
PFAS: A Resource-Performance-Fluctuation-Aware

Workflow Scheduling Algorithm for Grid Computing

Fangpeng Dong and Selim G. Akl
School of Computing, Queen's University

Kingston, ON Canada, K7L 3N6
{dong, akl}@cs.queensu.ca

Abstract

Resource performance in the Computational Grid is
not only heterogeneous, but also changing dynamically.
However scheduling algorithms designed for traditional
parallel and distributed systems, such as clusters, only
consider the heterogeneity of the resources. In this paper,
a workflow scheduling algorithm, called PFAS, is
proposed and tested in the Grid environment. PFAS
considers dynamic resource performance fluctuation in
the Grid, and conducts the scheduling according to its
knowledge of the fluctuation. This new algorithm works in
an offline way which allows it to be easily set up and run
with less cost. Simulations show that our approach can
achieve better schedules than the HEFT algorithm.

1. Introduction

The development of Grid infrastructures, e.g.,
Pegasus [1], Grid Flow [2] and ASKALON [3] now
enables workflow submission and execution on remote
computational resources. To exploit the non-trivial power
of Grid resources, effective task scheduling approaches
are necessary. In this paper, we consider the scheduling
problem of workflows which can be represented by
directed acyclic graphs (DAG) in the Grid. The ultimate
goal guiding the mapping is to reduce the total completion
time of all tasks (also known as makespan) in a workflow.

As most Grid resources are not dedicated to Grid users,
Grid resource performance is not only heterogeneous, but
also dynamically changing due to the competition among
the uses. Therefore, some mechanisms are introduced to
try to capture relevant information about resource
performance fluctuation information (e.g., performance
prediction [4]), or try to provide some guaranteed
performance to users (e.g., resource reservation [5], [6]).

 1-4244-0910-1/07/$20.00 ©2007 IEEE

These approaches make it possible for Grid schedulers to
get relatively accurate resource information prior to
producing a schedule, though resource performance
fluctuation still makes task scheduling in the Grid more
difficult compared with that in traditional parallel and
distributed systems such as clusters, in which resource
performance is usually heterogeneous, but static for a user.
In this paper, we propose a workflow scheduling
algorithm called PFAS for the targeted Grid environment.
Basically, PFAS is a list heuristic. Although PFAS works
in an offline manner, it can be aware of resource
performance fluctuation in the Grid, and adopts a dynamic
task ranking method in the scheduling procedures and a
look-forward technique [7] to find proper task
assignments. Experiments show that with the help of these
two techniques, PFAS outperforms the well-known and
frequently referenced HEFT scheduling algorithm [8].

The rest of this paper is organized as follows: in
Section 2, related work is introduced; Section 3 presents
the application and resources model used by the proposed
algorithm; Section 4 describes the PFAS algorithm in
detail; Section 5 presents simulation results and analysis;
finally, conclusions are given in Section 6

2. Related Work

The DAG-based task graph scheduling problem in
parallel and distributed computing systems is an
interesting research area, and algorithms for this problem
keep evolving with computational platforms, from the age
of homogeneous systems, to heterogeneous systems and
today’s computational Grids [12]. Due to its NP-complete
nature [13], most of algorithms are heuristic based and can
be classified into three categories: list algorithms,
clustering algorithms and task duplication based
algorithms.

In list algorithms, tasks are assigned with priority
values and scheduled in the order of decreasing priority
values. The HEFT algorithm [8] and the Dynamic Critical

Path algorithm (DCP) [7] are typical examples of list
heuristics. Clustering is a way to reduce communication
delay in DAGs by clustering tasks heavily communicating
with each other to the same subgraph, and then assigning a
subgraph to the same processor. Clustering algorithms
have two phases: the task clustering phase that partitions
the original task graph into subgraphs, and a post-
clustering phase which can refine the clusters produced in
the previous phase and get the final task-to-resource map.
Examples of this kind of heuristics can be found in [13]
and [14]. The main idea of duplication based scheduling is
utilizing resource idle time to duplicate predecessor tasks.
This may avoid the transfer of results from a predecessor
to a successor, thus reducing the communication cost. In
[15] and [16], two duplication-based scheduling
algorithms are proposed for distributed-memory systems
with homogeneous processors, and networks of
heterogeneous processors, respectively. The problem of
these algorithms is they take the resource performance as
a constant during the execution of the job to be scheduled,
which is usually not the case in the Grid.

