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Abstract

Dynamic network reconfiguration is a technique in
which the routing tables of the nodes in the vicinity of a fail-
ure are updated in real-time. The technique has been proved
effective only if no failures occur after the reconfiguration
process has started.

This paper, presents enhancements to Agent NetReconf
to allow it tolerate new failures if the reconfiguration was
already started for a different failure. Agent NetReconf is an
intelligent dynamic network reconfiguration algorithm. The
improvements were made on the following three phases:
Restoration Tree Construction (Phase 1), Multiple Failures
synchronization (Phase 2) and Routing Information Update
(Phase 3). The proposed strategy consists of: 1) Acti-
vate Agent NetReconf recursively, if a new node/link fail-
ure occurs and the reconfiguration of a different failure was
started, 2) Use a pair of gateway nodes to help the restora-
tion leaders, to reach consensus and to define the order in
which each leader will execute the reconfiguration. The
complexity, in terms of the number agents created, is an-
alyzed for all phases. Termination is also proved for all
phases.

1. Introduction

Building and deploying smart fault-tolerant networks
have become the focus of several scientific groups and the
industry in general. Applications and end users, expect
the network to be able to handle failures transparently with
minimum impact. For this, the scientific community has
developed sophisticated techniques that use: intelligence
[19, 17], knowledge [15, 21], active networking [20], com-
binatorics and game theory [5, 10].
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Minar in [14], describes an algorithm to discover the
topology of a network using mobile agents that travel
around the network and cooperate with other agents. The
found topology is then used to define the routing policies.
Hood and Ji [9], proposed an intelligent software agent that
performs fault detection accurately and in certain cases pre-
dicts them before they appear. Whit et al. [18], created com-
munities of mobile agents that roam the network collecting
and exchanging information based on the ”social insects”
paradigm (ant behavior). Active networking [16] and social
insects were combined to manage networks using a collec-
tion of smart agents. In [13], agents cooperate to provide
high network connectivity and dynamic routing. Gianni
[6] designed an adaptive routing algorithm based on mo-
bile agents that learns the routing tables of a computer net-
work. Garijo et al. [7] designed a centralized Multi-agent
Cooperative Network-Fault Management system (CNFM),
in which, the agents work as watchdogs and generate events
into the CNFM engine when faults are recognized.

The novelty of Agent NetReconf, the proposed algorithm
in this paper, resides on its ability to use knowledge and
autonomous mobile agents to intelligently tolerate failures.
The algorithm performs network reconfiguration based on
the same principles used in NetRec [3, 4]. Agent NetRe-
conf differentiates from NetRec [3] in several aspects: it is
agent based and not message based, uses knowledge instead
of synchronous messaging, has a lower runtime complexity,
as proved in [2]. Finally, the algorithm can tolerate new fail-
ures even if the reconfiguration for a different failure started
already, as shown in Section 2. The fault model supported
by Agent NetReconf is known as “Fail-Silent”. Byzantine
failures [11] are not considered in the algorithm fault model.

The rest of the paper is organized in three sections as
follows: Section 2, Tolerating Failures During Reconfigu-
ration, that describes the new enhancements to Agent Ne-
tReconf. Section 3, Presents the new algorithm properties
where complexity and termination are proved. The last sec-
tion are the conclusions.



2. Failures During Reconfiguration

2.1. Agent NetReconf Overview

Agent NetReconf [2], is a dynamic reconfiguration algo-
rithm capable of tolerating multiple simultaneous network
failures. The algorithm uses mobile agents to find restora-
tion paths that re-establish connectivity on the network de-
vices adjacent to the failed component. Agent NetReconf
consists of four phases:
Phase 0, Restoration Leader Selection. It is the first phase
and it is activated when a failure is detected by the Nodes
Adjacent to the Failure (NAFs). The NAF with the high-
est ID is chosen as the restoration leader (RL.) RL coordi-
nates the reconfiguration for failure F .
Phase 1, Restoration Tree Construction. In this phase, the
restoration leader creates a set of exploration agents (Eij),
that are sent out to discover alternative routes to all the
disconnected NAFs. As each Eij explores the network,
it cooperates with the visited nodes to share or learn new
knowledge that then is used to make decisions on what is the
best next hop towards the target NAF . If an Eij reaches a
NAF , then the NAF creates an agent explorer for restora-
tion (ERji) and sends it back to RL as acknowledgment
of the newly discovered restoration path. When the leader
RLi receives acknowledgment from all the NAFs, it de-
clares the restoration tree established.
Phase 2, Multiple Failures Synchronization. After Phase
1 finishes, there could be more than one restoration tree RTi

intersecting at a common node. In this case, the algorithm
establishes an ordered sequence of priorities in which the
leader with the highest ID always executes Phase 3 first,
the other leaders will wait for their turn.
Phase 3, Routing Information Update. In this phase, the
explorer and restoration agents, Eij and ERji, visit each
Node on the Restoration Tree (NORTs) and update the rout-
ing tables with new routing information. After this phase
ends, the connectivity is re-established for all NAFs.

