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Abstract
 

Resource performance in the Computational Grid is 
not only heterogeneous, but also changing dynamically. 
However scheduling algorithms designed for traditional 
parallel and distributed systems, such as clusters, only 
consider the heterogeneity of the resources. In this paper, 
a workflow scheduling algorithm, called PFAS, is 
proposed and tested in the Grid environment. PFAS 
considers dynamic resource performance fluctuation in 
the Grid, and conducts the scheduling according to its 
knowledge of the fluctuation. This new algorithm works in 
an offline way which allows it to be easily set up and run 
with less cost.  Simulations show that our approach can 
achieve better schedules than the HEFT algorithm. 

1. Introduction 

The development of Grid infrastructures, e.g., 
Pegasus [1], Grid Flow [2] and ASKALON [3] now 
enables workflow submission and execution on remote 
computational resources. To exploit the non-trivial power 
of Grid resources, effective task scheduling approaches 
are necessary. In this paper, we consider the scheduling 
problem of workflows which can be represented by 
directed acyclic graphs (DAG) in the Grid. The ultimate 
goal guiding the mapping is to reduce the total completion 
time of all tasks (also known as makespan) in a workflow.  

As most Grid resources are not dedicated to Grid users, 
Grid resource performance is not only heterogeneous, but 
also dynamically changing due to the competition among 
the uses. Therefore, some mechanisms are introduced to 
try to capture relevant information about resource 
performance fluctuation information (e.g., performance 
prediction [4]), or try to provide some guaranteed 
performance to users (e.g., resource reservation [5], [6]). 
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These approaches make it possible for Grid schedulers to 
get relatively accurate resource information prior to 
producing a schedule, though resource performance 
fluctuation still makes task scheduling in the Grid more 
difficult compared with that in traditional parallel and 
distributed systems such as clusters, in which resource 
performance is usually heterogeneous, but static for a user. 
In this paper, we propose a workflow scheduling 
algorithm called PFAS for the targeted Grid environment. 
Basically, PFAS is a list heuristic. Although PFAS works 
in an offline manner, it can be aware of resource 
performance fluctuation in the Grid, and adopts a dynamic 
task ranking method in the scheduling procedures and a 
look-forward technique [7] to find proper task 
assignments. Experiments show that with the help of these 
two techniques, PFAS outperforms the well-known and 
frequently referenced HEFT scheduling algorithm [8]. 

The rest of this paper is organized as follows: in 
Section 2, related work is introduced; Section 3 presents 
the application and resources model used by the proposed 
algorithm; Section 4 describes the PFAS algorithm in 
detail; Section 5 presents simulation results and analysis; 
finally, conclusions are given in Section 6 

2. Related Work 

The DAG-based task graph scheduling problem in 
parallel and distributed computing systems is an 
interesting research area, and algorithms for this problem 
keep evolving with computational platforms, from the age 
of homogeneous systems, to heterogeneous systems and 
today’s computational Grids [12]. Due to its NP-complete 
nature [13], most of algorithms are heuristic based and can 
be classified into three categories: list algorithms, 
clustering algorithms and task duplication based 
algorithms. 

In list algorithms, tasks are assigned with priority 
values and scheduled in the order of decreasing priority 
values. The HEFT algorithm [8] and the Dynamic Critical 



Path algorithm (DCP) [7] are typical examples of list 
heuristics. Clustering is a way to reduce communication 
delay in DAGs by clustering tasks heavily communicating 
with each other to the same subgraph, and then assigning a 
subgraph to the same processor. Clustering algorithms 
have two phases: the task clustering phase that partitions 
the original task graph into subgraphs, and a post-
clustering phase which can refine the clusters produced in 
the previous phase and get the final task-to-resource map. 
Examples of this kind of heuristics can be found in [13] 
and [14]. The main idea of duplication based scheduling is 
utilizing resource idle time to duplicate predecessor tasks. 
This may avoid the transfer of results from a predecessor 
to a successor, thus reducing the communication cost. In 
[15] and [16], two duplication-based scheduling 
algorithms are proposed for distributed-memory systems 
with homogeneous processors, and networks of 
heterogeneous processors, respectively. The problem of 
these algorithms is they take the resource performance as 
a constant during the execution of the job to be scheduled, 
which is usually not the case in the Grid.  

