efficient selective MS scheduling strategy
that automatically accounts for system heterogeneity and
variability. Our experimental results with the paralleliza-
tion of our LGT model, reveal that the selective MS imple-
mentation achieves good efficiency, but lacks of scalability.
In contrast, the DD method is highly scalable, but at the
expense of a poor efficiency. These results open up for a
hybrid approach, where the MS and the DD methods would
be combined for achieving scalable high performance.

1. Introduction

Domain decomposition (DD) methods have been studied
extensively because of their utility in a wide range of ap-
plication areas such as, physics, chemistry, solid and fluid
mechanics, or climate modeling. Domain decomposition
on parallel computers consists in splitting the computational
domain into smaller sub-domains, each of which is assigned
to one processor. Then, during the execution, computation
and communication phases alternate, as neighboring pro-
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cessors (in the topological decomposition) need to periodi-
cally exchange data located on the boundaries of their local
domains.

On the one hand, the efficiency of DD methods is
strongly affected by the heterogeneity and variability
present in the underlying computing system. Indeed, DD
methods are efficient only when the computational load is
well balanced among the processors. The processors being
tightly coupled by the communication phases, the execution
proceeds at the pace of the slowest processor. For homoge-
neous and stable systems, the computational domain needs
simply to be decomposed into p equally-sized sub-domains.
For heterogeneous environments on the other hand, things
get complicated as the domain must be decomposed into p

sub-domains whose size must be proportional to the proces-
sor computational speeds. In dynamic environments, where
resources exhibit unforeseeable performance fluctuations,
things get even worse, as it becomes necessary to frequently
redistribute the computational domain among the proces-
sors.
In addition, many modern supercomputer architectures
(such as multi-core or SMP clusters) that look homoge-
neous, hide in fact an heterogeneous and dynamic environ-
ment. For instance, processors located within the same node
are actually competing for shared resources (e.g. caches),
and intra-node communication is typically much faster than
inter-node communication. The impact of the heterogene-
ity and variability hidden in the system on the performance
of DD methods is difficult to evaluate, but undoubtedly de-
grades the performance.
Last but not least, an important issue concerns fault toler-
ance. Currently, the most common technique for handling
fault tolerance within DD methods is checkpoint/restart.
That is, checkpoints are saved to disk periodically, and if
a processor fails, the computation halts and restarts from
the last consistent checkpoint. For lengthy applications that
make use of a large number of processors, failures are more
likely to be the rule rather than the exception. In these con-



ditions, the checkpoint/restart technique could take longer
than the time to the next failure. Hence, there is a need to
survive failures without relying on global recovery opera-
tions.

On the other hand, the efficiency of DD methods is di-
rectly subject to the characteristics of the scientific prob-
lem to be solved. Some problems are more suited to DD
methods than others. In this paper, we are interested in lat-
tice gauge theory (LGT) models, a class of Monte Carlo
(MC) simulations particularly difficult to parallelize effi-
ciently with DD decompositions in distributed memory en-
vironment (i.e. when message passing is unavoidable).
LGT models belong to the wide class of stencil computa-
tions, where typically, each site in a multi-dimensional lat-
tice is updated with contributions from a subset of its neigh-
bors (see Figure 1). For each iteration, the stencil kernel is
applied to all the lattice sites - usually the boundaries re-
ceive a special treatment.
When parallelizing LGT models with DD methods, one
must ensure at all times that processors owning neighboring
sub-domains do not update adjacent sites simultaneously.
Although neighboring lattice sites may be updated in any
order, physical properties impose these updates to happen
sequentially, creating thus constraining data dependencies.
The message passing paradigm provides a simple and nat-
ural way to orchestrate the lattice updates without violat-
ing these data dependencies. Communication events can be
used as tokens, such that incoming messages from neigh-
boring processors trigger the update of the corresponding
sub-domain boundary. However, in the case of LGT mod-
els, this technique introduces a significant amount of idle
time on the processors, degrading significantly the parallel
efficiency.