2.2. Algorithm Assumptions

Agent NetReconf as described in [2], runs successfully
only if no failures occur after the reconfiguration process
started. This condition reduces the effectiveness of the al-
gorithm to a small number of cases when in practice faults
can appear at any time. Therefore, in order to enhance Agent
NetReconf we need to establish the following assumptions:
Assumption 2.1 Only one additional failure is tolerated
during reconfiguration of the network.
Assumption 2.2 All the adjacent nodes are sending each
other “I am alive” messages.
Assumption 2.3 Any type of failure detected by hardware
or software will cause the node or link to become “Fail-

Silent” (i.e the node stops sending or receiving “I am-alive”
messages.)
Assumption 2.4 Failures can appear at any time.
Assumption 2.5 The fault model does not consider Byzan-
tine Failures [11, 12].
Assumption 2.6 If a restoration leader RLi fails, regard-
less of the phase, the algorithm will re-start from the begin-
ning.
Assumption 2.7 A NAF saves the path traveled by the
first arriving explorer agent Eij on each active port(link).
In contrast with Agent NetReconf [2] and Net Rec [3], the
paths are saved in a priority queue, based on the time of
arrival.

2.3. Tolerating Failures in Phase 1

If a failure appears during Phase 1, then it is neces-
sary to consider three different scenarios: 1) There are no
restoration paths yet established between the leader and the
NAFs, 2) The acknowledgment for a restoration path is in
transit towards the leader and 3) There are already restora-
tion paths established between the leader and the NAFs. A
restoration tree is considered confirmed only when the next
conditions are true: a) The leader RLi received a restora-
tion agent ERji, one from each NAF , acknowledging that
a path has been established and b) Each NAF receives a
Restoration Tree Built (RTB) message from the leader. A
path on the tree is a ”confirmed restoration path.” Messages
such as RTB, are sent over a restoration path using explicit
path routing.

No Restoration Paths Established between Leader and
NAFs. Consider that (RL1) is executing phase 1, as shown
in Fig. 1, and that it already sent exploration agents (E1j)
to look for paths that reconnect NAF1. Then assume,
that an instant later, a new failure (FD) appears, and that
(RLD) was selected leader. During phase 1, RLD sends
exploration agents (ED) to look for paths that reconnect
(NAFDs).

When the search for restoration paths is in progress, an
explorer ED can arrive to leader RL1. Suppose that no
restoration path, so far, has been established between RL1

and NAF1. In this case, the visit of ED does not cause
a state change or another reaction in RL1, because RL1

has not yet received acknowledgments on how to reach a
NAF1. Therefore, ED will migrate out from the leader to
continue looking for a NAFD. Now, in case that an ex-
plorer agent E1 arrives to a node next to failure FD, the
explorer agent will exchange knowledge with the visited
node and use this information to chose the best hop towards
NAF1. The failed node will be discarded because E1 can-
not move there, and the agent will chose a different route.
In conclusion, the explorer agents will continue searching
as long as the network is not partitioned. Therefore, the
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Figure 1. Failure During Reconfiguration

leaders will reach the NAFs and reconnect them as speci-
fied in Agent Net Reconf [2].

The Acknowledgment for a Restoration Path is in Tran-
sit Towards the Leader. Assume that a path between the
leader RL1 and the NAF1 was successfully found. Con-
sider NAF1 to have sent a restoration agent (ER1) to ac-
knowledge the newly found path. After the restoration agent
leaves, the NAF1 starts a timer Tconf to wait for the con-
firmation that the leader received the restoration agent. The
restoration agent ER1, will travel towards the leader over
the restoration path using explicit path routing. Then while
ER1 is in transit towards RL1, a new failure FD may occur
on RT1, as shown in Fig. 1. The following cases should be
considered:

1. The restoration agent ER1 is intercepted by an ex-
plorer agent ED at a NORT on the path. In this case,
both agents exchange knowledge and if ER1 learns
that the failure is on the restoration path towards RT1.
ER1 deactivates itself immediately and ED continues
traveling towards the NAF1.

