
Distributed Interval Voting with Node Failures of Various Types

Behrooz Parhami

Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

parhami@ece.ucsb.edu

Abstract

Intervals constitute one of the most important tools for

dealing with uncertainty in computations. Researchers in

the fields of interval arithmetic and constraint

propagation have devised elaborate methods for

computing with interval variables. In this interpretation,

an interval represents the proposition: “I don’t know

what the correct value is, but it cannot be outside this

range.” However, intervals also have another use, which

is captured in the statement: “Any value in this range

would be fine with me.” In devising voting schemes for

data fusion and fault-tolerant distributed computation,

these two meanings, and a number of other lesser known

variations, must be completely understood in order to

design and implement meaningful voting strategies.

Irregularities and paradoxes in voting schemes,

extensively studied by mathematicians and social

scientists, must also be taken into account to avoid

serious pitfalls. In this paper, we discuss the two

interpretations of interval voting, along with their

practical implications, and show how voting strategies

differ in their time and communication complexities,

performance, and resilience according to the meaning

intended and the types of failure assumed.

Keywords –– Approval voting, Benign failure, Byzantine

failure, Consensus, Data fusion, Dependable computing,

Distributed computer system, Fault tolerance, Majority,

Multichannel computation, Plurality, Uncertainty.

1-4244-0910-1/07/$20.00 ©2007 IEEE

1. Introduction

 Voting is used as a data fusion tool in connection with

unreliable, incomplete, or inaccurate data collection (e.g.,

to accommodate failure-prone or low-precision sensors)

and for realizing ultrareliable systems based on

multichannel computation [20]. The sources of data on

which voting is performed are various: identical hardware

circuits, diverse software modules, multiple specialized

sensors, and so on. Voting research in these contexts dates

back half a century [24]. In the sociopolitical domain,

voters provide inputs (cast their votes) and a vote

tabulation system manipulates the input data to obtain the

results [6, 23]. In fault-tolerant computing, the term

“voter” has been used not for the entity that supplies an

input (casts a vote) but for the hardware or software

module that derives the result from the inputs provided by

computation channels, alternates (in the case of software

redundancy), or sensors. To avoid any confusion,

particularly in light of the fact that any serious research

on voting does need results from the social sciences, we

use the following terminology:

Opinion: an input to the voting process

Participant: person or entity that supplies an opinion

Alternative: one of the entities about which opinions
 are expressed by participants

Fusion: combining the opinions according to the

rules
 of the voting system

Fuser: the hardware or software module that carries
 out the fusion algorithm

Outcome: result(s) of the voting process

 An opinion may carry an integer or real weight,

leading to a weighted voting system. However, our

discussions in this paper are limited to unweighted voting.

Note that contrary to current practice, an opinion need not

be a simple indication of preference for one alternative. In

approval voting, an opinion is a subset of all alternatives.

In interval voting [18], alternatives are assumed to form

an ordered set and an opinion is an interval of values

specified by its least and greatest members. Finally, in

yes/no voting [4], an opinion may include approved and

disapproved subsets, with intervals used to specify the

two sets in the case of totally ordered alternatives and

contiguous approved and disapproved subsets.

 Before proceeding further, it is necessary to clarify

why the unconventional voting schemes just enumerated

are relevant in the distributed computing context.

Previously published research on voting in distributed

systems has considered an opinion to be a single value,

thus defining the fusion process as the task of coming up

with a consistent choice (at all nonfailed sites) from

among the opinions offered. Usually, a default value is

built into the fusion process so as to ensure termination

when some opinions are missing or excessively delayed.

Distributed voting with set-valued opinions, and its

special case of the sets being represented by intervals, is

useful for the same reasons as centralized voting of these

types: nonunique answers to a problem or uncertainties in

the solution process [17, 20]. In the first instance, each

opinion consists of a set of preferred or approved values

that are used in reaching agreement. In the second case,

bounds on the magnitude of a solution may be received

by the fusion process, which uses them to derive bounds

of higher quality or dependability.