Thus, there are two main reasons for considering an al-
ternative way to DD methods: The inadequacy of DD meth-
ods for dealing with heterogeneous and dynamic environ-
ments; and the lack of efficiency of DD methods for par-
allelizing LGT models. In this paper, we study the suit-
ability of the master-slave paradigm (MS) as an alternative
to DD methods for implementing LGT models within dis-
tributed memory environments. The MS paradigm admit-
tedly comes along with some limitations, but presents most
of the features required for dealing not only with LGT mod-
els, but also with heterogeneous and dynamic environments.
In its simplest form, the MS paradigm works as follows.
The master initially distributes one task to every slave. The
slaves compute their tasks and send the results back to the
master, which triggers the latter to send additional tasks.
The main assets of the MS paradigm are flexibility and ro-
bustness. As slaves execute tasks at their own paces, they
will automatically request tasks proportionally to their com-
puting speeds. This is popularly known as self-scheduling,
demand-driven or first-come first-served (FCFS). By con-

struction, FCFS adapts well to the performance fluctuations
of the computational resources. If a slave suddenly gets
some external load, it will process tasks less rapidly, and
hence request tasks less frequently. When the conditions
get back to normal, the slave will request tasks at its max-
imal pace. However, FCFS is not efficient when point-to-
point communication times are heterogeneous. In that case,
resource selection strategies become necessary in order to
efficiently utilize the available computing and communica-
tion resources. In this paper, we show that a simple, yet
effective, selective scheduling scheme is more appropriate
for dealing with heterogeneous and dynamic environments
than the traditional FCFS strategy.
Finally, the loosely coupled structure of the MS paradigm
presents only one single point of failure in the form of the
master process. This means that one only needs to backup
the master node to achieve reliability. If some slave pro-
cesses die, the computation can still carry on with the re-
maining slaves.

The rest of this paper is organized as follows. Section 2
reviews previous work related to LGT model paralleliza-
tions, DD methods and the MS paradigm. Section 3 intro-
duces the LGT model considered in this study. The DD
and MS parallelizations of the LGT model are presented re-
spectively in Section 4 and Section 5. In addition, our MS
selective scheduling strategy is exposed and compared to
the FCFS strategy in Section 5. Section 6 reports an ex-
perimental comparison between the MS and the DD imple-
mentations. Future work is discussed in Section 7. Finally
concluding remarks are given in Section 8.
The experiments reported in this study have been performed
on a SMP cluster composed of 100 HP Integrity rx4640
server nodes. Each SMP node comports 4 itanium2 pro-
cessors clocked at 1.3 GHz sharing 4 GB of memory. The
100 SMP nodes are interconnected with the Infiniband net-
work.
In all the experiments reported in this paper, the num-
ber of iterations was arbitrarily fixed to 500 in order to
highlight differences between the different implementations
while keeping measurement times relatively low. The ex-
periments were performed on a dedicated set of computing
nodes, which reduces external interferences. Finally, all the
performance curves reported in this study correspond to the
average values over 3 runs.

2. Related Work

Several studies have considered parallelizing MC sim-
ulations using DD methods [3, 13, 17, 21, 29]. MC simula-
tions for the Ising model, which uses only nearest-neighbors
interactions (6-point stencil in 3 dimensions), have been
successfully implemented on shared-memory systems with
checker-board algorithms. The lattice sites are sorted into



a red set (where sum of coordinates is even) and a black
set (where sum of coordinates is odd) in a checker-board
fashion. Thus, all the red sites can be updated simultane-
ously, and so it is for the black sites. Checker-board algo-
rithms have been ported onto distributed memory systems
by several studies [13, 15, 21]. For each iteration, all the
processors start by updating one color set, say the red one.
Thereafter the nodes exchange the red sites located on the
boundaries, and do the same with the black set. This ap-
proach performs boundary-exchanges with two messages
per boundary. For longer-range or more complex interac-
tions models, such as the one presented in this study, new
updating schemes that fit with the stencil kernel must be
applied. In these conditions, the checker-board is likely to
be composed of at least four colors, leading to boundary-
exchanges with four messages per boundary.

Santos et al. [28, 29] conducted research on MC simu-
lations for 2D and 3D Ising models in another direction.
Each local domain is partitioned into different sets, that are
updated one after another, in alternation with communica-
tion events. For each iteration, all the processors update the
same set of their local domain, in order to avoid situations
where remote but adjacent site updates would enter in con-
flict. Then some boundary-exchanges take place, allowing
the parallel computation to proceed with the next set. The
number of sets composing the local domain is dependent
on the chosen decomposition (2 for 1D, 3 for 2D, and 4 for
3D). The result is an increase of the number of messages re-
quired for the boundary-exchanges (namely 2 for 1D, 8 for
2D, and 24 for the 3D decomposition).