2. The restoration agent ER1 never meets an explorer
agent ED while it is traveling towards RL1. In this
case, there are two possibilities: 2.a) The explorer
agent is before the failure or 2.b) the agent is after
the failure. When ER1 is before the failure, the agent
will be immediately deactivated as soon as the agent
reaches the NORT adjacent to the failure. If ER1

is after the failure, then the agent will travel until it
reaches RL1. The leader, RL1 will send a RTB mes-
sage towards NAF1 using explicit path routing, as de-
fined in [2]. The message will stop traveling further,
when it reaches the node adjacent to the failure. The

NORT will drain the message and it will send a De-
livery Failed Message (DFM ) to the leader. As soon
as the leader receives the DFM message, it discards
the established restoration path and the explorer ER1,
the agent that confirmed the failed restoration path, im-
mediately deactivate itself.

3. The leader RL1 will not send a RTB confirmation to
the NAF1, unless it is notified of a new alternative
restoration path towards NAF1. In other words, a new
restoration agent ER

′
1 should arrive to the leader. If no

agent arrives in a given time, then the leader removes
the NAF1 from the restoration tree.

4. If no confirmation from RL1 was received and the
timer Tconf expires then the NAF1 removes the cur-
rent restoration path from the priority queue, creates
a new restoration agent ER

′
1 that sends towards RL1.

The restoration agent travels to the leader via the alter-
native restoration path using explicit path routing.

Restoration Paths Already Established between Leader
and NAFs. Assume that the restoration paths between
the leader RL1 and the NAFs are already established be-
fore the leader RLD started the recovery of failure FD and
sent the explorer agents ED looking for restoration paths to
NAFD. From this scenario, the following cases should be
considered:

1. An explorer agent ED arrives to a NAF1. The NAF1

and the explorer agent exchange knowledge. If the
NAF1 determines from ED, that failure FD is on
the established restoration path towards RL1 then the
NAF1 removes the current path from the priority
queue, described in Assumption 2.2. Then, using a
new alternative restoration path, the NAFF1 creates a
new restoration agent ER

′
1, sends the agent towards

RL1, and it starts a timer Tconf to wait for the confir-
mation that the leader received ER

′
1. The new restora-

tion agent ER
′
1 will travel over the alternative restora-

tion path using explicit path routing.

2. An explorer agent ED arrives to a leader RL1. The
leader and the explorer agent exchange knowledge. If
RL1 determines from ED, that failure FD is on the
established restoration path towards NAF1 then the
leader deletes the current established path and marks
the NAF1 as pending for acknowledgment. ER1 de-
activates itself immediately.

3. The leader RL1 will not send a RTB confirmation to
the NAF1, unless it is notified of a new alternative
restoration path towards NAF1. In other words, a new
restoration agent ER

′
1 should arrive to the leader. If

no agent arrives in a given time, the leader removes
the NAF1 from the restoration tree.
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Figure 2. Failure During Multiple Tree Syn-
chronization

4. If no confirmation from RL1 was received and the
timer Tconf expires then the NAF1 removes the cur-
rent restoration path from the priority queue, creates a
new restoration agent ER

′
1 that sends towards RL1.

2.4. Tolerating Failures in Phase 2

For situations in which multiple failures appear, Agent
NetReconf creates a restoration tree per failure. The trees
can intersect each other, as shown in Fig. 2. In phase 2,
the standard algorithm executes a synchronization step that
establishes an ordered sequence. The sequence begins with
the leader with the highest ID, and ends with the leader with
the lowest ID. If a new failure occurs, during the tree syn-
chronization, the sequence is invalidated and the reconfig-
uration currently in progress gets suspended. Then, Agent
NetReconf is invoked recursively to deal with the new fail-
ure. When the recovery for the new failure completes, there
is the possibility, that the original tree intersection was mod-
ified (e.g. a new tree joins) or that the intersection is com-
pletely dissolved. Before proceeding with the explanation
of the new enhancements, we need make the following def-
initions:

Definition 2.1 Gateway Node (GW), It is a NORT adjacent
to the failed node/link on the confirmed restoration tree.
Definition 2.2 Intersection Node (Nk), It is a NORT on
which multiple restoration trees RTi overlap.