The Extended Dynamic Critical Path algorithm (xDCP)
[17] enhances the DCP algorithm to adapt to the dynamic
and heterogeneous nature of Grid resources. But xDCP
didn’t use resource performance prediction explicitly to
refine the schedule. In [18], a DAG scheduling algorithm
considering background workload in multiclusters is
proposed. In the targeted system, every resource has
multiple processors and its own independent local
scheduler, which is similar with the resource model in this
paper. But it assumes that processors in the same resource
cluster are homogeneous and share a local First-Come-
First-Served queue, which is not an assumption of our
approach. Another major difference is that the scheduler
works in an online manner, that is, the Grid scheduler
watches all queues of resource clusters and decides where
the next schedulable task should go dynamically.

3. Models and Definitions

3.1 Resource Model

As mentioned previously, the dynamic performance
fluctuation of processing nodes is considered. In a
resource management system supporting advance
reservation, available resource performance at a specific
time can be known by calculating the workload generated
by jobs that have reserved resources at that time, as Fig. 1
indicates. Thus, by referring resource predictors or
resource management components supporting reservation,
the performance fluctuation can be caught. Theoretically,
if the time axe can be divided into fine granular periods,
the performance within a period can be approximated as a
constant. Thus, to describe the fluctuation, a sequence of

Time

Workload

Generated by

Reservation

Available

Performance

s1 sk

Performance

Fig. 1: Performance fluctuation resulted from
advance reservation on a resource along time.

time slots s1,…,sk is introduced. The processing capability
of pi in time slot sj is denoted as ci,j, and we assume that in
a time slot, ci,j is a constant. In terms of communication
delay, the communication cost of a data unit along a
connection li,j is denoted as wi,j which is also a constant
along time, and wi,j = 0 if i = j.

3.2 Application Model

We assume that a workflow to be scheduled can be
represented by a DAG G, as shown in the example of Fig.
2. A circular node ti in G represents a task, where 1 i v,
and v is number of tasks in the workflow. qi (1 i v) is the
computational power consumed to finish ti. For example,
in Fig. 2, q1 = 5. An edge e(i, j) from ti to tj means that tj

need an intermediate result from ti, so that tj∈succ(ti),
where succ(ti) is the set of all immediate successor tasks

of ti. Similarly, we have tj∈pred(ti), where pred(ti) is the
set of immediate predecessors of ti. The weight of e(i, j)
gives the size of intermediate results (or communication
for simplicity) transferred from ti to task tj. For example,
the communication volume from t1 to t2 is 1 in Fig. 2.

t1

5

t7

5

t8

5

t6

8

t5
10

t4

5

t3
10

t2
8

1

1 1

1

32

1

1

4 3

Fig. 2: A DAG depicting a workflow applica-
tion, in which a node represents a task, and a
labelled directed edge represents a
precedence order with a certain size of
intermediate result transfer.

When a feasible schedule is computed, the following
additional restrictions apply: 1) Only one task can run on a
processing node at the same time; 2) A task cannot begin
until it gets all of its intermediate result. According to this
restriction, we need to define the earliest start time (EST)
of a task ti on processing node pj as:

)},()({max),(),(
)(

ixewtCTptEST jtPAx
tpredt

ji x
ix

×+=
∈

Here CT (tx) is the completion time of tx and PA(tx) is the
processor to which tx is assigned. All notations used in the
algorithm description and their meanings can be found in
Table 1.

4. PFAS Algorithm

The primary objective of PFAS is to assign tasks in a
workflow to proper computational resources to minimize
the makespan. To achieve this goal in dynamic
heterogeneous environments, the proposed algorithm has
the following features: (1) It updates the ranks of task
nodes in real time in each scheduling step so that the
critical path can be recognized dynamically. (2) To avoid
a myopic optimization, it looks forward along the current
recognized critical path when selecting a resource for the
current task node. (3) To use idle time slots on a resource,
it can insert an unscheduled task before a scheduled task
on the same resource if the insertion doesn’t violate
precedence conditions.

4.1 Task Node Ranking

The critical path (CP) of a task graph is a set of nodes
and edges, forming a path from an entry node to an exit
node, and all of the nodes (called critical nodes) on this

Table 1: Symbols and Definitions.
Symbol Meaning

Ranku(ti) Upward rank of task ti

Rankd(ti) Downward rank of task ti

Rank(ti) Total rank of task ti

DCPi Dynamic critical path at scheduling step i.

PA(ti) The processor to which task ti is assigned

EST(ti, pj) The earliest start time of ti on processor pj

ECT(ti, pj)
The earliest complete time of ti on
processor pj

EPT(P, pj, T)
The estimated execution time of task nodes
on path P on pj starting from time T based
on average performance of pj.