The Extended Dynamic Critical Path algorithm (xDCP) 
[17] enhances the DCP algorithm to adapt to the dynamic 
and heterogeneous nature of Grid resources. But xDCP 
didn’t use resource performance prediction explicitly to 
refine the schedule. In [18], a DAG scheduling algorithm 
considering background workload in multiclusters is 
proposed. In the targeted system, every resource has 
multiple processors and its own independent local 
scheduler, which is similar with the resource model in this 
paper. But it assumes that processors in the same resource 
cluster are homogeneous and share a local First-Come-
First-Served queue, which is not an assumption of our 
approach. Another major difference is that the scheduler 
works in an online manner, that is, the Grid scheduler 
watches all queues of resource clusters and decides where 
the next schedulable task should go dynamically.  

3. Models and Definitions 

3.1 Resource Model 

As mentioned previously, the dynamic performance 
fluctuation of processing nodes is considered. In a 
resource management system supporting advance 
reservation, available resource performance at a specific 
time can be known by calculating the workload generated 
by jobs that have reserved resources at that time, as Fig. 1 
indicates. Thus, by referring resource predictors or 
resource management components supporting reservation, 
the performance fluctuation can be caught. Theoretically, 
if the time axe can be divided into fine granular periods, 
the performance within a period can be approximated as a 
constant. Thus, to describe the fluctuation, a sequence of 
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Fig. 1: Performance fluctuation resulted from 
advance reservation on a resource along time.  

time slots s1,…,sk is introduced. The processing capability 
of pi in time slot sj is denoted as ci,j, and we assume that in 
a time slot, ci,j is a constant. In terms of communication 
delay, the communication cost of a data unit along a 
connection li,j is denoted as wi,j which is also a constant 
along time,  and wi,j = 0 if i = j.

3.2 Application Model 

We assume that a workflow to be scheduled can be 
represented by a DAG G, as shown in the example of Fig. 
2. A circular node ti in G represents a task, where 1 i v,
and v is number of tasks in the workflow. qi (1 i v) is the 
computational power consumed to finish ti. For example, 
in Fig. 2, q1 = 5. An edge e(i, j) from ti to tj means that tj

need an intermediate result from ti, so that  tj∈succ(ti), 
where succ(ti) is the set of all immediate successor tasks 

of ti. Similarly, we have tj∈pred(ti), where pred(ti) is the 
set of immediate predecessors of ti. The weight of e(i, j)
gives the size of intermediate results (or communication 
for simplicity) transferred from ti to task tj. For example, 
the communication volume from t1 to t2 is 1 in Fig. 2.  
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Fig. 2: A DAG depicting a workflow applica-
tion, in which a node represents a task, and a 
labelled directed edge represents a 
precedence order with a certain size of 
intermediate result transfer. 



When a feasible schedule is computed, the following 
additional restrictions apply: 1) Only one task can run on a 
processing node at the same time; 2) A task cannot begin 
until it gets all of its intermediate result. According to this 
restriction, we need to define the earliest start time (EST) 
of a task ti on processing node pj as: 
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Here CT (tx) is the completion time of tx and PA(tx) is the 
processor to which tx is assigned. All notations used in the 
algorithm description and their meanings can be found in 
Table 1.   

4. PFAS Algorithm  

The primary objective of PFAS is to assign tasks in a 
workflow to proper computational resources to minimize 
the makespan. To achieve this goal in dynamic 
heterogeneous environments, the proposed algorithm has 
the following features: (1) It updates the ranks of task 
nodes in real time in each scheduling step so that the 
critical path can be recognized dynamically. (2) To avoid 
a myopic optimization, it looks forward along the current 
recognized critical path when selecting a resource for the 
current task node. (3) To use idle time slots on a resource, 
it can insert an unscheduled task before a scheduled task 
on the same resource if the insertion doesn’t violate 
precedence conditions. 

4.1 Task Node Ranking 

The critical path (CP) of a task graph is a set of nodes 
and edges, forming a path from an entry node to an exit 
node, and all of the nodes (called critical nodes) on this  

Table 1: Symbols and Definitions. 
Symbol Meaning 

Ranku(ti) Upward rank of task ti

Rankd(ti) Downward rank of task ti

Rank(ti) Total rank of task ti

DCPi Dynamic critical path at scheduling step i.