The two aforementioned methods handle the data depen-
dencies between neighboring sites by increasing the number
of messages per boundary-exchange, which considerably
increases the communication run-time cost. Recently, we
provided token-passing algorithms based on DD methods
that minimize the number of messages exchanged between
neighboring processors [3]. Our algorithms are presented
and explained in great details in [3], but we provide a brief
summary in Section 4.

Although DD methods are relatively easy to deploy ef-
ficiently on homogeneous environments, dealing with het-
erogeneous and dynamic environments is a much more
complicated task. Several studies have been conducted
on deploying DD methods within heterogeneous environ-
ments [4, 5, 18, 19, 22]. In most cases, the problem is re-
duced to the problem of partitioning some mathematical
objects, such as matrices, sets or graphs [9]. The main dif-
ficulty resides in the combinatorial nature of the problem
which typically turns out to be NP-complete. Even though
efficient (i.e. polynomial) heuristics are derived, the dy-
namic nature of the underlying platform makes static strate-
gies not well suited to these environments. In dynamic en-
vironments, the processor speeds and network contention

will fluctuate during the execution requiring online load re-
distribution mechanisms. Online redistribution is difficult
to handle, as it poses the question of when should one re-
distribute the load? And how to measure the quality of a
load distribution? Beaumont et. al. [6] consider the ma-
trix multiplication problem in heterogeneous and dynamic
environments, and propose to redistribute the load only be-
tween large static-phases. Still, one must find a good load
redistribution frequency, since a too conservative approach
may not result in significant improvements, wheras being
too aggressive may incur too much overhead. An important
point stressed by Beaumont et. al. is the necessity to mini-
mize the amount of communication when redistributing the
load. The amount and location of the data should be taken
into account in order to maintain the relative position of the
processors, otherwise the cost of the redistribution may be
prohibitive. Similarly Mahanti and Eager [22] find that data
migration costs should be minimized for efficient redistri-
bution, and propose redistribution policies that try to leave
the relative position of the nodes unaltered. In their work,
Mahanti and Eager consider data redistribution following
addition/removal of processors.
Although these studies on DD methods within heteroge-
neous environments present interesting results that give in-
sights on the problem difficulties, these different strategies
typically rely on a centralized algorithm to (re)distribute the
work among the heterogeneous processors. This clearly
poses the question of the scalability of the approach. On
the other hand, the problem of online load redistribution
frequency is difficult to address without disposing of some
form of centralized information about the platform state.

Similarly to DD methods, the MS paradigm is well
known and has been the subject of a wealth of studies both
in the context of Cluster computing [10, 24, 25] and of Grid
computing [7,12,16]. Usually the applications implemented
under the MS paradigm are composed of a large number of
independent tasks. All the popular scheduling strategies de-
signed for minimizing the total execution time, hand out
tasks by chunks of decreasing size, in order to reduce the
scheduling overhead while achieving a good load balance
at the end of the execution [14]. However, this kind of MS
strategies cannot be utilized in our study, because the tasks
composing our target applications are not fully independent
of each other (more on this in Section 5).

3. Our lattice gauge theory model

Lattice spin and gauge theories are studied extensively in
many areas of physics, especially in particle and condensed
matter physics. The spin and gauge field variables are
defined on every site of a multi-dimensional lattice, and the
thermodynamic properties of the system can be deduced
from the partition function, which is a sum over all possible



configurations of the fields. Exact solutions to these multi-
dimensional sums are rare and in general one must resort
to some numerical approximation. The largest and most
important class of numerical methods used for this problem
is the Monte Carlo (MC) method, which in stead of doing
the sum over all configurations, utilizes random numbers to
mimic the random thermal fluctuations of the system from
one configuration to the other. A considerable proportion
of the computational resources used by physicists around
the world is spent on MC simulations.

The LGT model studied in this paper is a superconductor
model in which a real valued scalar field is coupled to a
real valued vector field. This model is a simplified version
of the one presented in [1]. The MC algorithm used for
the simulations is the celebrated Metropolis algorithm [23]
which can be described the following way.

1. Pick one site in the lattice and suggest new values for
the fields at that site.

2. Calculate the difference in energy ∆E = Enew −Eold

for the move, or update.

