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Abstract 

Intervals constitute one of the most important tools for 

dealing with uncertainty in computations. Researchers in 

the fields of interval arithmetic and constraint 

propagation have devised elaborate methods for 

computing with interval variables. In this interpretation, 

an interval represents the proposition: “I don’t know 

what the correct value is, but it cannot be outside this 

range.” However, intervals also have another use, which 

is captured in the statement: “Any value in this range 

would be fine with me.” In devising voting schemes for 

data fusion and fault-tolerant distributed computation, 

these two meanings, and a number of other lesser known 

variations, must be completely understood in order to 

design and implement meaningful voting strategies. 

Irregularities and paradoxes in voting schemes, 

extensively studied by mathematicians and social 

scientists, must also be taken into account to avoid 

serious pitfalls. In this paper, we discuss the two 

interpretations of interval voting, along with their 

practical implications, and show how voting strategies 

differ in their time and communication complexities, 

performance, and resilience according to the meaning 

intended and the types of failure assumed. 
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1. Introduction 

      Voting is used as a data fusion tool in connection with 

unreliable, incomplete, or inaccurate data collection (e.g., 

to accommodate failure-prone or low-precision sensors) 

and for realizing ultrareliable systems based on 

multichannel computation [20]. The sources of data on 

which voting is performed are various: identical hardware 

circuits, diverse software modules, multiple specialized 

sensors, and so on. Voting research in these contexts dates 

back half a century [24]. In the sociopolitical domain, 

voters provide inputs (cast their votes) and a vote 

tabulation system manipulates the input data to obtain the 

results [6, 23]. In fault-tolerant computing, the term 

“voter” has been used not for the entity that supplies an 

input (casts a vote) but for the hardware or software 

module that derives the result from the inputs provided by 

computation channels, alternates (in the case of software 

redundancy), or sensors. To avoid any confusion, 

particularly in light of the fact that any serious research 

on voting does need results from the social sciences, we 

use the following terminology: 

Opinion: an input to the voting process 

Participant: person or entity that supplies an opinion 

Alternative: one of the entities about which opinions  
 are expressed by participants 

Fusion: combining the opinions according to the 

rules  
 of the voting system 

Fuser: the hardware or software module that carries  
 out the fusion algorithm 

Outcome: result(s) of the voting process 



      An opinion may carry an integer or real weight, 

leading to a weighted voting system. However, our 

discussions in this paper are limited to unweighted voting. 

Note that contrary to current practice, an opinion need not 

be a simple indication of preference for one alternative. In 

approval voting, an opinion is a subset of all alternatives. 

In interval voting [18], alternatives are assumed to form 

an ordered set and an opinion is an interval of values 

specified by its least and greatest members. Finally, in 

yes/no voting [4], an opinion may include approved and 

disapproved subsets, with intervals used to specify the 

two sets in the case of totally ordered alternatives and 

contiguous approved and disapproved subsets. 

      Before proceeding further, it is necessary to clarify 

why the unconventional voting schemes just enumerated 

are relevant in the distributed computing context. 

Previously published research on voting in distributed 

systems has considered an opinion to be a single value, 

thus defining the fusion process as the task of coming up 

with a consistent choice (at all nonfailed sites) from 

among the opinions offered. Usually, a default value is 

built into the fusion process so as to ensure termination 

when some opinions are missing or excessively delayed. 

Distributed voting with set-valued opinions, and its 

special case of the sets being represented by intervals, is 

useful for the same reasons as centralized voting of these 

types: nonunique answers to a problem or uncertainties in 

the solution process [17, 20]. In the first instance, each 

opinion consists of a set of preferred or approved values 

that are used in reaching agreement. In the second case, 

bounds on the magnitude of a solution may be received 

by the fusion process, which uses them to derive bounds 

of higher quality or dependability.  

      Our failure model contains the standard failure types 

considered in distributed systems [10, 16]: benign 

(dormant) failures, which cause omission of messages or 

delays in sending them, and malicious (arbitrary, 

Byzantine) failures, which may cause a node to send 

conflicting messages to different nodes.