PA(ti) The processor to which task ti is assigned 

EST(ti, pj) The earliest start time of ti on processor pj

ECT(ti, pj)
The earliest complete time of ti on 
processor pj

EPT(P, pj, T)
The estimated execution time of task nodes 
on path P on pj starting from time T based 
on average performance of pj.

CT(ti) Complete time of ti after it is scheduled 

RT(ti)
Execution time of ti on the processor where 
it is scheduled 

RQ The ready task queue  

AVLTi (m)
The earliest available time of processing 
node pi at the mth scheduling step 

path have the same maximum rank value (See  Equation 
(9)). As the scheduling proceeds, the CP of a task graph 
might be changed because of the following three reasons: 
1) the communication cost between two conjunctive task 
nodes will be set to zero, if they are assigned to the same 
resource; 2) the execution time and completion time of a 
node can be estimated after it is scheduled; 3) the 
available time slots of a resource are to be changed once a 
task node is assigned to the resource. So, instead of using 
a static rank value computed at the beginning of the 
schedule, PFAS adopts a dynamic ranking strategy, that is, 
once a task node is scheduled, the ranks for all of the 
other nodes will be updated. At each scheduling step, the 
scheduler chooses the unscheduled task which has the 
highest dynamic rank. And staring from this node, the 
scheduler also constructs a dynamic critical path (DCP). 
To update the rank of a task node, average performance of 
processing nodes in feasible time slots is used. The 
feasible time AVLT of processing node pi in the mth 
scheduling step is defined by the following Equation:  
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AVLTi(m) finds the earliest time when a processing 
node could run a task in the ready queue in the mth 
scheduling step. Time slots after this time will be 
considered feasible and the corresponding performance 
within these slots will be used to update priorities of task 
nodes. For simplicity, we omit m from all expressions, 
without losing generality.  

To evaluate the performance of a resource as accurately 
as possible, the scheduler first needs to estimate the 
number of time slots which will be used to complete the 
job (the value of parameter k in s1,…, sk). In PFAS, an 
optimistic estimation strategy is used: The scheduler 
estimates the serial processing time of the whole job on 
each processing node respectively, and chooses the 
smallest one. This strategy is based on the expectation that 
the parallel processing, even in the worst case, is not 
worse than the best sequential one.  

To schedule a task graph efficiently, it is important to 
identify the critical tasks to be scheduled at each step. The 
delay of critical nodes may result in the extension of the 
schedule length. Usually, the priority of a task node can be 
obtained by finding the maximum “distance” from this 
node to the starting nodes and exiting node. Here, distance 
means the sum of computational and communication costs 
along a certain path. Unfortunately, due to the 
heterogeneity and fluctuation of resource performance, it 
is very difficult to find how urgent a task node really is 
due to the variation of completion times of its successive 
tasks on different processing nodes and in different time 
slots. To estimate the completion times of nodes in such a 
scenario, several performance measurement can be used, 
such as using the median [9] or average value of resource 
performance. In the following discussion, we use the 



average performance value to demonstrate our algorithm. 
The average performance of pi in different slots, denoted 
by avg_ci, is given by Equation (1), where k is the number 
of time slots used to conduct the scheduling.  
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The average performance of all available computational 
resources, denoted by avg_c, is given by Equation (2), 
where n is the number of processing nodes. 
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Similarly Equation (3) and (4) give the average 
communication cost of pi to all other nodes avg_wi, and 
the overall average communication cost avg_w,
respectively.   
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It is assumed that the time required to complete a task 
on different processors is uniformly related to the 
performance of resources, that is to say, if the 
performance of a processing node pj is a constant cj, it will 
finish task ti within time qi / cj. Following this assumption, 
Equation (5) relates computational cost, resource 
performance and time for the performance fluctuating 
scenario:  
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where si
start and si

end are the start and end of a time slot, u is 
the length of time slot, sstart and scomplete are start time and 
completion time of ti, and s and c are indexes of time slots 
in which ti starts and completes, respectively. With EST(ti,
pj) and the performance of pj in different times slots, it is 
straightforward to get the earliest complete time of ti on pj

ECT(ti, pj), according to Equation (5) where sstart = EST(ti,
pj) and scomplete = ECT(ti, pj). 