3. Draw a random number r∈ [0, 1〉 and accept the new
values if min{1, e−∆E/T} > r.

4. Repeat step 1 to 3 until enough statistics are gathered.

The computational domain is a 3-dimensional lattice
with periodic boundary conditions. The charge of the sys-
tem (reparted among all the lattice sites) couples a scalar
field and a three-dimensional vector field. Hence, to each
lattice site are associated 4 double precisions real numbers.
The local energy Es at one site s in the lattice is dependent
on the nearest neighbor of s, and half of the next nearest
neighbors of s. More formally, all the sites adjacent to s are
involved in the computation of Es.

Definition 1 Two lattice sites s1 = (x, y, z) and s2 =
(t, u, v) are said to be adjacent if and only if (t, u, v) ∈
{(x, y, z − 1), (x, y + 1, z − 1), (x + 1, y, z − 1), (x −
1, y, z), (x − 1, y + 1, z), (x, y − 1, z), (x, y + 1, z), (x +
1, y − 1, z), (x + 1, y, z), (x − 1, y, z + 1), (x, y − 1, z +
1), (x, y, z + 1)}, as depicted in Figure 1.

4. Domain decomposition implementation

In [3], we proposed token-passing algorithms based on
DD methods that minimize the amount of communication,
i.e. one message per neighboring processor per iteration.
Our token-passing algorithms are built upon a classic tech-
nique for allowing communication overlap with computa-
tion in DD computations. The idea is to partition each lo-
cal domain into an inner set and an outer set [2, 26, 27].

y

z

x

Figure 1. Stencil of the LGT model. Black
sites are used to update the grey site, they
are adjacent to the grey site.

The inner set is updated while waiting for the boundaries
from neighboring processors, and thereafter the outer set is
in turn updated. The reception of all the boundaries is liken
to the reception of a virtual token, that allows updating the
outer set. Thereafter processors hand on the token by send-
ing their updated local boundaries to their neighbors.

In order to respect the data dependencies imposed by the
LGT model (sequential updates of adjacent lattice sites), the
processors are sorted into different color sets (see Figure 2),
such that processors of the same color can update their ex-
terior sites simultaneously. For the 1D case, two colors are
necessary and sufficient, whereas four colors are required
for the 2D and 3D decompositions. Then, an ordering is
established among the colors to orchestrate the updates of
the outer sets. For the 1D case, green processors start ahead
of the red processors, while the color ordering of 2D and
3D decompositions is 1) green, 2) red, 3) white and 4) blue.
Figure 3 sketches the parallel execution of the token-passing
algorithm based on a 2D decomposition.

MPI features like persistent requests and derived
datatypes have been used for implementing the successive
boundary-exchanges. Special care has been taken when
posting and completing the communication requests such
that the MPI ready communication mode could be used.
All these decisions contribute to keep the communication
overhead to a minimum. Also, we used the diagonal com-
munication elimination technique [8, 13], which consists of
including ghost cells within messages in order to avoid di-
agonal communications for exchanging lattice sites located
on the edges of the sub-domains.. At last, for the sake of
portability, non-blocking requests have been used in order
to exploit the inherent computation-communication overlap
of the partitioning method, even though many implementa-
tions cannot overlap without extra hardware in the form of
a communication co-processor.



(a) 1D. (b) 2D. (c) 3D.
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Figure 2. Domain decomposition and color partitioning schemes.
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Figure 3. Sketch of the token-passing algorithm with a 2D decomposition.

Figure 4 (a) depicts the respective speed-up of the three
different token-passing algorithms when using 32 proces-
sors. The better performance of the 1D decomposition over
the 2D and 3D decompositions is certainly due to the com-
plicated token round-trip trajectories of the latter decompo-
sitions as opposed to the much simpler trajectory for the
1D case. Indeed, the 1D token round-trip imposes only 1
outer set update and 4 messages, as opposed to 3 outer set
updates and 8 messages for the 2D case, and 3 outer set
updates and 12 messages for the 3D case (see [3] for a thor-
ougher performance analysis). For all the experiments, the
token round-trip dominates the total iteration run-time cost,
meaning that processors are starving, waiting for the token
to arrive. The run-time costs for updating the inner sets were
roughly equivalent for the 3 domain decompositions, which
means that processors are starving longer under the 2D and
3D decompositions than for the 1D decomposition.