Assume that restoration trees (RT1),(RT2) and (RT3) in-
tersect at node (Nk), and that a new failure (FD) appears on
RT1, as shown in Fig. 2. When the failure is detected two
things happen in parallel: 1) The NORTs adjacent to the
failure become gateway nodes and 2) Agent NetReconf is

recursively activated for FD.
As shown in Fig. 2, the gateways GW1,A and GW1,B

were created after FD was detected on the restoration tree
RT1. Immediately after creation, each gateway sends out
a point-to-point Notify Tree Failure Event (NTFE). GW1,A

sends the message towards the leader RL1 and GW1,B

sends the message towards the NAF1. As the NTFE
event travels using explicit path routing, the following ac-
tions take place when a node receives the event:

1. A NORTi, marks the confirmed restoration path to
RLi discardable and un-marks the links that were in-
dicated to belong to the restoration tree.

2. A leader RLi, suspends phase 2 immediately until it
receives a signal to continue.

3. A NAFi, marks the confirmed restoration path to RLi

discardable.

4. The intersection node Nk, sends a copy of the NTFE
event to the other trees in the intersection. Nk starts
a timer Tre−built to wait for RL1 to confirm that the
restoration tree RT1 was re-built. The leader RL1 is
expected to send an event if the tree is recovered.

As mentioned earlier, at the same time the gateways do
their work, Agent NetReconf is ran recursively to recover
the new failure. Consider (RLD) to be the restoration leader
selected for failure FD. Assume that RLD already send
out exploration agents (ED) to look for restoration paths
towards the NAFsD. Therefore, the following cases take
place as the explorer agents visit nodes during their search
on the network:

1. An explorer agent ED arrives to the restoration leader
RL1. The leader exchanges knowledge with the ex-
plorer agent. If RL1 finds that the failure FD occurred
on the confirmed restoration path towards NAF1 then
the leader immediately removes the restoration path
and re-starts the timer Tack. RL1 will use the timer
to wait for a new restoration agent ER

′
1 to confirm a

new alternative restoration path for NAF1. If Tack ex-
pires the NAFF1 is excluded from the restoration al-
together, as described by Agent NetReconf [2] then the
leader deactivates the restoration agent ER1 that ini-
tially confirmed the failed restoration path.

2. An explorer agent ED arrives to the NAF1. The
NAF1 exchanges knowledge with the explorer agent.
If the NAF1 finds that the failure FD occurred on
the confirmed restoration path towards RL1 then the
NAF1 removes the current restoration path from the
priority list and uses the new alternative restoration
path to send a new restoration agent ER

′
1 towards



RL1. The restoration agent travels the network using
explicit path routing.

3. An explorer agent ED arrives to a NAF1. The
NAF1 and the explorer agent exchange knowledge.
If the NAF1 determines from ED, that failure FD is
on the confirmed restoration path towards RL1 then
the NAF1 removes the current path from the prior-
ity queue. Then, using a new alternative restoration
path, the NAFF1 creates a new restoration agent ER

′
1,

sends the agent towards RL1, and it starts a timer
Tconf to wait for the confirmation that the leader re-
ceived ER

′
1. The new restoration agent ER

′
1 will

travel over the alternative restoration path using ex-
plicit path routing.

4. The leader RL1 will not send a RTB confirmation to
the NAF1, unless it is notified of a new alternative
restoration path towards NAF1. In other words, a new
restoration agent ER

′
1 should arrive to the leader. If no

agent arrives in a given time then the leader removes
the NAF1 from the restoration tree.

5. If no confirmation from RL1 was received and the
timer Tconf expires then the NAF1 removes the cur-
rent restoration path from the priority queue, creates a
new restoration agent ER

′
1 that sends towards RL1.

The recovery of failure FD will proceed to completion
following the principles defined for Agent NetReconf. When
the failure is recovered, the connectivity between GW1,A

and GW1,B is re-established automatically. This is possible
since the gateways are also NAFs on the restoration tree
RTD. After the restoration tree RL1 has also been rebuilt,
the leader RL1 needs to re-synchronize with the intersec-
tion node (Nk). Remember, that all the leaders involved in
the intersection were suspended and cannot continue with
phase 2. In addition, there is the possibility that the inter-
section’s leadership may have changed and a new ordered
sequence among the leaders may be necessary. For exam-
ple, RT1 could had left the intersection and RTD could have
joined.