Now we can define the priority of a task node in G,
which is decided by its upward rank ranku and downward
rank rankd. To recognize the critical path dynamically, the 
rank of a node needs to be updated in different scheduling 
steps. ranku is computed recursively from the exit node 
upward to the entry node. If a node ti is not scheduled yet, 
ranku(ti) is defined as: 
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In this case, since ti is not scheduled, its execution time 
and the delay of sending intermediate results to its 
successors are given by estimate using average resource 
performance.  If ti has been scheduled, the real run time of 
ti RT(ti) is known, but a successor of ti might not 
scheduled yet. So in this case ranku(ti)  is defined as:  
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If ti is scheduled, the intermediate result transfer time 
from ti to tj is known, otherwise, the average 
communication cost of the processing node of ti is used.  

Similarly, rankd(ti) is computed recursively from the 
entry node downward to the exit node. If ti has been 
scheduled, all of ti’s predecessors have been scheduled too. 
So, in this case, rankd(ti) is defined as: 
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Specially, for the entry node t1, rankd(t1) = 0. If ti has 
not been scheduled yet, we need to consider whether its 
predecessors have been scheduled or not, so there are still 
two cases: 
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The rank of a task node is defined as the sum of its 
upward and downward ranks:   
                    )()()( idiui tranktranktrank +=                     (9) 

4.2 Processing Node Selection 

After a critical task node is selected, the scheduler 
needs to find an appropriate time point on a computational 
resource to which the task node will be assigned. To 
utilize idle time slots as much as possible, the scheduler 
uses an insertion-based method, which can be formalized 
by the following rule. 

Rule1: A task ti can be inserted into processor pj which 
contains a sequence of tasks {   ,    , …,   }at time s, if 
there is some m that for every task   in {  ,  , …,   }, 

ECT(   , pj) ≤ EST(ti, , pj), and for every task   in {   , 

    , …,     }, ECT(ti, , pj) ≤  EST(    , pj). 

Rule1 states that a task can be inserted on a processor 
only if there is are time slots large enough to 
accommodate it without delaying tasks already scheduled 
or violating precedence orders among the tasks.  

Intuitively, high priority tasks should be assigned to 
resources within their high performance time slots. The 
problem of selecting a processing node that only gives the 
earliest complete time for the current task is that this 
method is myopic and may fall into a local optimization. 
For example, it can happen that after the task ta is assigned 
to a resource px, its successors on the critical path P
starting from task tb also has to be assigned to px because 
the intermediate result transfer between ta and tb might 
delay the earliest complete time of tb otherwise. But 
actually, even tb itself is delayed on another resource, say 
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py, it is possible that the execution of remaining tasks on P
can make up this delay because py may have a faster 
computational speed. So instead of using the simple 
myopic earliest complete time strategy, PFAS adopts a 
look-forward approach to avoid a biased schedule that 
only considers the current task and resource status. To this 
end, we first define a function EPT(P, pi, T) which gives 
the estimate execution time of a partial path P on resource 
pi, starting at time T.
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Rule 2: If ti is the current task to be scheduled and tj is the 
direct child of ti on the longest path     measured by task 
rank from ti to an exit node, then ti should be scheduled to 
the processing node px which satisfies 
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PEST(tj) is the earliest time when a partial critical path       

     , starting with tj can possibly start, and function EPT
computes the estimated execution time of tasks on  
      using the average performance of each processing 
node after this time point. So, Rule 2 states that instead of 
only finding the processing node that can finish ti the 
earliest, PFAS is trying to find a pair of processing nodes,
px and py, so that execution time for the tasks on the 
longest path from ti to an exit node will be minimized.  