 Our failure model contains the standard failure types

considered in distributed systems [10, 16]: benign

(dormant) failures, which cause omission of messages or

delays in sending them, and malicious (arbitrary,

Byzantine) failures, which may cause a node to send

conflicting messages to different nodes.

2. Preference Intervals

 In the context of modern fault-tolerant digital systems,

whether centralized or distributed, there is much more to

voting than simple majority or plurality [14, 18, 19]. The

choice of voting algorithm (or fusion process) has

significant effects on system reliability, safety, and

performance [8, 12, 13, 17]. Consider an ordered (finite or

infinite) list of alternatives a1, a2, a3, . . . and a finite set

{p1, p2, . . . , pn} of participants in the voting process.

Each participant pi specifies an interval [li, ui] of preferred

alternatives as an input to the fusion process, which then

determines an outcome comprising of an alternative or a

set of alternatives as the winner(s). Even though we show

each input interval as a segment on the real number line in

our graphical representations, intervals of interest to us

have a finite set of discrete (integer or rational) values in

almost all cases.

 The simplest fusion process for the voting

arrangement outlined above is that of approval voting

with plurality selection rule: the outcome consists of a set

of alternatives that are preferred by the largest number of

participants [1, 3, 7]. In a safety-critical computer system,

for example, the preference intervals may represent

proposed safe set of values for a particular control system

parameter, with differing opinions resulting from diverse

evaluation criteria and/or algorithms. In expressing

preferences, there is no correct or best alternative. So,

even in the absence of faulty participants, there may be no

subinterval in which all n input intervals overlap. Hence,

a faulty participant (one that has used flawed hardware or

software to reach its decision) may be indistinguishable

from a participant that has an unconventional opinion.

Figure 1 depicts an example for this type of voting.

Fig. 1. Voting with preference intervals

and plurality selection rule.

 In practice, the situation with this voting strategy isn’t

always as clean as that shown in Fig. 1, and a number of

complications may arise. Obviously, the fuser must

determine areas of overlap between the largest possible

number of intervals, which can be done using a fairly

simple algorithm [18]. However, there may be multiple

disjoint subintervals with identical approval levels, which

cannot be combined into a single interval. Additionally, it

is not clear whether the width of the intervals should in

any way influence the fusion process. In other words, if

one considers the possibility of a malicious participant,

Opinions

Outcome

I1

I2

I3

I4

I5

I0

could it affect the outcome in an undesirable way by

presenting a very wide or a very narrow interval as its

opinion? We leave discussion of the latter problem to

Section 5. To ensure uniqueness of the result of the fusion

process when multiple disjoint subintervals have the same

approval level, we take the lowest subinterval (the one

with the smallest start and end points) among those

having the same approval as the voting outcome.

3. Uncertainty Intervals

 Intervals used to denote uncertainty represent the

proposition: “I don’t know what the correct value is, but it

cannot be outside this range.” Such intervals may arise

from separate lower-bound and upper-bound calculations

or be derived from approximate calculations or

measurements, along with guaranteed error bounds. The

latter intervals are of the form [x – ε, x + ε] and are

sometimes denoted as x ± ε. By definition, such an

interval is guaranteed to contain the correct value.

Disregarding, for a moment, the possibility of a faulty

participant, the fusion process is trivial, as the n intervals

are guaranteed to overlap in at least one alternative (the

correct one). The fused result based on n intervals is their

intersection, which is frequently narrower than those

offered by the participants as inputs. Thus, the diversity of

interval opinions leads naturally to a type of refinement

and increase in precision in the course of data fusion.

 Now, allowing for faulty participants, the situation

becomes more complicated. Any faulty participant that

presents an interval containing one or more “correct”

value(s) will not cause a problem, because its interval will

still overlap with those of the nonfaulty participants.

Thus, erroneous reduction in the lower bound, or increase

in the upper bound, is a less serious form of error than the

complementary events of erroneously larger lower bound

or smaller upper bound. The latter type of error may cause

the erroneous interval to have no overlap with one or

more of the error-free intervals. Figure 2 depicts one such

situation in which interval I3 has no overlap with I2 or I4.