To re-synchronize RL1 and Nk, the leader will send a
Restoration Tree Recovered Message (RTRM). The message
carries information about the new restoration tree RT1. The
intersection node Nk, will respond to RL1 in one of the fol-
lowing ways: 1) If Nk determines that RT1 is not longer
part of the original intersection then it sends a No Intersec-
tion Found Message (NIFM) , 2) If the tree RT1 partici-
pates on the intersection then Nk sends the Tree Intersec-
tion Found Message (TIFM). In case RL1 never sends the
RTRM message, Nk will remove RT1 from the intersec-
tion and it will notify the other leaders to re-synchronize
and re-start phase 2.

F2

F3

RT2

RT1

RT3

F1

F

RL

RL

RL

NAF

NAF

1

NAF1

2

2

3

3

Nk

RL
DGW

1,A

GW
D

1,B

RT
D
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The leader RL1, will process the response from Nk as
follows: If the leader receives a NIFM message then it
immediately resumes phase 2 and continues independently
on its own. However, if it receives a TIFM message then
the leader makes itself ready to re-initiate phase 2 to partic-
ipate on the definition of a new intersection leadership. As
an example, assume that RTD joined the intersection and
has the highest ID, as shown in Fig. 3. In this case, RL1

will execute phase 2 after RLD finishes and it will be sub-
ject to the new established ordered sequence.

2.5. Tolerating Failures in Phase 3

The update to the routing tables, as defined in [2], occur
as follows: After a restoration tree RTi has been confirmed
and synchronized, the leader RLi signals the restoration
agents ERji to start traveling back towards the NAFSi,
following the restoration path. The restoration agent uses
explicit path routing to reach its destination. The restora-
tion agents ERji, as they arrive to a node, make the cur-
rent node to update its routing tables using the connectiv-
ity information specified in the confirmed restoration path.
The updates made by the restoration agents, correspond to
routes that allow traffic from the leader RLi to the NAFi.
The restoration agent continues traveling until it reaches the
NAFi. After ERji arrival, the NAFi signals the explorer
agents Eij to start traveling back towards the leader RLi

following the restoration path. The explorer agents work in
the same way as the restoration agents did. In this case, the
explorer agents will make updates that correspond to routes
that allow traffic from the NAFi to the leader RLi.

Therefore, if a failure FD occurs during phase 3, there
will be several unusable routers with partially updated ta-
bles. In this case, the reconfiguration must be stopped and



any changes made to the routing tables must be undone.
Then, in order to return the routing tables to how they were
before Phase 3 was initiated, the following enhancements
are proposed:

1. A NORT will use a LIFO list to save the current value
of an entry, in the routing table, for which a change is
requested by a visiting explorer Eij agent or restora-
tion ERxi agent.

2. When a Failure FD is detected on a confirmed restora-
tion path, a pair of gateways GW1,A and GW1,B will
be created, as shown in Fig. 3.

3. Each gateway GW1,A and GW1,B , will send a point-
to-point Notify Tree Failure Event (NTFE) on the op-
posite direction of the failure. For example, GW1,A

will send the message towards the leader and GW1,B

will send the message towards the NAFi.

4. A NORT that receives a NTFE event, will rollback
the affected entries, using the last saved value in the
LIFO list, and will make itself ready to start phase 2.

5. Either a leader RLi or NAFi that receives a NTFE
event, replies a gateway with a point-to-point Change
Rolled Back Event (CRBE). This event is understood
by a gateway node as a confirmation that the routing
tables were rolled back to the last saved value and that
the execution of the algorithm for the original failure
has safely transitioned to the beginning of Phase 2.

At the same time the gateways initiate the process of
rolling back the routing tables, Agent NetReconf is ran re-
cursively to recover the new failure. Consider (RLD) to be
the restoration leader selected for failure FD. Assume that
RLD already sent out exploration agents (ED) to look for
restoration paths towards the NAFsD. Therefore, the fol-
lowing cases take place as the explorer agents visit nodes
during their search on the network:

1. An explorer agent ED arrives to the restoration leader
RL1. The leader exchanges knowledge with the ex-
plorer agent. If RL1 finds that the failure FD occurred
on the confirmed restoration path towards NAF1 then
the leader immediately removes the restoration path
and re-starts the timer Tack. RL1 will use the timer
to wait for a new restoration agent ER

′
1 to confirm a

new alternative restoration path for NAF1. If Tack ex-
pires the NAFF1 is excluded from the restoration al-
together, as described by Agent NetReconf [2] then the
leader deactivates the restoration agent ER1 that ini-
tially confirmed the failed restoration path.