Now we can present the pseudo codes of the PFAS 
algorithm. The time complexity of PFAS will be 
calculated as what follows: The while loop on line 4 will 
run v times to schedule every task. In Select_Processor, to 
find a longest path for the current task node requires O(v)
times in the worst case, and the outer for loops on line 2 
will run n times. To compute ECT of a task, costs O(v*L) , 
where L is the max node degree in task graph G. The inner 
for loop will also run n times, and in each iterate, it will 
cost at most O(v) to compute the EPT function. To update 
the available time of each processor, requires O(n*v) on 
line 8. So, the total cost of the Select_Processor procedure 
is O(v+n*v*L+n2*v+ n*v) = O(n2*v). Back to Algorithm
PFAS, to update priorities of unscheduled tasks, costs 
O(n*k)+O(v), where O(n*k) is the cost to update the 
available performance of each processor and O(v) is the 
cost to update ranks of tasks. So the total complexity of 
PFAS is O(n2v2+nkv). 

PFAS Algorithm  

Input: A subgraph and a set of resources r1, …, rn.

Output: task node to resource mapping
1. Compute ranku and randd for each task using average 

resource performance; 
2. Set the priority of each task as the sum of its ranku

and randd;
3. Initial the ready queue RQ with the entry task; 
4. While (there are unscheduled nodes){ 
5.     Select the highest priority task t in RQ;
6. Call Select_Processor(t) to assign task t ; 
7.      Update priorities of all tasks; 
8. }       

Process Select_Processor(task t)
1. Find the longest path P from t to an exit node.  
2. For all available processors pi { 
3. Compute ECT (t, pi);  
4. For all processors pj

5. Call EPT(P, pj, ECT(t,pi)+wi,j*e(i,j))
6. }
7. Insert t to pi that satisfies Rule 2;
8. For all available processors pi, update available time 

of pi AVLTi and feasible performance. 

         

An example illustrating the PFAS algorithm is given 
below, which takes data in Table 1 (a) and (b) as resource 
performance and communication cost respectively, and  
schedules the task graph given by Fig. 2. It is also 
compared with other two scheduling methods: the HEFT 
algorithm and a performance fluctuation aware algorithm 
without the look-forward strategy (called NLF). In Table 2, 
ranks of tasks at each scheduling step are given, and in 
Table 3, the available average performance of each 
computational resource is given.  In the first step, t1 is 
selected as it is the highest rank ready task and the current 
dynamic critical path is DCP1= {t1, t4, t5, t7, t8}. According  
to Rule 2, assigning t1 to p1 will give the minimum value  

Table1: (a) A table showing the performance 
fluctuation of 3 computational resources in 
12 time slots. (b) Communication cost of 
unit data transfer between resources given 
in (a). 

   (a)                               (b) 

p1 p2 p3

s1 3 1 2 

s2 3 2 3 

s3 2 2 3 

s4 6 8 2 

s5 8 8 3 

s6 4 7 2 

s7 3 7 6 

s8 3 8 3 

s9 4 3 3 

s10 3 6 3 

s11 5 5 4 

s12 4 4 2 

avg_ci 4 5 3 

avg_c 4

p1 p2 p3

p1 0 1 1.5 

p2 1 0 2 

p3 1.5 2 0 

avg_w 1

it
P

it
P

it
P



Table 2: Task Node ranks and the dynamic 
critical path of each scheduling step (in 
shading cells). 

Table 3: Feasible average performance of 
computational resources in each schedu-
ling step. 

Steps p1 p2 p3 Avg. 

Initial 4 5 3 4 

1 129/31 85/14 87/28 4.4466 

2 129/31 1240/203 87/28 4.4589 

3 129/31 1024/169 87/28 4.4425 

4 129/31 707/128 87/28 4.7629 

5 129/31 602/113 87/28 4.1986 

6 57/13 602/113 87/28 4.2731 

7 100/27 602/113 87/28 4.0461 

of Expression (10) (with px = p1 and py = p2, the value is 
6.7843, with px =1 py =1, the value is 7.6674, with px = 2, 
py = 2, the value is 7.0179). In the beginning of the second 
step, the ranks of tasks are updated as the finish time of t1

is already known and available time slots on resources 
have changed. Now t4 is in the ready queue with the 
highest priority, and DCP2 = {t4, t5, t7, t8}.  Again, Rule 2
is called to find the best insertion which is processor 2 
(with px =1 py =1, the value is 7.8947, with px = 2, py = 2, 
the value is 7.0660). Eventually, PFAS will give a 
schedule as the Gantt chart in Fig. 3 (a). Fig. 3 (b) and (c) 
give the results of the two compared methods. It is 
obvious that PFAS gives the best scheduled in term of 
makespan.  