Although, Prieto et al. [26] showed that the separation
of the inner and outer set updates may degrade the perfor-
mance due to the large distance between the memory loca-

tions of the exterior sites (causing a poor cache memory ex-
ploitation when updating the outer set), we found that our
token-passing algorithms were scalable with an efficiency
comprised between 0.25 and 0.5 depending on the problem
size and number of processors utilized (see Figure 4 (b)).

5. Master-slave implementation

5.1. Task partitioning

The sites of the 3-dimensional lattice must be partitioned
into disjoint sets to allow for parallel execution. The goal
is to enable the processors to work on different parts of the
lattice simultaneously. We rely on the same domain decom-
position and the same color code than the ones used for the
DD implementation of the LGT model (see Figure 2), such
that blocks of the same color can be processed simultane-
ously. In our context, each block represents a task to be
scheduled by the master.
Depending on the chosen decomposition and the LGT
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Figure 4. Speed-up of our token-passing al-
gorithms based on DD methods. Reproduced
from [3].

model stencil, different dependencies take place between
neighboring blocks of different colors. For the 1D decom-
position, each block is dependent on 2 blocks of the oppo-
site color (above and beneath). For the 2D decomposition,
each block is dependent on 2 blocks of each of the other
colors. At last, for the 3D decomposition, each block is de-
pendent on 4 blocks of each of the other colors.

In order to respect the site update dependencies, the mas-
ter deals with one color at a time. Thus the scheduling over-
head on the master node is alleviated by only keeping track
of block dependencies from one color to another. To de-
tect block eligibility, the master maintains for each block a
dependency variable (integer), as well as pointers to the de-
pendency variables of the adjacent dependent blocks. Ini-

tially all the dependency variables are set to the number of
dependencies generated by the task partition. Upon recep-
tion of a computed block, the variables of all the adjacent
blocks are decremented, and if some of them become equal
to zero, the corresponding blocks become eligible for com-
putation. In that case, the block pointers are inserted into a
FIFO queue holding all the blocks eligible for computation.
This mechanisms relieves the master from waiting for the
termination of a given color to switch over the next color.
Instead, the color transition happens smoothly by delegat-
ing blocks as soon as they become eligible for computation.

The master must decompose the global lattice in such a
way that there are enough blocks available to the slaves. On
the one hand, the number of blocks should be large enough
in order to dispose of enough eligible tasks at all times to
keep the slaves busy. On the other hand, the master should
determine an appropriate task size in order to reduce the
overhead incurred by the total amount of communication
combined with the post processing of the blocks (copy op-
erations due to the periodic conditions of the 3-dimensional
lattice).

The first thing to determine is which task partitioning
scheme gives the best performance. This includes finding
the best domain decomposition and the optimal block size.
A simple way to compare the different task partitioning con-
sists in estimating the ratio α between the time it takes a
slave to process a task, and the time it takes the master to
send the task, receive the associated results and post-process
the task. The ratio α gives an indication on how scalable is
the MS implementation. The larger this ratio is, the better
will perform the MS implementation, as it would be able
to use more processors. Actually, this ratio gives an indi-
cation on the number of slaves that the master can handle,
assuming that the slaves have homogeneous computing and
communication characteristics.

Figure 5 reports the results of an experiment with 2 pro-
cessors (a master and a slave), for different problem and
task sizes. The experimental values for the different α ra-
tios obtained during this experiment indicate that the master
would not be able to handle more than 6 slaves on the test-
bed machine, which might seem a low number at first sight.
In addition, when problem size increases, the α ratio de-
creases. For every decomposition, a good task size seems
to be situated between 250 and 500 MB.

The 2D decomposition performs slightly better than the
other ones, most likely due to the shape of the blocks and
consequently to the derived datatypes involved in the com-
munications. Indeed, when delegating a task, the master
must extract a block from the global lattice, whose shape
depends on the chosen decomposition. The 2D decomposi-
tion is a good compromise between few large blocks (1D)
and many small blocks (3D).
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Figure 5. Estimating the α ratio for different
problem and task sizes. Note that the task
decomposition schemes must deal with lat-
tice size constraints that dictate the sizes and
shapes of the blocks. Hence, the more di-
mensions are used by the task partitioning
scheme, the smaller the tasks can be.