Whether the error resides in the lower bound of I3, or in

the upper bounds of both I2 and I4, is subject to

interpretation, with the single error being more likely than

the double one in most practical cases.

 Assuming equal failure probability for all participants,

choosing the overlap of I1, I2, I4, and I5, that is, the

subinterval [l5, u4], as the voting outcome may appear

reasonable. On the other hand, the shaded region shown

in Fig. 2 is more likely to contain the correct result and

may be the appropriate outcome in many application

contexts. Defining the extended-union of k input intervals

[li, ui], with 1 ≤ i ≤ k, as the interval [mini li, maxi ui], a

safe voting strategy would set the plurality threshold

according to the application context and then would

choose the extended union of all qualifying result

subintervals for which the number of supporting opinions

is at or above the threshold as the voting outcome. In the

case of Fig. 2, we have the following subintervals

enjoying majority support: [l1, l5] with 3 votes, [l5, u4]

with 4 votes, [u4, u2] with 3 votes, and [l3, u5] with 3

votes. The extended union of these qualifying subinterval

is [l1, u5], the appropriate outcome under this

interpretation.

Fig. 2. Voting with uncertainty intervals

and majority selection rule.

 A possible voting algorithm, that is quite efficient,

might work as follows. Rather than identify all of the

qualifying subintervals, followed by the formation of their

extended union, the algorithm eliminates all

nonqualifying subintervals from either end, stopping once

a qualifying interval has been encountered. For example,

beginning at the left end of Fig. 2 and proceeding

rightward, we increment a counter (initialized to 0)

whenever the low end of an interval is encountered and

decrement it for each high end. When the counter reaches

3, which represents a majority with 5 inputs, we have the

lower end of the result interval. A similar process finds

the upper end, scanning from the right end.

 A subtle point regarding the example in Fig. 2 is

worth mentioning. If, as is customary in 3-out-of-5

majority voting, we disqualify two suspect input intervals

and use the extended union of the remaining three

intervals as the outcome, the resulting interval would be

wider than the shaded area shown. In other words, after

disqualifying I2 and I3 which have the most extreme

bounds, the outcome would be [l4, u1] based on the

intervals I1, I4, and I5. It is readily seen that this level of

pessimism is unnecessary with 2 or fewer failures.

Opinions

Outcome

I1

I2

I3

I4

I5

I0

4. Interval-Based Agreement

 Consider a 3-node system, with the maliciously failed

node 3 presenting two different intervals to the fusion

processes at nodes 1 and 2 (solid and broken lines,

respectively, in Fig. 3). It is clear from Fig. 3 that the

voting outcome at nodes 1 and 2 will be different under

the preference interval fusion scheme that uses the

plurality rule to rank the candidate subintervals and then

selects the subinterval with the highest support, breaking

ties by favoring lower subintervals. What is particularly

alarming in this example is the fact that the two fusion

outcomes do not even overlap.

 Similarly, the voting outcome will disagree under the

uncertainty view of intervals, although in this case the

resulting intervals, that is, [l1, u1] and [l2, u3] for versions

1 and 2 of I3, are different from those obtained under the

preference scheme. The nature of difficulty here is

intrinsic to interval voting, rather than being due to the

well-known requirements of distributed agreement [5,

22], or the equivalent Byzantine generals problem [10]. In

this example, each of the two sites 1 and 2 has received a

correct majority of opinions. Had we been dealing with

scalar values rather than intervals, 2 out of 3 correct

opinions would have been sufficient to draw correct and

consistent conclusions at sites 1 and 2.

 Let Fuse(•) denote the result of fusion on the set of

intervals specified within the parentheses, where the

fusion scheme can be any member of set of voting or

fusion strategies applicable to the particular interval type.