CT(ti) Complete time of ti after it is scheduled

RT(ti)
Execution time of ti on the processor where
it is scheduled

RQ The ready task queue

AVLTi (m)
The earliest available time of processing
node pi at the mth scheduling step

path have the same maximum rank value (See Equation
(9)). As the scheduling proceeds, the CP of a task graph
might be changed because of the following three reasons:
1) the communication cost between two conjunctive task
nodes will be set to zero, if they are assigned to the same
resource; 2) the execution time and completion time of a
node can be estimated after it is scheduled; 3) the
available time slots of a resource are to be changed once a
task node is assigned to the resource. So, instead of using
a static rank value computed at the beginning of the
schedule, PFAS adopts a dynamic ranking strategy, that is,
once a task node is scheduled, the ranks for all of the
other nodes will be updated. At each scheduling step, the
scheduler chooses the unscheduled task which has the
highest dynamic rank. And staring from this node, the
scheduler also constructs a dynamic critical path (DCP).
To update the rank of a task node, average performance of
processing nodes in feasible time slots is used. The
feasible time AVLT of processing node pi in the mth
scheduling step is defined by the following Equation:

)},({min)(ij
RQt

i ptESTmAVLT
j∈

=

AVLTi(m) finds the earliest time when a processing
node could run a task in the ready queue in the mth
scheduling step. Time slots after this time will be
considered feasible and the corresponding performance
within these slots will be used to update priorities of task
nodes. For simplicity, we omit m from all expressions,
without losing generality.

To evaluate the performance of a resource as accurately
as possible, the scheduler first needs to estimate the
number of time slots which will be used to complete the
job (the value of parameter k in s1,…, sk). In PFAS, an
optimistic estimation strategy is used: The scheduler
estimates the serial processing time of the whole job on
each processing node respectively, and chooses the
smallest one. This strategy is based on the expectation that
the parallel processing, even in the worst case, is not
worse than the best sequential one.

To schedule a task graph efficiently, it is important to
identify the critical tasks to be scheduled at each step. The
delay of critical nodes may result in the extension of the
schedule length. Usually, the priority of a task node can be
obtained by finding the maximum “distance” from this
node to the starting nodes and exiting node. Here, distance
means the sum of computational and communication costs
along a certain path. Unfortunately, due to the
heterogeneity and fluctuation of resource performance, it
is very difficult to find how urgent a task node really is
due to the variation of completion times of its successive
tasks on different processing nodes and in different time
slots. To estimate the completion times of nodes in such a
scenario, several performance measurement can be used,
such as using the median [9] or average value of resource
performance. In the following discussion, we use the

average performance value to demonstrate our algorithm.
The average performance of pi in different slots, denoted
by avg_ci, is given by Equation (1), where k is the number
of time slots used to conduct the scheduling.

≤≤−
=

kjAVLT

ji

i

i

i

c
AVLTk

cavg ,

1
_ (1)

The average performance of all available computational
resources, denoted by avg_c, is given by Equation (2),
where n is the number of processing nodes.

≤≤

=
ni

icavg
n

cavg
1

_
1

_ (2)

Similarly Equation (3) and (4) give the average
communication cost of pi to all other nodes avg_wi, and
the overall average communication cost avg_w,
respectively.

≤≤

=
nj

jii w
n

wavg
1

,

1
_ (3)

≤≤

=
nji

jiw
n

wavg
,1

,2

1
_ (4)

It is assumed that the time required to complete a task
on different processors is uniformly related to the
performance of resources, that is to say, if the
performance of a processing node pj is a constant cj, it will
finish task ti within time qi / cj. Following this assumption,
Equation (5) relates computational cost, resource
performance and time for the performance fluctuating
scenario:

cj

start

ccomplete
c

se

ejsj

start

end

s

i c
u

ss
cc

u

ss
q ,

1

1

,,

)()(
×

−
++×

−
=

−

+=

 (5)

where si
start and si

end are the start and end of a time slot, u is
the length of time slot, sstart and scomplete are start time and
completion time of ti, and s and c are indexes of time slots
in which ti starts and completes, respectively. With EST(ti,
pj) and the performance of pj in different times slots, it is
straightforward to get the earliest complete time of ti on pj

ECT(ti, pj), according to Equation (5) where sstart = EST(ti,
pj) and scomplete = ECT(ti, pj).