5. Experiments 

To evaluate the effectiveness of PFAS in the Grid 
circumstances, comparative experiments are done to 
simulate its performance. Three different scheduling 
algorithms are tested in the experiments: 1) PFAS, 2) 
PFAS without look-ahead along the dynamic critical path 
(NLF), and 3) HEFT algorithm. The performance metric 
we used for the comparison is the Scheduled Length Ratio 
(SLR), which is the ratio of real makespan to the 
theoretical lower bound of any possible scheduling, which  
equals the execution time the longest path measured in 

                            
Fig. 3: Gantt charts of the different schedule 
approaches for the example: (a) PFAS; (b) 
PFAS without look-ahead (NLF); (c) HEFT. 

computation cost on the fastest resources without any 
communication delays. 

5.1 Experimental Settings  

In the experiments, three resource clusters are used. 
Each cluster consists of 10 processing nodes connected by 
a LAN. The resource clusters are connected by a WAN. 
The topology and initial parameters such as processing 
capacity, communication cost, and load of each processor 
are generated using a toolkit named GridG1.0 [10].  

In terms of input task graphs, a task graph generator 
called Task Graph For Free (TGFF) [11] is used to 
generate task graphs submitted to the Grid. TGFF has the 
ability of generating a variety of task graphs according to 
different configuration parameters, such as average 
number of task nodes of each graph, average outgoing and 
incoming degrees for each node in a graph, and 
computational and communication cost for each type of 
task nodes and edges.  

To test the adaptive ability of our scheduling approach 
to different task graphs and resource settings, the 
following parameters are considered in the experiment:  

• The average number task nodes in a graph v;

• The ratio of the average degree of a task node to the 
total number of tasks in a graph (Edge density in a 
graph); 

• The computation-to-communication ratio (CCR) of a 
task graph. CCR is the average ratio of computation 
cost to communication cost. A high CCR value means 
a task graph is computation-intensive.                  

• Resource performance fluctuation factor which 
decides the percentage that the performance of a 
computational resource can increase or drop in 
different time slots.  

• The communication heterogeneity factor which 
decides how different communication costs between 
different computational resources are.  

Steps t1 t2 t3 t4 t5 t6 t7 t8

1 14.5 7.5 9 14.5 14.5 13 14.5 14.5 

2 14.23 7.59 9.04 14.23 14.23 12.84 14.23 14.23

3 14.03 7.58 9.03 14.04 14.02 12.53 14.03 14.03

4 12.59 7.59 9.04 12.59 9.04 12.59 12.59 12.59

5 8.89 7.39 8.82 8.89 8.89 8.75 10.00 10.00

6 9.24 7.763 9.24 7.70 7.70 7.56 8.81 9.24 

7 8.30 7.71 8.30 7.68 7.68 7.54 8.79 8.88 

8 8.36 6.03 8.36 7.74 7.74 7.61 8.85 8,85 
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5.2 Simulation Results  

With respect to the number of nodes in a task graph, 5 
different average values are applied: 20, 40, 60, 80 and 
100. For each of these values, 25 graphs are generated. Fig. 
4 (a) illustrates the average performance of the 3 
scheduling algorithms. First, it can be observed that, as the 
number of task nodes increases, the performance of all of 
these three algorithms decreases. The explanation for the 
performance drop is that: the increasing of task nodes 
number will result in more accumulate error in task node 
ranking. Second, PFAS achieves the best performance 
among the three algorithms. NLF which only considers 
the performance fluctuation outperforms HEFT by a small 
margin. This implies that the benefit brought by only 
updating the task node ranks dynamically is limited. 