The interval-based agreement problem is formulated as

follows. Given n nodes or sites, each having a local

interval [li, ui], 1 ≤ i ≤ n, use information exchange among

the sites along with local decision processes to derive a

global or outcome interval such that the termination,

agreement, and integrity conditions are satisfied:

Termination – Every healthy site eventually reaches

 a decision

Agreement – All healthy sites agree on the same

 global or outcome interval IG

Integrity – If all healthy sites propose intervals that

 overlap in the subinterval I, then I ⊆ IG

 The termination and agreement conditions are self-

explanatory. The integrity condition is needed to prevent

Fuse(•) from yielding a constant value, which would

ensure agreement but is clearly undesirable because it

disregards the input opinions.

Fig. 3. Voting with preference intervals

and one malicious participant.

 We can define the notion of weak integrity for

intervals in a manner similar to weak interactive

consistency [11], by replacing the last condition above by

the following requirement:

Weak integrity – If all sites propose intervals that

 overlap in the subinterval I, then I ⊆ IG

Note that with weak integrity, even a single failed site

among many can prevent a “correct” decision from being

reached, although agreement must still be guaranteed in

all cases. This weaker consistency requirement may be

appropriate in some cases if it leads to significantly lower

computational and communication overheads.

 There are really two sets of issues to investigate in

connection with interval-based distributed agreement. The

first of these, that is, ensuring that all healthy sites

eventually arrive at the same global interval (termination

and agreement) is identical to the problem of distributed

agreement on a single value, given that an interval is

completely specified by its two endpoints. Any valid

interactive consistency algorithm [2, 9], with its messages

carrying two values, can be used for ensuring the

termination and agreement conditions. During the

algorithm’s execution, each site i keeps, and

incrementally updates, a set of 2n values lij and uij, for 1 ≤
j ≤ n, which represent the view of site i regarding the

endpoints of the interval proposed by each site j. Once the

interactive consistency algorithm has run its course, the

voting or fusion process is executed at each site,

producing identical results at all healthy sites. So, in

addition to termination and agreement, the weak integrity

condition is also satisfied with no additional effort.

 The second set of issues pertains to whether

maliciously failed sites can affect the agreement process

in a manner that is more serious than the corresponding

effect in interactive consistency with scalar values. In

other words, we may ask whether a malicious participant

with knowledge of the fusion algorithm can influence the

fusion outcome in an undesirable way. We turn to this

problem in the next section.

Opinions

I1

I2

I3

I0 Outcome1 2

1 2

5. Extent of Failure Tolerance

 We adopt the hybrid failure model of Meyer and

Pradhan [16] which postulates the presence of b benign

and m maliciously failed sites out of a total of n sites.

Benign (dormant) failures cause omission of messages or

delays in sending them, while malicious (arbitrary,

Byzantine) failures may cause a node to send conflicting

messages to different nodes.

 Theorem 1: The correct outcome of interval voting

with preference intervals cannot be undermined by b

benign and m maliciously failed participants (among n),

with b + m = f, iff n ≥ 3f + 1 and the plurality threshold in

the fusion process is set to T = f + (n – f)/2 .

 Proof sketch: The minimum number 3f + 1 of sites,

being no less than b + 3m + 1, is such that a healthy site pi

is guaranteed to arrive at the same set of intervals [lij, uij],

for 1 ≤ j ≤ n, following the interactive consistency phase

of the fusion process. At this point, the opinion of any

maliciously failed site that presented inconsistent

opinions to different sites will have been replaced by the

default interval. So, the worst case to be dealt with in

regard to the m maliciously failed sites is when they

present consistent opinions, but try to choose them to

influence the voting outcome in an undesirable way.

Furthermore, the absolute worst case (in the sense of

increasing the vote count for an inappropriate subinterval)

is when these m opinions happen to coincide with those of

the b benignly failed sites. So, assume that f = b + m sites

provide the interval [l, u] as their inputs to the fusion

process. Unless at least (n – f)/2 of the healthy sites, that

is, one-half or more of the n – f healthy sites, also present

opinions that overlap with [l, u], the latter will not affect

the fusion outcome, given the chosen threshold T = f + (n

– f)/2 . Furthermore, if all n – f opinions from the healthy

nodes overlap in the subinterval I, this subinterval will

have a vote tally of at least n – f, which is easily shown to

equal or exceed the threshold T = f + (n – f)/2 . Note that

when n = 3f + 1, that is, with the minimum required

number of sites, the threshold simplifies to 2f + 1.