5.2. Selective scheduling

Because our computational domain is decomposed into
relatively few tasks that become eligible for computation
alternatively throughout the computation, we aim at task
throughput maximization instead of total run-time mini-
mization. Our scheduling strategy consists in handing out
the tasks one-by-one, in a demand-driven fashion. If several
slaves are competing for a task, then the master must decide
which one to serve according to a priority scheme.

Since all the tasks are computationally identical, we let
Ps(t) denote the time it takes to slave s to process a task at
time-step t. Further, it takes Cs(t) time units for the master
to send a task to slave s at time-step t, and C′

s(t) time units
for the slave s to return the results to the master at time-
step t.

Our MPI parallel implementation involves advanced
programming techniques such as derived datatypes, non-
blocking communications and persistent requests. This
complicates the online monitoring of the different com-
munication events. Therefore, for each slave s, we define
the task round-trip at time step t, noted Rs(t), as follows:
Rs(t) = Cs(t)+Ps(t)+C′

s(t), that corresponds to the time
it takes for sending a task to slave s plus the time it takes
slave s to compute the task plus the time it takes to send the
results back to the master. Throughout the computation, the
master can monitor the value Rs of each slave in order to
make efficient scheduling decisions. Thus, we account for
the possible performance fluctuations of both computation
and communication resources throughout the computation.
Monitoring Rs simply consists in starting a timer right be-
fore sending a task to a slave, and stopping the timer when
the results have returned.

When several slaves are in competition for receiving a
task, the master will choose the one with the smallest Rs

value. Indeed, no distinction is made between the compu-
tation and communication run-time costs relative to a slave,
since the tasks are not really independent of each other. It is
indeed, important that tasks come back as soon as possible
in order to allow other tasks to become eligible for compu-
tation.

At the beginning of the execution, all the slaves are given
a task, which allows to initialize all the Rs values. Then, as
the computation proceeds, the Rs values are updated with
the newest value measured by the master. More advanced
methods based on averages over the last n values or on per-
formance predictions exist [30], but our simple method gave
satisfactorily results.



5.3. FCFS vs. selective scheduling

To demonstrate the need for priority schemes, we com-
pared our selective scheduling strategy to the FCFS scheme,
which works without priorities. Figure 6 (a) depicts the
ratio of the task throughput of the selective scheme over
the task throughput of the FCFS scheme. Clearly, selec-
tive scheduling achieves a higher throughput than FCFS in
most situations. This phenomenon strengthens as the num-
ber of slaves increases, which corroborates our hypothesis
that intra-node interferences as well as inter-node communi-
cations introduce heterogeneity and variability in the com-
puting environment.

Figures 6 (b) and (c) report the task share among the
slaves for the selective and FCFS schemes respectively. We
observe that for the selective scheme, 3 slaves get a bigger
share of the tasks than the others. This is not surprising
since each SMP node is composed of 4 processors, mean-
ing that 3 slaves are located on the same node as the mas-
ter. The intra-node communication (shared-memory) being
faster than inter-node communication (message passing),
the slaves located on the same SMP node as the master will
be prioritized if they are in concurrency with other slaves lo-
cated on a different SMP node because exhibiting a smaller
Rs value. This phenomenon is less visible for the FCFS
strategy.

Finally, note that the cluster was used in dedicated mode,
meaning that no external load other than operating system
calls or network contention fluctuations interfered with our
application. Consequently, all the nodes have roughly the
same computing power which explains the linearity of the
curves. Nonetheless, when using a high number of slaves,
the selective scheme seems to adapt to some interferences
that take place, while the FCFS scheme maintains a fair
share of the tasks. Thus, although the system looks homo-
geneous, there are still a certain amount of heterogeneity
and variability in the system that degrade the overall perfor-
mance.

6. Domain decomposition vs. master-slave

Figure 7 reports the speed-up and efficiency obtained
with the selective MS implementation using a 2D task par-
titioning scheme (Figures (a) and (c)), and with the token-
passing algorithm using a 1D decomposition (Figures (b)
and (d)). One can observe that the MS implementation
scales well up to 6 slaves, and thereafter begins to satu-
rate. This result conforms with the experiment conducted
for determining the appropriate task partitioning schemes
(see Section 5.1) predicting that the master could not han-
dle more than 6 slaves efficiently.
Note that the MS implementation achieves a perfect speed-
up up to 3 slaves (if the master is not accounted). When
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Figure 6. Comparison of the selective and
FCFS schemes for L = 1283.
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(a) MS speed-up (2D task partitioning).
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(b) DD speed-up (1D decomposition).
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(c) MS efficiency (2D task partitioning).
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(d) DD efficiency (1D decomposition).