Now we can define the priority of a task node in G,
which is decided by its upward rank ranku and downward
rank rankd. To recognize the critical path dynamically, the
rank of a node needs to be updated in different scheduling
steps. ranku is computed recursively from the exit node
upward to the entry node. If a node ti is not scheduled yet,
ranku(ti) is defined as:

))(_),((max
_

)(
)(

ju
tsucct

i
iu trankwavgjie

cavg

q
trank

ij

+×+=
∈

(6)

In this case, since ti is not scheduled, its execution time
and the delay of sending intermediate results to its
successors are given by estimate using average resource
performance. If ti has been scheduled, the real run time of
ti RT(ti) is known, but a successor of ti might not
scheduled yet. So in this case ranku(ti) is defined as:

))(),((max)()(
)(

ju
tsucct

iiu trankjiTransTimetRTtrank
ij

++=
∈

(7)

×
×

=
otherwise_),(

scheduledisif),((
),(

)(

)(),(

i

ji

tPA

jtPAtPA

wavgjie

twjie
jiTransTime

If ti is scheduled, the intermediate result transfer time
from ti to tj is known, otherwise, the average
communication cost of the processing node of ti is used.

Similarly, rankd(ti) is computed recursively from the
entry node downward to the exit node. If ti has been
scheduled, all of ti’s predecessors have been scheduled too.
So, in this case, rankd(ti) is defined as:

}),()()({max)()(),(
)(ij

ij

tPAtPAjjd
tpredt

id wijetRTtranktrank ×++=
∈

 (8)

Specially, for the entry node t1, rankd(t1) = 0. If ti has
not been scheduled yet, we need to consider whether its
predecessors have been scheduled or not, so there are still
two cases:

×++

×++
=

∈ otherwise,_),(
_

)(

scheduled,_),()()(

max)(

)(

)(wavgije
cavg

q
trank

twavgijetRTtrank

trank j

jd

jtPAjjd

tpredt
id

j

ij

The rank of a task node is defined as the sum of its
upward and downward ranks:
)()()(idiui tranktranktrank += (9)

4.2 Processing Node Selection

After a critical task node is selected, the scheduler
needs to find an appropriate time point on a computational
resource to which the task node will be assigned. To
utilize idle time slots as much as possible, the scheduler
uses an insertion-based method, which can be formalized
by the following rule.

Rule1: A task ti can be inserted into processor pj which
contains a sequence of tasks { , , …, }at time s, if
there is some m that for every task in { , , …, },

ECT(, pj) ≤ EST(ti, , pj), and for every task in { ,

 , …, }, ECT(ti, , pj) ≤ EST(, pj).

Rule1 states that a task can be inserted on a processor
only if there is are time slots large enough to
accommodate it without delaying tasks already scheduled
or violating precedence orders among the tasks.

Intuitively, high priority tasks should be assigned to
resources within their high performance time slots. The
problem of selecting a processing node that only gives the
earliest complete time for the current task is that this
method is myopic and may fall into a local optimization.
For example, it can happen that after the task ta is assigned
to a resource px, its successors on the critical path P
starting from task tb also has to be assigned to px because
the intermediate result transfer between ta and tb might
delay the earliest complete time of tb otherwise. But
actually, even tb itself is delayed on another resource, say

1j
t

2j
t

nj
t

xj
t

1j
t

2j
t

mj
t

xj
t

yjt
mj

t

1+mj
t

nj
t

yjt

py, it is possible that the execution of remaining tasks on P
can make up this delay because py may have a faster
computational speed. So instead of using the simple
myopic earliest complete time strategy, PFAS adopts a
look-forward approach to avoid a biased schedule that
only considers the current task and resource status. To this
end, we first define a function EPT(P, pi, T) which gives
the estimate execution time of a partial path P on resource
pi, starting at time T.

)/(
),,(

, Tkc

q

TpPEPT

kjT

ji

Pt

j

i

j

−
=

≤≤

∈

Rule 2: If ti is the current task to be scheduled and tj is the
direct child of ti on the longest path measured by task
rank from ti to an exit node, then ti should be scheduled to
the processing node px which satisfies

))}(,,()({min
,1

jytj
nyx

tPESTpPEPTtPEST
i

+
≤≤

 (10)

),(),()(, jiewptECTtPEST yxxij ×+=
PEST(tj) is the earliest time when a partial critical path

 , starting with tj can possibly start, and function EPT
computes the estimated execution time of tasks on
 using the average performance of each processing
node after this time point. So, Rule 2 states that instead of
only finding the processing node that can finish ti the
earliest, PFAS is trying to find a pair of processing nodes,
px and py, so that execution time for the tasks on the
longest path from ti to an exit node will be minimized.

Now we can present the pseudo codes of the PFAS
algorithm. The time complexity of PFAS will be
calculated as what follows: The while loop on line 4 will
run v times to schedule every task. In Select_Processor, to
find a longest path for the current task node requires O(v)
times in the worst case, and the outer for loops on line 2
will run n times. To compute ECT of a task, costs O(v*L) ,
where L is the max node degree in task graph G. The inner
for loop will also run n times, and in each iterate, it will
cost at most O(v) to compute the EPT function. To update
the available time of each processor, requires O(n*v) on
line 8. So, the total cost of the Select_Processor procedure
is O(v+n*v*L+n2*v+ n*v) = O(n2*v). Back to Algorithm
PFAS, to update priorities of unscheduled tasks, costs
O(n*k)+O(v), where O(n*k) is the cost to update the
available performance of each processor and O(v) is the
cost to update ranks of tasks. So the total complexity of
PFAS is O(n2v2+nkv).