2. Preference Intervals 

      In the context of modern fault-tolerant digital systems, 

whether centralized or distributed, there is much more to 

voting than simple majority or plurality [14, 18, 19]. The 

choice of voting algorithm (or fusion process) has 

significant effects on system reliability, safety, and 

performance [8, 12, 13, 17]. Consider an ordered (finite or 

infinite) list of alternatives a1, a2, a3, . . . and a finite set 

{p1, p2, . . . , pn} of participants in the voting process. 

Each participant pi specifies an interval [li, ui] of preferred 

alternatives as an input to the fusion process, which then 

determines an outcome comprising of an alternative or a 

set of alternatives as the winner(s). Even though we show 

each input interval as a segment on the real number line in 

our graphical representations, intervals of interest to us 

have a finite set of discrete (integer or rational) values in 

almost all cases. 

      The simplest fusion process for the voting 

arrangement outlined above is that of approval voting 

with plurality selection rule: the outcome consists of a set 

of alternatives that are preferred by the largest number of 

participants [1, 3, 7]. In a safety-critical computer system, 

for example, the preference intervals may represent 

proposed safe set of values for a particular control system 

parameter, with differing opinions resulting from diverse 

evaluation criteria and/or algorithms. In expressing 

preferences, there is no correct or best alternative. So, 

even in the absence of faulty participants, there may be no 

subinterval in which all n input intervals overlap. Hence, 

a faulty participant (one that has used flawed hardware or 

software to reach its decision) may be indistinguishable 

from a participant that has an unconventional opinion. 

Figure 1 depicts an example for this type of voting. 

Fig. 1. Voting with preference intervals  

and plurality selection rule. 

      In practice, the situation with this voting strategy isn’t 

always as clean as that shown in Fig. 1, and a number of 

complications may arise. Obviously, the fuser must 

determine areas of overlap between the largest possible 

number of intervals, which can be done using a fairly 

simple algorithm [18]. However, there may be multiple 

disjoint subintervals with identical approval levels, which 

cannot be combined into a single interval. Additionally, it 

is not clear whether the width of the intervals should in 

any way influence the fusion process. In other words, if 

one considers the possibility of a malicious participant, 
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could it affect the outcome in an undesirable way by 

presenting a very wide or a very narrow interval as its 

opinion? We leave discussion of the latter problem to 

Section 5. To ensure uniqueness of the result of the fusion 

process when multiple disjoint subintervals have the same 

approval level, we take the lowest subinterval (the one 

with the smallest start and end points) among those 

having the same approval as the voting outcome.

3. Uncertainty Intervals 

      Intervals used to denote uncertainty represent the 

proposition: “I don’t know what the correct value is, but it 

cannot be outside this range.” Such intervals may arise 

from separate lower-bound and upper-bound calculations 

or be derived from approximate calculations or 

measurements, along with guaranteed error bounds. The 

latter intervals are of the form [x – ε, x + ε] and are 

sometimes denoted as x ± ε. By definition, such an 

interval is guaranteed to contain the correct value. 

Disregarding, for a moment, the possibility of a faulty 

participant, the fusion process is trivial, as the n intervals 

are guaranteed to overlap in at least one alternative (the 

correct one). The fused result based on n intervals is their 

intersection, which is frequently narrower than those 

offered by the participants as inputs. Thus, the diversity of 

interval opinions leads naturally to a type of refinement 

and increase in precision in the course of data fusion. 

      Now, allowing for faulty participants, the situation 

becomes more complicated. Any faulty participant that 

presents an interval containing one or more “correct” 

value(s) will not cause a problem, because its interval will 

still overlap with those of the nonfaulty participants. 

Thus, erroneous reduction in the lower bound, or increase 

in the upper bound, is a less serious form of error than the 

complementary events of erroneously larger lower bound 

or smaller upper bound. The latter type of error may cause 

the erroneous interval to have no overlap with one or 

more of the error-free intervals. Figure 2 depicts one such 

situation in which interval I3 has no overlap with I2 or I4.