 Theorem 1 indicates that requirements for agreement

with preference intervals are more stringent than those for

agreement with scalar values (at least 3b + 3m + 1 sites,

compared with b + 3m + 1 sites). In other words, benign

failures are no easier to deal with than malicious failures.

On the positive side, with n ≥ 3f + 1 sites, there is no way

that malicious participants, acting alone or in concert, can

force an inappropriate outcome by presenting extremely

narrow or wide opinions.

 An immediate consequence of Theorem 1 is that

majority voting with preference intervals is never safe,

regardless of the number of malicious participants. Note

that the most appropriate default value for use with

preference-interval voting is the empty interval, which is

represented as [x, y], with x > y; the interval [x, x] is not

empty, but contains a single point.

 Considering now the case of voting with uncertainty

intervals, we can prove the following result.

 Theorem 2: The correct outcome of interval voting

with uncertainty intervals cannot be undermined by b

benign and m maliciously failed participants (among n)

with b + m = f, iff n ≥ b + 3m + 1, the plurality threshold

is set at T = n – f, and the default opinion replacing

missing inputs is the universal interval [–∞, +∞].

 Proof sketch: The minimum number of sites is such

that any healthy site i is guaranteed to arrive at the same

set of intervals [lij, uij], for 1 ≤ j ≤ n, following the

interactive consistency phase of the fusion process. At

this point, the opinion of any maliciously failed site that

presented inconsistent opinions to different sites will have

been replaced by the default interval [–∞, +∞], which

overlaps with all intervals from the healthy sites. Because

the threshold is chosen as n – f, the overlap between all

intervals from the n – f healthy sites will be included in

the result interval. The worst that can happen due to

erroneous intervals presented by faulty participants is to

widen the result interval, which does not affect the

property that it includes the correct result. In other words,

whereas faulty participants can degrade the precision of

the outcome, they will not affect its correctness.

 The requirements of Theorem 2 for voting with

uncertainty intervals are less stringent than those

pertaining to preference intervals of Theorem 1 primarily

because healthy sites are guaranteed to provide

overlapping opinions. Theorem 2 postulates the same

requirements as those for ordinary agreement using scalar

values, with the only new element being a specification of

the default interval. As a special case of Theorem 2, one

may conclude that unweighted majority voting with

uncertainty intervals is always safe when the malicious

participants are in the minority.

 It is instructive to study the worst-case behavior of

voting with uncertainty intervals. In other words, how

would malicious participants present their opinions so as

to have the worst possible effect on the precision of the

fusion result? Note that the worst case for preference

intervals was exposed within the proof of Theorem 1.

Fig. 4. Vote tallies for subintervals using only

the opinions of healthy participants.

 Consider the uncertainty intervals associated with the

n – f healthy participants (Fig. 4) and let there be no

benignly failed site, that is, assume b = 0 and f = m. The

aforementioned n – f intervals will overlap in some

nonempty subinterval, having a vote tally of n – f, which

is flanked on both sides by subintervals of gradually

decreasing vote tallies, as depicted in Fig. 4. When we

include d default intervals [–∞, +∞] which might have

been inserted by the fusion process, the vote tallies will

range from a minimum of d to a maximum of n – m + d,

where d ≤ m. It is readily seen that for the remaining m –

d malicious participants to maximize the width of the

outcome interval, they should present [–∞, +∞] as their

opinions, leading to vote tallies ranging from m to n.

Because the threshold n – f is at least equal to 2m + 1 in

this case, only subintervals that are contained within the

opinions of a majority of the healthy participants are

potentially included in the fusion outcome.

6. Some Extensions

 We can extend the preceding observations and results

to yes-no voting with intervals [4]. In yes-no voting, each

participant specifies an approved interval and a

disapproved interval, the idea being that the participant

has some likes and some dislikes, but is indifferent to

other alternatives. Yes-no voting, in the context of social

choice, is useful when the alternatives can be placed in a

total order (such as a political spectrum from extreme left

to extreme right), with a participant indicating a range of

acceptable alternatives and a range of unacceptable ones.