PFAS Algorithm

Input: A subgraph and a set of resources r1, …, rn.

Output: task node to resource mapping
1. Compute ranku and randd for each task using average

resource performance;
2. Set the priority of each task as the sum of its ranku

and randd;
3. Initial the ready queue RQ with the entry task;
4. While (there are unscheduled nodes){
5. Select the highest priority task t in RQ;
6. Call Select_Processor(t) to assign task t ;
7. Update priorities of all tasks;
8. }

Process Select_Processor(task t)
1. Find the longest path P from t to an exit node.
2. For all available processors pi {
3. Compute ECT (t, pi);
4. For all processors pj

5. Call EPT(P, pj, ECT(t,pi)+wi,j*e(i,j))
6. }
7. Insert t to pi that satisfies Rule 2;
8. For all available processors pi, update available time

of pi AVLTi and feasible performance.

An example illustrating the PFAS algorithm is given
below, which takes data in Table 1 (a) and (b) as resource
performance and communication cost respectively, and
schedules the task graph given by Fig. 2. It is also
compared with other two scheduling methods: the HEFT
algorithm and a performance fluctuation aware algorithm
without the look-forward strategy (called NLF). In Table 2,
ranks of tasks at each scheduling step are given, and in
Table 3, the available average performance of each
computational resource is given. In the first step, t1 is
selected as it is the highest rank ready task and the current
dynamic critical path is DCP1= {t1, t4, t5, t7, t8}. According
to Rule 2, assigning t1 to p1 will give the minimum value

Table1: (a) A table showing the performance
fluctuation of 3 computational resources in
12 time slots. (b) Communication cost of
unit data transfer between resources given
in (a).

 (a) (b)

p1 p2 p3

s1 3 1 2

s2 3 2 3

s3 2 2 3

s4 6 8 2

s5 8 8 3

s6 4 7 2

s7 3 7 6

s8 3 8 3

s9 4 3 3

s10 3 6 3

s11 5 5 4

s12 4 4 2

avg_ci 4 5 3

avg_c 4

p1 p2 p3

p1 0 1 1.5

p2 1 0 2

p3 1.5 2 0

avg_w 1

it
P

it
P

it
P

Table 2: Task Node ranks and the dynamic
critical path of each scheduling step (in
shading cells).

Table 3: Feasible average performance of
computational resources in each schedu-
ling step.

Steps p1 p2 p3 Avg.

Initial 4 5 3 4

1 129/31 85/14 87/28 4.4466

2 129/31 1240/203 87/28 4.4589

3 129/31 1024/169 87/28 4.4425

4 129/31 707/128 87/28 4.7629

5 129/31 602/113 87/28 4.1986

6 57/13 602/113 87/28 4.2731

7 100/27 602/113 87/28 4.0461

of Expression (10) (with px = p1 and py = p2, the value is
6.7843, with px =1 py =1, the value is 7.6674, with px = 2,
py = 2, the value is 7.0179). In the beginning of the second
step, the ranks of tasks are updated as the finish time of t1

is already known and available time slots on resources
have changed. Now t4 is in the ready queue with the
highest priority, and DCP2 = {t4, t5, t7, t8}. Again, Rule 2
is called to find the best insertion which is processor 2
(with px =1 py =1, the value is 7.8947, with px = 2, py = 2,
the value is 7.0660). Eventually, PFAS will give a
schedule as the Gantt chart in Fig. 3 (a). Fig. 3 (b) and (c)
give the results of the two compared methods. It is
obvious that PFAS gives the best scheduled in term of
makespan.

5. Experiments

To evaluate the effectiveness of PFAS in the Grid
circumstances, comparative experiments are done to
simulate its performance. Three different scheduling
algorithms are tested in the experiments: 1) PFAS, 2)
PFAS without look-ahead along the dynamic critical path
(NLF), and 3) HEFT algorithm. The performance metric
we used for the comparison is the Scheduled Length Ratio
(SLR), which is the ratio of real makespan to the
theoretical lower bound of any possible scheduling, which
equals the execution time the longest path measured in

Fig. 3: Gantt charts of the different schedule
approaches for the example: (a) PFAS; (b)
PFAS without look-ahead (NLF); (c) HEFT.

computation cost on the fastest resources without any
communication delays.