Whether the error resides in the lower bound of I3, or in 

the upper bounds of both I2 and I4, is subject to 

interpretation, with the single error being more likely than 

the double one in most practical cases. 

      Assuming equal failure probability for all participants, 

choosing the overlap of I1, I2, I4, and I5, that is, the 

subinterval [l5, u4], as the voting outcome may appear 

reasonable. On the other hand, the shaded region shown 

in Fig. 2 is more likely to contain the correct result and 

may be the appropriate outcome in many application 

contexts. Defining the extended-union of k input intervals 

[li, ui], with 1 ≤ i ≤ k, as the interval [mini li, maxi ui], a 

safe voting strategy would set the plurality threshold 

according to the application context and then would 

choose the extended union of all qualifying result 

subintervals for which the number of supporting opinions 

is at or above the threshold as the voting outcome. In the 

case of Fig. 2, we have the following subintervals 

enjoying majority support: [l1, l5] with 3 votes, [l5, u4]

with 4 votes, [u4, u2] with 3 votes, and [l3, u5] with 3 

votes. The extended union of these qualifying subinterval 

is [l1, u5], the appropriate outcome under this 

interpretation. 

Fig. 2. Voting with uncertainty intervals  

and majority selection rule. 

      A possible voting algorithm, that is quite efficient, 

might work as follows. Rather than identify all of the 

qualifying subintervals, followed by the formation of their 

extended union, the algorithm eliminates all 

nonqualifying subintervals from either end, stopping once 

a qualifying interval has been encountered. For example, 

beginning at the left end of Fig. 2 and proceeding 

rightward, we increment a counter (initialized to 0) 

whenever the low end of an interval is encountered and 

decrement it for each high end. When the counter reaches 

3, which represents a majority with 5 inputs, we have the 

lower end of the result interval. A similar process finds 

the upper end, scanning from the right end. 

      A subtle point regarding the example in Fig. 2 is 

worth mentioning. If, as is customary in 3-out-of-5 

majority voting, we disqualify two suspect input intervals 

and use the extended union of the remaining three 

intervals as the outcome, the resulting interval would be 

wider than the shaded area shown. In other words, after 

disqualifying I2 and I3 which have the most extreme 

bounds, the outcome would be [l4, u1] based on the 

intervals I1, I4, and I5. It is readily seen that this level of 

pessimism is unnecessary with 2 or fewer failures.
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4. Interval-Based Agreement 

      Consider a 3-node system, with the maliciously failed 

node 3 presenting two different intervals to the fusion 

processes at nodes 1 and 2 (solid and broken lines, 

respectively, in Fig. 3). It is clear from Fig. 3 that the 

voting outcome at nodes 1 and 2 will be different under 

the preference interval fusion scheme that uses the 

plurality rule to rank the candidate subintervals and then 

selects the subinterval with the highest support, breaking 

ties by favoring lower subintervals. What is particularly 

alarming in this example is the fact that the two fusion 

outcomes do not even overlap. 

      Similarly, the voting outcome will disagree under the 

uncertainty view of intervals, although in this case the 

resulting intervals, that is, [l1, u1] and [l2, u3] for versions 

1 and 2 of I3, are different from those obtained under the 

preference scheme. The nature of difficulty here is 

intrinsic to interval voting, rather than being due to the 

well-known requirements of distributed agreement [5, 

22], or the equivalent Byzantine generals problem [10]. In 

this example, each of the two sites 1 and 2 has received a 

correct majority of opinions. Had we been dealing with 

scalar values rather than intervals, 2 out of 3 correct 

opinions would have been sufficient to draw correct and 

consistent conclusions at sites 1 and 2. 

      Let Fuse(•) denote the result of fusion on the set of 

intervals specified within the parentheses, where the 

fusion scheme can be any member of set of voting or 

fusion strategies applicable to the particular interval type. 