This is a very useful paradigm in data fusion and

dependable computation in that it makes it less likely for

malicious participants to influence the fusion outcome in

an undesirable way. This is because certain dangerous or

unsafe values can be ruled out by healthy participants,

thus reducing their eventual vote tallies.

 By way of example, consider the situation depicted in

Fig. 5. Each participant has specified an approved interval

Ij = [lj, uj] and a disapproved interval I′j = [l′j, u′j], where

for l′j > u′j, a wraparound interval is assumed. A natural

strategy in this case is to tally the level of support for each

of the finite number of subintervals defined by the

endpoints of the input intervals, counting each approval as

+1 and each disapproval as –1, using positive and

negative thresholds to decide on the fused version of the

approved and disapproved results. Note that the approval

and disapproval intervals need not be treated

symmetrically. For example, Fig. 5 depicts a scheme in

which any negative tally is viewed as overall disapproval.

Clearly, the range of choices here is much wider than

those of Figs. 1 and 2 and, thus, greater caution is

required to ensure the reasonableness of the fusion

strategy under all failure scenarios.

Fig. 5. Voting with approval (solid) and

disapproval (dashed) intervals.

 Weighted approval voting [15] provides a way of

incorporating a-priori knowledge about the reliability of

the various participants into account. An orthogonal

notion to that of weights for various participants is to take

degrees or levels of approval from each participant into

account. For example, it may be desirable to associate a

greater level of approval with the center of an interval

than with its edges [20]. Further exploration is also

possible with fuzzy intervals (derived from fuzzy sets)

and with rough intervals, with the latter consisting of two

nested intervals that define a “rough set” [21].

 Another possible extension is to consider the

combined effect of preference and uncertainty in the

participants’ inputs. One way to accomplish this is to use

the rough-set paradigm mentioned above. Participant i

presents the nested intervals [lj, uj] and [l′j, u′j], with l′j ≤ lj

and u′j ≥ uj. The interpretation of this opinion is that the

values in [lj, uj] are preferred and that those in [l′j, lj] and

[uj, u′j] are neutral or uncertain. This is readily seen to be

a particular form of yes-no voting.

Opinions

Overlap

I1

I2

I3

 . . .

In–f

n – f

n – f – 1

n – f – 2

n – f – 3n – f – 3

n – f – 2

n – f – 1
Vote tally

Opinions

Outcome

I1

I2

I3

I4

I5

I0

7. Conclusions

 In this paper, we have shown that distributed interval

voting shares some of the difficulties of distributed voting

with scalar values and that it presents a number of

additional problems arising from its particular semantics.

Two interpretations of intervals, those of preference and

uncertainty, were discussed. Preference intervals are

appropriate when there are multiple correct answers to a

particular question. Uncertainty intervals arise, for

example, from imprecise computations with guaranteed

error bounds (interval arithmetic). other interpretations,

including combined preference and uncertainty, are

possible. Further research can proceed in many different

directions, as outlined in Section 6. Extensions to other

failure models are also possible.

References

[1] Alos-Ferrer, C., “A Simple Characterization of Approval
Voting,” Social Choice and Welfare, Vol. 27, pp. 621-
625, 2006.

[2] Barborak, M., and M. Malek, “The Consensus Problem in
Fault-Tolerant Computing,” ACM Computing Surveys,
Vo1. 25, No. 2, pp. , June 1993.

[3] Brams, S. J., and P. C. Fishburn, “Approval Voting,”
American Political Science Review, Vol. 72, pp. 831-847,
1978.

[4] Brams, S. J., and P. C. Fishburn, “Yes-No Voting,” Social
Choice and Welfare, Vol. 10, pp. 35-50, 1993.

[5] Castro, M., and B. Liskov, “Practical Byzantine Fault
Tolerance and Proactive Recovery,” ACM Trans.
Computer Systems, Vol. 20, No. 4, pp. 398-461,
November 2002.