5.1 Experimental Settings

In the experiments, three resource clusters are used.
Each cluster consists of 10 processing nodes connected by
a LAN. The resource clusters are connected by a WAN.
The topology and initial parameters such as processing
capacity, communication cost, and load of each processor
are generated using a toolkit named GridG1.0 [10].

In terms of input task graphs, a task graph generator
called Task Graph For Free (TGFF) [11] is used to
generate task graphs submitted to the Grid. TGFF has the
ability of generating a variety of task graphs according to
different configuration parameters, such as average
number of task nodes of each graph, average outgoing and
incoming degrees for each node in a graph, and
computational and communication cost for each type of
task nodes and edges.

To test the adaptive ability of our scheduling approach
to different task graphs and resource settings, the
following parameters are considered in the experiment:

• The average number task nodes in a graph v;

• The ratio of the average degree of a task node to the
total number of tasks in a graph (Edge density in a
graph);

• The computation-to-communication ratio (CCR) of a
task graph. CCR is the average ratio of computation
cost to communication cost. A high CCR value means
a task graph is computation-intensive.

• Resource performance fluctuation factor which
decides the percentage that the performance of a
computational resource can increase or drop in
different time slots.

• The communication heterogeneity factor which
decides how different communication costs between
different computational resources are.

Steps t1 t2 t3 t4 t5 t6 t7 t8

1 14.5 7.5 9 14.5 14.5 13 14.5 14.5

2 14.23 7.59 9.04 14.23 14.23 12.84 14.23 14.23

3 14.03 7.58 9.03 14.04 14.02 12.53 14.03 14.03

4 12.59 7.59 9.04 12.59 9.04 12.59 12.59 12.59

5 8.89 7.39 8.82 8.89 8.89 8.75 10.00 10.00

6 9.24 7.763 9.24 7.70 7.70 7.56 8.81 9.24

7 8.30 7.71 8.30 7.68 7.68 7.54 8.79 8.88

8 8.36 6.03 8.36 7.74 7.74 7.61 8.85 8,85
Length

P1 P2 P3

1

2

4

5

6

3

7

8

9

10

t1

1+2/3

t3

4+1/3

t4

2+2/3

4+19/24t2
t5

5+1/4

t7

t8

3+13/24

5+19/21
t6

6+13/21

7+7/8

Length

P1 P2 P3

1

2

4

5

6

3

7

8

9

10

t1

1+2/3

t4

3+1/3 t3

2+2/3

4+1/6
t2

t5
4+3/4

5+4/21
t6

6+2/3

t7

8+1/4

t8
9+1/2

Length

P1 P2 P3

1

2

4

5

6

3

7

8

9

10

t1

3
t4

4

t3

3+5/8

4+7/8

t5

5+1/2
6

t6

t7

t8

t2 6+5/7

9+1/3

cba

5.2 Simulation Results

With respect to the number of nodes in a task graph, 5
different average values are applied: 20, 40, 60, 80 and
100. For each of these values, 25 graphs are generated. Fig.
4 (a) illustrates the average performance of the 3
scheduling algorithms. First, it can be observed that, as the
number of task nodes increases, the performance of all of
these three algorithms decreases. The explanation for the
performance drop is that: the increasing of task nodes
number will result in more accumulate error in task node
ranking. Second, PFAS achieves the best performance
among the three algorithms. NLF which only considers
the performance fluctuation outperforms HEFT by a small
margin. This implies that the benefit brought by only
updating the task node ranks dynamically is limited.

The edge density is an important character of a graph,
which decides the communication volume among tasks.
To describe the edge density, the ratio of the average
degree of each task node to the total number of nodes in a
graph is used in our experiments. Five different settings
are tested: 0.05, 0.1, 0.2, 0.3 and 0.4. For each setting, 25
different graphs are generated as well. As Fig. 4 (b)
indicates, as the degree of task nodes increases, the SLR
of PAFS firstly drops and then keeps steady, and it’s the
overall best. The SLR of NLF and HEFT firstly increases
and then drops. Increasing the degree of tasks implies
increasing of the total communication volumes, so the
makespan is extended due to more communication delay.
The interesting point is after the ratio is greater than 0.3,
SLR of all of the three algorithms drops again. The
explanation to this phenomenon is that, as the total
number of task nodes is fixed, increasing the average
degree of nodes has the effect of reducing the length of the
critical path and increasing the breadth when a task graph
is generated by TGFF. So, as the degree increases, the
possibility of high parallelism also increases, which might
shadow the increase in communication volume. This also
explains why the performance PAFS is worse than HEFT
at the beginning: when the critical path is longer, there are
more errors in the look-head procedure which relies on the
estimate to the finish time of the critical path.