The interval-based agreement problem is formulated as 

follows. Given n nodes or sites, each having a local 

interval [li, ui], 1 ≤ i ≤ n, use information exchange among 

the sites along with local decision processes to derive a 

global or outcome interval such that the termination, 

agreement, and integrity conditions are satisfied: 

Termination – Every healthy site eventually reaches  

      a decision      

Agreement – All healthy sites agree on the same  

      global or outcome interval IG      

Integrity – If all healthy sites propose intervals that  

      overlap in the subinterval I, then I ⊆ IG     

      The termination and agreement conditions are self-

explanatory. The integrity condition is needed to prevent 

Fuse(•) from yielding a constant value, which would 

ensure agreement but is clearly undesirable because it 

disregards the input opinions.  

Fig. 3. Voting with preference intervals  

and one malicious participant. 

      We can define the notion of weak integrity for 

intervals in a manner similar to weak interactive 

consistency [11], by replacing the last condition above by 

the following requirement:  

Weak integrity – If all sites propose intervals that  

      overlap in the subinterval I, then I ⊆ IG     

Note that with weak integrity, even a single failed site 

among many can prevent a “correct” decision from being 

reached, although agreement must still be guaranteed in 

all cases. This weaker consistency requirement may be 

appropriate in some cases if it leads to significantly lower 

computational and communication overheads. 

      There are really two sets of issues to investigate in 

connection with interval-based distributed agreement. The 

first of these, that is, ensuring that all healthy sites 

eventually arrive at the same global interval (termination 

and agreement) is identical to the problem of distributed 

agreement on a single value, given that an interval is 

completely specified by its two endpoints. Any valid 

interactive consistency algorithm [2, 9], with its messages 

carrying two values, can be used for ensuring the 

termination and agreement conditions. During the 

algorithm’s execution, each site i keeps, and 

incrementally updates, a set of 2n values lij and uij, for 1 ≤
j ≤ n, which represent the view of site i regarding the 

endpoints of the interval proposed by each site j. Once the 

interactive consistency algorithm has run its course, the 

voting or fusion process is executed at each site, 

producing identical results at all healthy sites. So, in 

addition to termination and agreement, the weak integrity 

condition is also satisfied with no additional effort. 

      The second set of issues pertains to whether 

maliciously failed sites can affect the agreement process 

in a manner that is more serious than the corresponding 

effect in interactive consistency with scalar values. In 

other words, we may ask whether a malicious participant 

with knowledge of the fusion algorithm can influence the 

fusion outcome in an undesirable way. We turn to this 

problem in the next section.
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5. Extent of Failure Tolerance 

      We adopt the hybrid failure model of Meyer and 

Pradhan [16] which postulates the presence of b benign 

and m maliciously failed sites out of a total of n sites. 

Benign (dormant) failures cause omission of messages or 

delays in sending them, while malicious (arbitrary, 

Byzantine) failures may cause a node to send conflicting 

messages to different nodes. 

      Theorem 1: The correct outcome of interval voting 

with preference intervals cannot be undermined by b

benign and m maliciously failed participants (among n), 

with b + m = f, iff n ≥ 3f + 1 and the plurality threshold in 

the fusion process is set to T = f + (n – f)/2 .

      Proof sketch: The minimum number 3f + 1 of sites, 

being no less than b + 3m + 1, is such that a healthy site pi

is guaranteed to arrive at the same set of intervals [lij, uij], 

for 1 ≤ j ≤ n, following the interactive consistency phase 

of the fusion process. At this point, the opinion of any 

maliciously failed site that presented inconsistent 

opinions to different sites will have been replaced by the 

default interval. So, the worst case to be dealt with in 

regard to the m maliciously failed sites is when they 

present consistent opinions, but try to choose them to 

influence the voting outcome in an undesirable way. 