2. An explorer agent ED arrives to the NAF1. The
NAF1 exchanges knowledge with the explorer agent.

If the NAF1 finds that the failure FD occurred on
the confirmed restoration path towards RL1 then the
NAF1 removes the current restoration path from the
priority list and uses the new alternative restoration
path to send a new restoration agent ER

′
1 towards

RL1. The restoration agent travels the network using
explicit path routing.

3. An explorer agent ED arrives to a NAF1. The
NAF1 and the explorer agent exchange knowledge.
If the NAF1 determines from ED, that failure FD is
on the confirmed restoration path towards RL1 then
the NAF1 removes the current path from the prior-
ity queue. Then, using a new alternative restoration
path, the NAFF1 creates a new restoration agent ER

′
1,

sends the agent towards RL1, and it starts a timer
Tconf to wait for the confirmation that the leader re-
ceived ER

′
1. The new restoration agent ER

′
1 will

travel over the alternative restoration path using ex-
plicit path routing.

4. The leader RL1 will not send a RTB confirmation to
the NAF1, unless it is notified of a new alternative
restoration path towards NAF1. In other words, a new
restoration agent ER

′
1 should arrive to the leader. If no

agent arrives in a given time then the leader removes
the NAF1 from the restoration tree.

5. If no confirmation from RL1 was received and the
timer Tconf expires then the NAF1 removes the cur-
rent restoration path from the priority queue, creates a
new restoration agent ER

′
1 that sends towards RL1.

The recovery of failure FD will proceed to completion
following the principles defined for Agent NetReconf. When
the failure is recovered, the connectivity between GW1,A

and GW1,B is re-established automatically. This is possible
since the gateways are also NAFs on the restoration tree
RTD. After the restoration tree RL1 has also been rebuilt,
the leader RL1 needs to re-synchronize with the intersec-
tion node (Nk). Remember, that all the leaders involved in
the intersection were suspended and cannot continue with
phase 2. In addition, there is the possibility that the inter-
section’s leadership may have changed and a new ordered
sequence among the leaders may be necessary. For exam-
ple, RT1 could had left the intersection and RTD could have
joined.

To re-synchronize RL1 and Nk, the leader will send a
Restoration Tree Recovered Message (RTRM). The message
carries information about the new restoration tree RT1. The
intersection node Nk, will respond to RL1 in one of the fol-
lowing ways: 1) If Nk determines that RT1 is not longer
part of the original intersection then it sends a No Inter-
section Found Message (NIFM) , 2) If the tree RT1 par-
ticipates on the intersection then Nk sends the Tree Inter-



section Found Message (TIFM). In case RL1 never sends
the RTRM message, Nk will remove RT1 from the inter-
section and it will notify the other leaders to start phase 3
according to the sequence of priorities defined in phase 2.

The leader RL1, will process the response from Nk as
follows: If the leader receives a NIFM message then it
immediately resumes phase 2 and continues independently
on its own. However, if it receives a TIFM message then
the leader makes itself ready to synchronize with the other
leaders to define a new intersection leadership. The syn-
chronized leader RL1, will be assigned a new order with
in the sequence. After the re-synchronization is completed,
execution of phase 3 will be started as defined in [2].

3. Algorithm Properties

3.1. Complexity

The complexity for Agent NetReconf is given in terms
of the number of explorer agents created during restora-
tion tree construction and routing table reconfiguration. The
complexity of the algorithm is as follows:

Let LActive be the number of active links on each router,
nnaf the number of NAFs for failure F, and P a path be-
tween RLF and a NAF .

Theorem 3.1 The complexity for Agent NetReconf for mul-
tiple failures when there are no failures during the reconfig-
uration is given by

O

(
F ∗ (

LActive ∗ ((nmax ∗ Pmax) + 1)
))

(1)

where F is the total number of failures in the network, Pmax

is the longest path connecting RLF and any NAF and nmax

is the maximum number of NAFs. The proof is described in
[2].