The edge density is an important character of a graph, 
which decides the communication volume among tasks. 
To describe the edge density, the ratio of the average 
degree of each task node to the total number of nodes in a 
graph is used in our experiments. Five different settings 
are tested: 0.05, 0.1, 0.2, 0.3 and 0.4. For each setting, 25 
different graphs are generated as well. As Fig. 4 (b) 
indicates, as the degree of task nodes increases, the SLR 
of PAFS firstly drops and then keeps steady, and it’s the 
overall best. The SLR of NLF and HEFT firstly increases 
and then drops. Increasing the degree of tasks implies 
increasing of the total communication volumes, so the 
makespan is extended due to more communication delay. 
The interesting point is after the ratio is greater than 0.3, 
SLR of all of the three algorithms drops again. The 
explanation to this phenomenon is that, as the total 
number of task nodes is fixed, increasing the average  
degree of nodes has the effect of reducing the length of the 
critical path and increasing the breadth when a task graph 
is generated by TGFF. So, as the degree increases, the 
possibility of high parallelism also increases, which might 
shadow the increase in communication volume. This also  
explains why the performance PAFS is worse than HEFT 
at the beginning: when the critical path is longer, there are 
more errors in the look-head procedure which relies on the 
estimate to the finish time of the critical path.  

The other parameter contributing to characteristics of a 
task graph is the CCR. In the experiment, the ratio 
increases from 0.5 to 10. As Fig. 4 (c) indicates, as the 
ratio increases, the SLR of PFAS and NLS slightly drops 
and then increase, and the one of PFAS is the lowest. The 
drop of SLR at the beginning is brought by the decreasing 
communication to computation cost ratio. But as 
computation cost of a task node increases, its execution 
time on different resources at different time becomes more 
different, which implies that the estimate to execution 
time departs from the real situation further.   

To test the adaptiveness of the three scheduling  
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Fig. 4: Experiment results of different 
parameter settings. (a) Different number of 
tasks in a Grid Workflow. (b) Different 
average node degree in a task graph. (c) 
Different computation to communication 
ratio in a task graph. 

methods to computational power fluctuation, five different 
values are assigned to the performance fluctuation factor: 
20%, 40%, 50%, 60% and 80%, each denoting the 
maximum allowed percentage of full computation power 
drop in different time slots. As Fig. 5(a) shows, as 
resource performance becomes more fluctuating, the SLR 
of all methods increases which is brought by the more 
difficulty to get accurate estimate. PFAS, followed by 
NLF, is the best among the tested algorithm.  

The other resource related parameter involved in the 
simulation is the communication cost heterogeneity ratio. 
In the experiment, the ratio is assigned 5 different values 
also: 0.2, 0.4, 0.6, 0.8 and 1.0, which gives the maximum 
percentage of the communication cost of a connection 
between two resources can different from the average cost  
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Fig. 5: (a) Different performance fluctuation 
factors. (b) Different communication cost 
factors.  

value. As Fig. 5(b) indicates, the SLR of the three 
methods increases as the network connection becomes 
more heterogeneous which brings more errors to task node 
ranks. The SLR of PFAS is still the lowest, followed by 
NLF and HEFT, which means PFAS is more adaptive to 
the network heterogeneity than the other two methods.  

6. Conclusions  

In this paper we propose a resource performance 
fluctuation aware workflow scheduling algorithm PFAS 
for the Grid. Instead of using a static task ranking 
approach which is usually conducted once at the 
beginning of a DAG scheduling algorithm, PFAS updates 
task ranks and constructs the critical path dynamically in 
the scheduling procedure according to the change in 
performance of available resources. PFAS also adopts a 
look-ahead approach to assign a critical task. This allows 
it to overcome myopic decisions made by the earliest 
complete time criterion which is used by many other 
scheduling algorithms. Experiments show that the 
scheduling performance, measured in makespan, benefits 
from both techniques. Simulation results also show that 
PFAS is adaptive to different task graphs and resource 
topology settings. Its overall performance is much better 
than that of the HEFT algorithm, which is a powerful 
DAG scheduling algorithm designed for heterogeneous 
computational environments. The current implementation 
of PFAS does not consider the possibility of wrong 
performance prediction, which is likely in the real 

situations. This is the problem on which we are currently 
working. The simulations also show that estimating task 
ranks by average resource performance leads to an 
accumulation of estimate errors when the critical path is 
long or resources are more heterogeneous, so better and 
more complex ways might be introduced in the future for 
improvement. The algorithm is also going to be tested by 
realistic workflows in the Grid.  
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