Furthermore, the absolute worst case (in the sense of 

increasing the vote count for an inappropriate subinterval) 

is when these m opinions happen to coincide with those of 

the b benignly failed sites. So, assume that f = b + m sites 

provide the interval [l, u] as their inputs to the fusion 

process. Unless at least (n – f)/2  of the healthy sites, that 

is, one-half or more of the n – f healthy sites, also present 

opinions that overlap with [l, u], the latter will not affect 

the fusion outcome, given the chosen threshold T = f + (n

– f)/2 . Furthermore, if all n – f opinions from the healthy 

nodes overlap in the subinterval I, this subinterval will 

have a vote tally of at least n – f, which is easily shown to 

equal or exceed the threshold T = f + (n – f)/2 . Note that 

when n = 3f + 1, that is, with the minimum required 

number of sites, the threshold simplifies to 2f + 1. 

      Theorem 1 indicates that requirements for agreement 

with preference intervals are more stringent than those for 

agreement with scalar values (at least 3b + 3m + 1 sites, 

compared with b + 3m + 1 sites). In other words, benign 

failures are no easier to deal with than malicious failures. 

On the positive side, with n ≥ 3f + 1 sites, there is no way 

that malicious participants, acting alone or in concert, can 

force an inappropriate outcome by presenting extremely 

narrow or wide opinions.  

      An immediate consequence of Theorem 1 is that 

majority voting with preference intervals is never safe, 

regardless of the number of malicious participants. Note 

that the most appropriate default value for use with 

preference-interval voting is the empty interval, which is 

represented as [x, y], with x > y; the interval [x, x] is not 

empty, but contains a single point.  

      Considering now the case of voting with uncertainty 

intervals, we can prove the following result. 

      Theorem 2: The correct outcome of interval voting 

with uncertainty intervals cannot be undermined by b

benign and m maliciously failed participants (among n)

with b + m = f, iff n ≥ b + 3m + 1, the plurality threshold 

is set at T = n – f, and the default opinion replacing 

missing inputs is the universal interval [–∞, +∞]. 

      Proof sketch: The minimum number of sites is such 

that any healthy site i is guaranteed to arrive at the same 

set of intervals [lij, uij], for 1 ≤ j ≤ n, following the 

interactive consistency phase of the fusion process. At 

this point, the opinion of any maliciously failed site that 

presented inconsistent opinions to different sites will have 

been replaced by the default interval [–∞, +∞], which 

overlaps with all intervals from the healthy sites. Because 

the threshold is chosen as n – f, the overlap between all 

intervals from the n – f healthy sites will be included in 

the result interval. The worst that can happen due to 

erroneous intervals presented by faulty participants is to 

widen the result interval, which does not affect the 

property that it includes the correct result. In other words, 

whereas faulty participants can degrade the precision of 

the outcome, they will not affect its correctness. 

      The requirements of Theorem 2 for voting with 

uncertainty intervals are less stringent than those 

pertaining to preference intervals of Theorem 1 primarily 

because healthy sites are guaranteed to provide 

overlapping opinions. Theorem 2 postulates the same 

requirements as those for ordinary agreement using scalar 

values, with the only new element being a specification of 

the default interval. As a special case of Theorem 2, one 

may conclude that unweighted majority voting with 

uncertainty intervals is always safe when the malicious 

participants are in the minority. 

      It is instructive to study the worst-case behavior of 

voting with uncertainty intervals. In other words, how 

would malicious participants present their opinions so as 

to have the worst possible effect on the precision of the 

fusion result? Note that the worst case for preference 

intervals was exposed within the proof of Theorem 1. 



Fig. 4. Vote tallies for subintervals using only  

the opinions of healthy participants. 