The other parameter contributing to characteristics of a
task graph is the CCR. In the experiment, the ratio
increases from 0.5 to 10. As Fig. 4 (c) indicates, as the
ratio increases, the SLR of PFAS and NLS slightly drops
and then increase, and the one of PFAS is the lowest. The
drop of SLR at the beginning is brought by the decreasing
communication to computation cost ratio. But as
computation cost of a task node increases, its execution
time on different resources at different time becomes more
different, which implies that the estimate to execution
time departs from the real situation further.

To test the adaptiveness of the three scheduling

20 40 60 80 100

Number of Task Nodes

10

20

30

40

50

60

S
L

R

PAFS

HEFT

NLF

(a)

0 0.1 0.2 0.3 0.4
Degree/Node Number

30

40

50

60

S
L

R

(b)

0 2 4 6 8 10
Computation/Communication Ratio

10

20

30

40

50

60

70

S
L

R

(c)
Fig. 4: Experiment results of different
parameter settings. (a) Different number of
tasks in a Grid Workflow. (b) Different
average node degree in a task graph. (c)
Different computation to communication
ratio in a task graph.

methods to computational power fluctuation, five different
values are assigned to the performance fluctuation factor:
20%, 40%, 50%, 60% and 80%, each denoting the
maximum allowed percentage of full computation power
drop in different time slots. As Fig. 5(a) shows, as
resource performance becomes more fluctuating, the SLR
of all methods increases which is brought by the more
difficulty to get accurate estimate. PFAS, followed by
NLF, is the best among the tested algorithm.

The other resource related parameter involved in the
simulation is the communication cost heterogeneity ratio.
In the experiment, the ratio is assigned 5 different values
also: 0.2, 0.4, 0.6, 0.8 and 1.0, which gives the maximum
percentage of the communication cost of a connection
between two resources can different from the average cost

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Performance Fluctuation Factor

20

30

40

50

S
L

R

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Communication Hetergenesous Factor

30

40

50

60

S
L

R

(b)
Fig. 5: (a) Different performance fluctuation
factors. (b) Different communication cost
factors.

value. As Fig. 5(b) indicates, the SLR of the three
methods increases as the network connection becomes
more heterogeneous which brings more errors to task node
ranks. The SLR of PFAS is still the lowest, followed by
NLF and HEFT, which means PFAS is more adaptive to
the network heterogeneity than the other two methods.

6. Conclusions

In this paper we propose a resource performance
fluctuation aware workflow scheduling algorithm PFAS
for the Grid. Instead of using a static task ranking
approach which is usually conducted once at the
beginning of a DAG scheduling algorithm, PFAS updates
task ranks and constructs the critical path dynamically in
the scheduling procedure according to the change in
performance of available resources. PFAS also adopts a
look-ahead approach to assign a critical task. This allows
it to overcome myopic decisions made by the earliest
complete time criterion which is used by many other
scheduling algorithms. Experiments show that the
scheduling performance, measured in makespan, benefits
from both techniques. Simulation results also show that
PFAS is adaptive to different task graphs and resource
topology settings. Its overall performance is much better
than that of the HEFT algorithm, which is a powerful
DAG scheduling algorithm designed for heterogeneous
computational environments. The current implementation
of PFAS does not consider the possibility of wrong
performance prediction, which is likely in the real

situations. This is the problem on which we are currently
working. The simulations also show that estimating task
ranks by average resource performance leads to an
accumulation of estimate errors when the critical path is
long or resources are more heterogeneous, so better and
more complex ways might be introduced in the future for
improvement. The algorithm is also going to be tested by
realistic workflows in the Grid.

References

[1] E. Deelman, J. Blythe, et al. Pegasus: Mapping Scientific
Workflows onto the Grid. In the Proc. of Grid Computing:
Second European AcrossGrids Conference (AxGrids
2004), pages:11- 26, January 2004.

[2] J. Cao, S. A. Jarvis, et al.. GridFlow: Workflow
Management for Grid Computing. In Proc. of the 3rd
CCGrid, pages:198-205, Tokyo, Japan, May 2003.

[3] M. Wieczorek, R. Prodan and T. Fahringer. Scheduling of
Scientific Workflows in the ASKALON Grid
Environment. In ACM SIGMOD Record, Vol.34, No.3,
pages: 56-62, September 2005.

[4] L. Yang, J. M. Schopf and I. Foster. Conservative
Scheduling: Using Predicted Variance to Improve
Scheduling Decisions in Dynamic Environments. In Proc.
of the 2003 Supercomputing, pages: 31-- 46, November
2003.

[5] K. Aggarwal and R. D. Kent. An Adaptive Generalized
Scheduler for Grid Applications. In Proc. of the 19th
Annual International Symposium on High Performance
Computing Systems and Applications (HPCS), pages: 15-
18, May 2005.