[6] Dasgupta, P. and E. Maskin, “The Fairest Vote of All,”
Scientific American, Vol. 290, pp. 92-97, March 2004.

[7] Hodge, J. K., and R. E. Klima, The Mathematics of Voting
and Elections: A Hands-on Approach, American
Mathematical Society, 2005.

[8] HoseinNejad, R., A. Bab-Hadishahr, and P. Harding,
“Fusion of Brake Pedal Sensors in by-Wire Cars: A Fuzzy
Logic Approach,” Proc. 3rd IFAC Symp. Mechatronic
Systems, September 2004, pp. 639-644.

[9] Krol, T., “Interactive Consistency Algorithms Based on
Voting and Error-Correcting Codes,” Proc. 25th Int’l
Symp. Fault-Tolerant Computing, 1995, pp. 89-98.

[10] Lamport, L., R. Shostak, and M. Pease, “The Byzantine
Generals Problem,” ACM Trans. Programming
Languages and Systems, Vol. 4, No. 3, pp. 382-401, July
1982.

[11] Lamport, L., “The Weak Byzantine Generals Problem,” J.
ACM, Vol. 30, No. 3, pp. 668-676, July 1983.

[12] Latif-Shabgahi, G., Julian M. Bass, and Stuart Bennett,
“A Taxonomy for Software Voting Algorithms Used in
Safety-Critical Systems,” IEEE Trans. Reliability, Vol.
53, No. 3, pp. 319-328, September 2004.

[13] Levitin, G., “Weighted Voting Systems: Reliability versus
Rapidity,” Reliability Engineering & System Safety, Vol.
89, pp. 177-184, 2005.

[14] Lorczak, P. R., A. K. Caglayan, and D. E. Eckhardt, “A
Theoretical Investigation Generalized Voters for
Redundant Systems,” Proc. International Symp. Fault-
Tolerant Computing, 1989, pp. 444-451.

[15] Masso, J., and M. Vorsatz, “Weighted Approval Voting,”
Unpublished manuscript, version of September 4, 2006.

[16] Meyer, F.J. and D.K. Pradhan, “Consensus with Dual
Failure Modes,” IEEE Trans. Parallel and Distributed
Systems, Vol. 2, No. 2, pp. 214-222, April 1991.

[17] Parhami, B., “Threshold Voting is Fundamentally Simpler
than Plurality Voting,” International Journal of
Reliability, Quality, and Safety Engineering, Vol. 1, No.
1, pp. 95-102, March 1994.

[18] Parhami, B., “Voting Algorithms,” IEEE Trans.
Reliability, Vol. 43, No. 4, pp. 617-629, December 1994.

[19] Parhami, B., “A Taxonomy of Voting Schemes for
Dependable Multi-Channel Computations,” Reliability
Engineering and System Safety, Vol. 52, pp. 139-151,
May 1996.

[20] Parhami, B., “Voting: A Paradigm for Adjudication and
Data Fusion in Dependable Systems,” in Dependable
Computing Systems: Paradigms, Performance Issues, &
Applications, ed. by H.B. Diab and A.Y. Zomaya, Wiley,
2005, pp. 87-114.

[21] Pawlak, Z., J. Grzymala-Busse, R. Slowinski, and W.
Ziarko, “Rough Sets,” Communications of the ACM, Vol.
38, No. 11, pp. 89-95, November 1995.

[22] M. Pease, R. Shostak, and L. Lamport, “Reaching
Agreement in the Presence of Faults” J. ACM, Vo1. 27,
No. 2, pp. 228, 1980.

[23] Saari, D. G., Chaotic Elections: A Mathematician Looks
at Voting, American Mathematical Society, 2001.

[24] von Neumann, J., “Probabilistic Logics and the Synthesis
of Reliable Organisms from Unreliable Components,” in
Automata Studies (Annals of Mathematics Studies, No.
34), Ed. by C.E. Shannon and J. McCarthy, Princeton
Univ. Press, pp. 43-98, 1956.