      Consider the uncertainty intervals associated with the 

n – f healthy participants (Fig. 4) and let there be no 

benignly failed site, that is, assume b = 0 and f = m. The 

aforementioned n – f intervals will overlap in some 

nonempty subinterval, having a vote tally of n – f, which 

is flanked on both sides by subintervals of gradually 

decreasing vote tallies, as depicted in Fig. 4. When we 

include d default intervals [–∞, +∞] which might have 

been inserted by the fusion process, the vote tallies will 

range from a minimum of d to a maximum of n – m + d,

where d ≤ m. It is readily seen that for the remaining m – 

d malicious participants to maximize the width of the 

outcome interval, they should present [–∞, +∞] as their 

opinions, leading to vote tallies ranging from m to n.

Because the threshold n – f is at least equal to 2m + 1 in 

this case, only subintervals that are contained within the 

opinions of a majority of the healthy participants are 

potentially included in the fusion outcome. 

6. Some Extensions 

      We can extend the preceding observations and results 

to yes-no voting with intervals [4]. In yes-no voting, each 

participant specifies an approved interval and a 

disapproved interval, the idea being that the participant 

has some likes and some dislikes, but is indifferent to 

other alternatives. Yes-no voting, in the context of social 

choice, is useful when the alternatives can be placed in a 

total order (such as a political spectrum from extreme left 

to extreme right), with a participant indicating a range of 

acceptable alternatives and a range of unacceptable ones. 

This is a very useful paradigm in data fusion and 

dependable computation in that it makes it less likely for 

malicious participants to influence the fusion outcome in 

an undesirable way. This is because certain dangerous or 

unsafe values can be ruled out by healthy participants, 

thus reducing their eventual vote tallies. 

      By way of example, consider the situation depicted in 

Fig. 5. Each participant has specified an approved interval 

Ij = [lj, uj] and a disapproved interval I′j = [l′j, u′j], where 

for l′j > u′j, a wraparound interval is assumed. A natural 

strategy in this case is to tally the level of support for each 

of the finite number of subintervals defined by the 

endpoints of the input intervals, counting each approval as 

+1 and each disapproval as –1, using positive and 

negative thresholds to decide on the fused version of the 

approved and disapproved results. Note that the approval 

and disapproval intervals need not be treated 

symmetrically. For example, Fig. 5 depicts a scheme in 

which any negative tally is viewed as overall disapproval. 

Clearly, the range of choices here is much wider than 

those of Figs. 1 and 2 and, thus, greater caution is 

required to ensure the reasonableness of the fusion 

strategy under all failure scenarios.  

Fig. 5. Voting with approval (solid) and 

disapproval (dashed) intervals. 

      Weighted approval voting [15] provides a way of 

incorporating a-priori knowledge about the reliability of 

the various participants into account. An orthogonal 

notion to that of weights for various participants is to take 

degrees or levels of approval from each participant into 

account. For example, it may be desirable to associate a 

greater level of approval with the center of an interval 

than with its edges [20]. Further exploration is also 

possible with fuzzy intervals (derived from fuzzy sets) 

and with rough intervals, with the latter consisting of two 

nested intervals that define a “rough set” [21]. 

      Another possible extension is to consider the 

combined effect of preference and uncertainty in the 

participants’ inputs. One way to accomplish this is to use 

the rough-set paradigm mentioned above. Participant i

presents the nested intervals [lj, uj] and [l′j, u′j], with l′j ≤ lj

and u′j ≥ uj. The interpretation of this opinion is that the 

values in [lj, uj] are preferred and that those in [l′j, lj] and 

[uj, u′j] are neutral or uncertain. This is readily seen to be 

a particular form of yes-no voting. 
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7. Conclusions 

      In this paper, we have shown that distributed interval 

voting shares some of the difficulties of distributed voting 

with scalar values and that it presents a number of 

additional problems arising from its particular semantics. 

Two interpretations of intervals, those of preference and 

uncertainty, were discussed. Preference intervals are 

appropriate when there are multiple correct answers to a 

particular question. Uncertainty intervals arise, for 

example, from imprecise computations with guaranteed 

error bounds (interval arithmetic). other interpretations, 

including combined preference and uncertainty, are 

possible. Further research can proceed in many different 

directions, as outlined in Section 6. Extensions to other 

failure models are also possible. 
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