[6] G. Mateescu. Quality of Service on the Grid via
Metascheduling with Resource Co-Scheduling and Co-
Reservation. In International Journal of High
Performance Computing Applications, Vol. 17, No. 3,
pages: 209-218, 2003.

[7] Y.K. Kwok and I. Ahmad. Dynamic Critical-Path
Scheduling: an Effective Technique for Allocating Task
Graphs to Multiprocessors. In IEEE Trans. on Parallel
and Distributed Systems, Vol. 7, No. 5, pages: 506-521,
May, 1996.

[8] H. Topcuoglu, S. Hariri and M.Y. Wu. Performance-
Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing. In IEEE Trans. on Parallel
and Distributed Systems, Vol. 13, No. 3, pages: 260 - 274,
2002.

[9] H. Zhao and R. Sakellariou. An Experimental
Investigation into the Rank Function of the Heterogeneous
Earliest Finish Time Scheduling Algorithm. In Proc. of
Euro-Par 2003, Springer-Verlag, LNCS 2790, pages:
189-194, Klagenfurt, Austria, August 2003.

[10] D. Lu and P. Dinda. Synthesizing Realistic Computational
Grids. In Proc. of ACM/IEEE Super-computing 2003,
Phoenix, AZ, USA, 2003.

[11] R.P. Dick, D.L. Rhodes and W. Wolf, TGFF Task Graphs
for Free, Proc. of the 6th. International Workshop on

Hardware/Software Co-design, 1998.

[12] F. Dong and S. G. Akl. Grid Application Scheduling
Algorithms: State of the Art and Open Problems.
Technical Report No. 2006-504, School of Computing,
Queen's University, Canada, Jan 2006.

[13] H. El-Rewini, T. Lewis, and H. Ali. Task Scheduling in

Parallel and Distributed Systems, ISBN: 0130992356,
PTR Prentice Hall, 1994.

[14] J. Liou and M. A. Palis. A Comparison of General
Approaches to Multiprocessor Scheduling. In Proc. of the
11th International Symposium on Parallel Processing,
pages:152-156, April 1997.

[15] T. Yang and A. Gerasoulis. DSC: Scheduling Parallel
Tasks on an Unbounded Number of Processors. In IEEE
Trans. on Parallel and Distributed Systems, vol. 5, no. 9,
pages: 951--967, 1994.

[16] S. Darbha and D.P. Agrawal. Optimal Scheduling
Algorithm for Distributed Memory Machines. In IEEE
Trans. on Parallel and Distributed Systems, vol. 9, no. 1,
pages: 87-95, January 1998.

[17] R. Bajaj and D. P. Agrawal, Improving Scheduling of
Tasks in A Heterogeneous Environment. In IEEE Trans.
on Parallel and Distributed Systems, Vol.15, no. 2, pages:
107 – 118, February 2004.

[18] T. Ma and R. Buyya. Critical-Path and Priority based
Algorithms for Scheduling Workflows with Parameter
Sweep Tasks on Global Grids. In Proc. of the 17th

International Symposium on Computer Architecture and
High Performance Computing, pages: 251- 258, October
2005.

[19] L. He, S. A. Jarvis, D. P. Spooner, D. Bacigalupo, G. Tan,
G. R. Nudd. Mapping DAG-based Applications to
Multiclusters with Background Workload. In Proc. of the
5th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid'05), pages: 855-862, May 2005.

Biographies

Fangpeng Dong received his B.Sc from the Department
of Computer Science and Technology, Peking University,
Beijing, China in 2000 and M.E. from the Institute of
Computing Technology, Chinese Academy of Sciences,
Beijing, China in 2003. He is now a Ph.D. student in the
School of Computing, Queen's University at Kingston,
Ontario, Canada. His major research interests include Grid
computing and other parallel and distributed systems. He
is also an IEEE student member.

Selim G. Akl received his Ph.D. degree from McGill
University in Montreal in 1978. He is currently a
professor of Computing at Queen's University, Kingston,
Ontario, Canada. His research interests are in parallel
computation. He is author of Parallel Sorting Algorithms
(Academic Press, 1985), The Design and Analysis of
Parallel Algorithms (Prentice Hall, 1989), and Parallel
Computation: Models and Methods (Prentice Hall, 1997),

and a co-author of Parallel Computational Geometry
(Prentice Hall, 1992). Dr. Akl is editor in chief of Parallel
Processing Letters and presently serves on the editorial
boards of Computational Geometry, the International
Journal of Parallel, Emergent, and Distributed Systems,
and the International Journal of High Performance
Computing and Networking.