Theorem 3.2 The complexity for Agent NetReconf when
there are failures during the reconfiguration is given by

The complexity when a failure occurs during Phase 1

O

(
nmax

)
(2)

The complexity when a failure occurs during Phase 2

O

(
LActive ∗ ((nmax ∗ Pmax) + 1)

)
(3)

The complexity when a failure occurs during Phase 3

O

(
LActive ∗ ((nmax ∗ Pmax) + 1)

)
(4)

Proof: As shown in [2], Agent NetReconf determines
RLF without creating explorer agents such that leader se-
lection is achieved with O(0) complexity, no agent are cre-
ated.

For Phase 1, the complexity of tolerating a failure (FD)
appears before the restoration tree as been established is de-
fined as follows: For the case in which there are no paths
established between the leader and the NAFs, no agents
need to be created such that the additional complexity is
O(0). However, if path has been established, a new restora-
tion agent ERik will have to be created to re-establish the
path. The cost for this is O(1). Now taking the worse
case in which all the restoration paths of three need to be
re-established the total complexity for Phase 1, is given by
O(nmax).

For phase 2. If a new failure appears on a confirmed
restoration tree RTi, that is member of an intersection then
the reconfiguration process for the intersection is suspended
until the recovery of the new failure completes. Now, since
the gateway nodes, GW1A and GW1B , participate actively
on the reconfiguration of the new failure and the origi-
nal reconfiguration cannot continue until they are recon-
nected, the additional complexity due to the new failure is
O(LActive ∗ ((nmax ∗ Pmax) + 1)). In addition, to re-
establish original the restoration tree RTi is necessary to
create in the worse case O(nmax) restoration agents, if all
the restoration paths in RTi were assumed to fail. There-
fore, the total complexity for recovering a failure while
Phase 2 is running is given by O(LActive ∗ ((nmax ∗
Pmax) + 1)) + O(nmax).

For phase 3. The case in which the update of the routing
tables is in progress and a new failure occurs. It is nec-
essary to interrupt immediately the algorithm and rollback
any changes made up to time of failure. The worse case
is that in which the restoration tree RLi, the tree on which
the failure appeared, participates in a multiple tree inter-
section. As mentioned in section 2.5, the two nodes adja-
cent to the failure become NAFs on the restoration pro-
cess of the new failure which has a cost of O(LActive ∗
((nmax ∗ Pmax) + 1)). Now, since the tree RTi needs to
be restored, then according to the algorithm enhancements
proposed for Phase 3. It will be required, O(1) agents to
re-establish the tree using an alternative restoration path. In
case that all of the restoration paths failed it will be required
a total of O(nmax). Then the total complexity is given by
O(LActive ∗ ((nmax ∗ Pmax) + 1)) + O(nmax).
Q.E.D �

3.2. Termination

The following message delivery properties are used for
proving Agent NetReconf’s Termination.

Definition 3.1 If a point-to-point message is sent from a



source agent S to a destination agent D, then it will be re-
ceived once and only once by D.
Definition 3.2 Every point-to-point message sent between
an exploration agent Eij or ERxi and a node manager
agent NMx will be routed following a path on the restora-
tion tree and will be reliably delivered to its destination.

Lemma 3.1 Agent NetReconf Phase 1 will successfully
complete even when a new failure FD occurs during the
reconfiguration of a preexisting failure F1.

Proof: For a given failure F1, Agent NetReconf ’s Phase
1 starts with restoration leader RL1 creating LActive ex-
plorer agents E1, that begin searching for restoration paths
towards each NAF1. Considering that a second failure FD

appears before a restoration path between RL1 and NAF1

has been established, and that exploration agents ED, for
the second failure, are also searching for NAFD. It can be
observed, as shown in section 2.4, that the presence of an
agent ED at the leader RL1 or the NAF1, will not cause
any changes on their behavior, with respect to the original
reconfiguration. This assures that the restoration tree RT1

will be established and the reconfiguration will transition to
Phase 2. Now, in case the failure FD appears on an already
established restoration path between RL1 and NAF1, the
arrival of an agent ED at the leader RL1 or the NAF1, will
cause the current path to be discarded and replaced by a new
alternative restoration path. Therefore, it is assured that a
unique restoration tree will be always established and that
the algorithm will transition to Phase 2.
Q.E.D �

Lemma 3.2 Agent NetReconf Phase 2 will successfully
complete even when a new failure FD occurs during the
reconfiguration of a preexisting failure F1.