Figure 7. Comparison of the selective MS and the DD implementations.

using more than 3 slaves, the inter-node communications
begin to drive the performance away from optimality.
The poor performance of the MS implementation for small
problem sizes (L = 483 and L = 643) comes from our task
partitioning scheme that utilizes blocks of size greater than
250 MB. Thus, for small problem sizes, there were sim-
ply not enough independent tasks to feed all the slaves. In
such situation, one should use a finer grained task partition
scheme, albeit there is a limit on how small a task can be.

As opposed to the MS implementation, the DD imple-
mentation is highly scalable, albeit this comes at the ex-
pense of a poor efficiency. For a small number of proces-
sors, the DD implementation is less efficient than the MS
implementation. Hence, it seems that the MS approach is
better suited for dealing with our LGT model than paral-
lel algorithms based on DD methods. However, the lack of
scalability of the MS implementation makes it useless for
large-scale simulations.

7. Future work

The natural solution to tackle the lack of scalability of
the MS paradigm, is to deploy several masters [20]. A direc-
tion for future work would be to design a hybrid approach
where the MS paradigm and DD methods would be used in
concert. The computational domain would be decomposed
among few processors (the masters), but each master would
update its sub-domain using the MS paradigm. The number
of masters to deploy depends on the problem to be solved as
well as on the underlying computing system. For our LGT
model and our SMP cluster, a master could manage a SMP
node (or span over two SMP nodes).
Such hybrid approach combines the benefits of the two
paradigms: The MS flexibility with the DD scalability. In-
terestingly, inter-master load balancing could be tackled
at two levels. First, the computational load can be redis-
tributed between masters. This approach makes it possible
to use existing load redistribution strategies [4–6,18,19,22].



But a more promising approach would be to handle the
load redistribution as a slave redistribution. If a master
experiences a lack of computing power from its slaves, it
could request additional slaves from other masters. Hence,
slaves could be traded between masters on demand. This
“computing-power” balancing mechanism is more flexible
and practical than traditional load-balancing algorithms, as
data would not need to be migrated throughout the compu-
tation.

Fault tolerance still becomes easier to handle as one
needs only to back-up the master processes. For that mat-
ter, note that any slave can act as a master whenever needed.
Hence, masters can periodically back-up their data, by send-
ing a copy to one or few slaves that would replace them in
case of failure. For such implementations, one could use
the Fault Tolerant MPI library (FT MPI) [11], which offers
a range of recovery options other than just returning to some
previous check-pointed state. This is especially useful in the
case of slave failure since the computation can in principle
proceed seamlessly.

8. Conclusion

High performance computing systems are no longer sta-
ble and fully homogeneous. This greatly complicates the
efficient deployment of traditional DD methods, since ap-
plications must deal with system heterogeneity, resource
performance fluctuations and resource failures. In addi-
tion to that, there are certain classes of problems for which
DD methods are inappropriate, such as the LGT model pre-
sented in this paper. Hence, there are two good reasons for
considering an alternative way to DD methods.

In this paper, we study the suitability of the MS paradigm
as an alternative to DD methods for implementing LGT
models within distributed memory environments. We pro-
vide three different MS implementations based on three
task partitioning schemes. More importantly we demon-
strate, via a comparison between a selective and the FCFS
scheduling strategies, that apparently homogeneous sys-
tems used in dedicated mode are actually heterogeneous en-
vironments subjects to unforeseeable resource performance
fluctuations.

Overall, our experimental results reveal that the MS im-
plementation achieves very good efficiency on few proces-
sors, but lacks of scalability. In contrast, the DD method
is highly scalable, but at the expense of a poor efficiency.
The peculiarity of the LGT model, namely the constrain-
ing data dependencies, is better handled with a MS im-
plementation than with DD methods. Hence, the MS
paradigm is a good candidate for small-scale LGT models
with high computation-to-communication ratios. Finally,
we discussed a promising future work direction by sketch-
ing an hybrid approach that combines the MS paradigm and

DD methods for achieving scalable high performance.
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