Proof: Assume that multiple restoration trees, (RT1),
(RT2) and (RT3), intersect at node (Nk), and that a new
failure (FD) appears on RT1. As described in Section 2.4,
after the failure is detected, the NORTs adjacent to the
failure become gateway nodes and Agent NetReconf is re-
cursively activated for FD. The gateways will send a Notify
Tree Failure Event (NTFE) on apposite direction to the fail-
ure. Based on Def. 3.2, the NTFE message is reliably
delivered only once to each node and according to Def. 3.1
the message travels using explicit path forwarding. Now, if
Nk receives NTFE it will start a timer Tre−built to wait
for RT1 to be reconfirmed. In case, Tre−built expires and
the failed tree RT1 it is not re-established, the tree is re-
moved from the intersection. Now, since Agent NetReconf
was ran recursively for failure FD, there will be explorer
agents ED traveling the network searching for NAFsD to
reconnect. The restoration leader RL1, when visited by an

ED will discard the restoration path, towards NAF1, on
which FD appeared and it will start a timer Tack waiting
for an alternative restoration path confirmation. If the timer
Tack expires, then the leader removes the NAF1 from the
reconfiguration as described in [2]. Likewise, if a NAF1

is visited by an ED and the failure FD is on the restora-
tion path towards RL1. the node will discard the path. The
NAF1 will send a new restoration agent with an alternative
restoration path towards the leader. If the NAF1 does not
receives an Restoration Tree Built message from the leader,
the NAF1 as described in [2] will remove itself from the re-
configuration. Based on these facts, it is proved that Phase 2
will successfully terminate, since the algorithm will always
reach an state in which none of the peers communicating on
the reconfiguration will wait for each other and the partici-
pants of the reconfiguration will reach consensus.
Q.E.D �

Lemma 3.3 Agent NetReconf Phase 3 will successfully
complete even when a new failure FD occurs during the
reconfiguration of a preexisting failure F1.

Proof: Assume that during the execution of Phase 3, for
failure F1, a new failure FD appears on the restoration tree
RT1. As described in Section 2.4, after the failure is de-
tected, the NORTs adjacent to the failure become gateway
nodes and Agent NetReconf is recursively activated for FD.
The gateways will send a Notify Tree Failure Event (NTFE)
on the opposite direction to the failure to initiate rolling
back the routing tables to their last saved value. Based on
Def. 3.2, the NTFE message is reliably delivered only
once to each node and according to Def. 3.1 the message
travels using explicit path routing. Now since, to tolerate a
failure in Phase 3 it is required that the algorithm to transi-
tion back to Phase 2 and the re-run Phase 3, it can be con-
clude that Lemma 3.2 also proves that Phase 3 terminates.
Q.E.D. �

Theorem 3.3 On all nodes, Agent NetReconf will success-
fully complete when, a new failure FD occurs during the
reconfiguration of the network due to multiple failures.

Proof: Based on Lemmas 3.1 - 3.3, it can be concluded
that the RLi and the NAFs will proceed with all phases
of Agent NetReconf and will generate the required explorer
agents to carry out the establishment of the restoration tree
and the reconfiguration of each node (RLF , NAFs and
NORTs) on the tree even when, an additional failure FD

occurs during the reconfiguration in the network due to the
multiple failures.
Q.E.D. �



4. Conclusions

The paper presented enhancements to Agent NetReconf,
that allow the algorithm to tolerate failures during the re-
configuration process initiated for a different failure. The
complexity analysis demonstrated that the additional over-
head per failure is equal to the complexity incurred by Agent
NetReconf for a single failure as shown in [2]. The factors
that contribute on the achievements of this complexity are
as follows: a) The interactions between agents occur at each
router and the number of point-to-point non in-router com-
munications are minimal b)The agents share knowledge dy-
namically on each interaction when they meet.

To conclude, Agent NetReconf is a low complexity, in-
telligent distributed dynamic network reconfiguration algo-
rithm that is capable of tolerating failures during the recov-
ery of an initial failure. The algorithm is applicable to com-
puters with arbitrary topologies, is application-transparent
and is capable of isolating and tolerating multiple faulty
links or nodes.

5 Future Work

The authors structured the design and implementation of
the algorithm in three stages. The first stage, is represented
by the work published in [2]. The second stage, is the work
presented in this paper. In the third stage, the authors will
elaborate a performance characterization of Agent NetRe-
conf and will compare it with exiting message based dy-
namic reconfiguration algorithms. The throughput, latency
and saturation will be analyzed. The ”Safety” and ”Liveli-
ness” properties of the algorithm will proved as well.
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