
Combining Compression, Encryption and Fault-tolerant Coding for Distributed
Storage

Peter Sobe1 and Kathrin Peter2

1University of Luebeck 2Zuse Institute Berlin
Inst. of Computer Engineering Computer Science Research

Ratzeburger Allee 160, D-23538 Luebeck Takusstrasse 7, D-14195 Berlin
sobe@iti.uni-luebeck.de kathrin.peter@zib.de

Abstract

Storing data in distributed systems aims to offer higher
bandwidth and scalability than storing locally. But, a cou-
ple of disadvantageous issues must be taken into account
such as unreliability caused by faults, temporal downtimes
and malicious attacks. To improve dependability, redun-
dancy codes like parity can be used as well as more sophisti-
cated codes such as Reed/Solomon. Another issue - security
requirements - arise when data is kept in untrusted units in
a network. To encrypt data, it is common to use security
algorithms like AES. For efficient transfer and storage, the
amount of data can be reduced by compression algorithms.
All these techniques - data distribution, fault-tolerant cod-
ing, encryption and compression - can be employed together
using independent algorithms, but in a proper combination.
A superposition of these techniques exploiting synergies is
still an issue for research. Thus, in this paper we study
proper technique combinations applied to distributed stor-
age. The combinations are classified and examined with
respect to their potential benefit and limitations. For our
model, performance parameters from the distributed stor-
age system NetRAID are used.

1. Introduction

Distributed data storage potentially allows faster storage
access, data durability and a flexible scaling of storage ca-
pacity. Many distributed storage architectures appeared, ei-
ther in closely connected systems such as cluster storage, or
in loosely connected environments like the Internet. Storing
data in a distributed system involves up to four processing
phases for different ambitions. First, a data object is split

1-4244-0910-1/07/$20.00 c©2007 IEEE.

into blocks and stored across a number of storage units, e.g.
disks or storage servers. Splitting data into blocks (strip-
ing) allows to assign them to different storage units with
parallel access. The second technique, fault-tolerant coding
adds structured redundancy that is calculated with respect to
the distribution of data, i.e. exploiting independent fault re-
gions. In case that one or more storage units are unavailable,
it is possible to recalculate lost data by using this redun-
dancy. As a third technique, compression can be included
to reduce the physically needed storage space by removing
redundancy from the original data. The access performance
may increase because less data has to be transfered. Fourth,
data can be encrypted and stored safely outside the users
local domain without getting compromised. All techniques
cause additional computational effort and the gained benefit
depends on several parameters and the requirements in the
particular scenario. An example for invoking the addressed
techniques is to compress a file (e.g. by gzip), encrypt it
in a second step and then store it on a distributed reliable
storage system. This sequence is already a good choice to
reach low storage overhead and data security for transfer
and permanent storage on disks. But it is not necessarily
the fastest variant when parallelization on the server side
and pipelining of client and server operations is considered.
In this paper, a model is presented for deciding about the
order of techniques with respect to application constraints,
e.g. a secure network-transfer. This model is constructed
with knowledge from the implementation of a distributed
reliable storage system NetRAID[11, 12]. Parameters are
taken from experiments with this system to be practically
relevant.
The following sections of this paper are organized as fol-
lows. Related work is surveyed in Section 2. Then we con-
tinue with the approach to enumerate all possible combina-
tions of the four techniques and preselect them in Section
3, particularly we exclude improper combinations. Then,

in Section 4 the alternatives among combinations that are
appropriate ones at a first glance are discussed. Combina-
tions with a limited appropriateness are reviewed in Section
5. The model-based comparison of the combinations is pre-
sented in Section 6. The results are summed up in Section
7 with implications for distributed storage system design.

2. Related work

Data striping is a common technique, applied either
across disks in RAID configurations [6] or across stor-
age servers in distributed systems, e.g. for a media stor-
age system[2] or for parallel storage systems. A variety
of such distributed storage systems are available, either
as commercial products (IBM-GFS, TerraGrid) or as re-
sults from research projects, such as PVFS2[13], Lustre[3],
NetRAID[12], ClusterRAID[15] and OceanStore[7, 9].
Most of them are considered for closely connected systems
within a trusted environment and thus do not include en-
cryption. The exception is OceanStore, a real wide-area
storage system among the examples given.

Data distribution is a more general principle that includes
striping but also irregular distribution and replication. Sys-
tems like Freenet [4] aim to share data in a distributed de-
centralized system using peer-to-peer techniques. In these
systems, encryption techniques are applied in order to for-
bid untrusted peers to get insight into data and also to re-
lease them from the responsibility for the data stored for
other peers.

Compression is mostly an unconsidered feature for dis-
tributed storage. One may explain this situation by the com-
mon practice to compress data prior storage, e.g. apply-
ing data specific compressors – image and video codes for
instance. Compression often is integrated into an applica-
tion and many data formats already represent data in a com-
pressed form. But, compression is a technique that can also
be placed at other system components, e.g. in the network
layer or in the storage system (compressing file systems,
e.g. ZFS[8]).

The combination of encryption and compression is ad-
dressed in [14] and in [5] especially for text data. In [14] the
two steps are combined to reduce processing time by adding
a pseudo-random shuffle into the data compression process.
In [5] the approach is to transform text data into an interme-
diate form which can be compressed more efficient. They
apply a strategy called Intelligent Dictionary-based Encod-
ing for preprocessing and encryption.

For channel coding, the common practice is to prepare
messages for transmission by (1) encryption and then (2)
employ coding for error tolerance. Normally, compression
is placed before encryption, because encryption transforms
its input into a sequence that is hard to compress in a sub-
sequent step. A trustworthy encryption algorithm should

encryption

distribution

distribution

coding
erasure−tolerant

encryption
coding
erasure−tolerant

compression compression

Figure 1. Examples of combinations

generate output data that can not be well compressed [10].
A system that allows to use encryption, compression and

distribution is the Storage Resource Broker (SRB) [1]. SRB
is a distributed Grid storage system that creates a global
view over a number of heterogeneous storages. For higher
security a client has the option to encrypt and compress the
data object locally and then to store it in the SRB space. For
fault-tolerance the data object can be replicated, that is man-
aged with the help of the SRB meta-data catalog MCAT.
SRB differs from our model (and as well from NetRAID)
regarding the impossibility of data striping that is a key fea-
ture in NetRAID. Encryption also is a feature of a few file
systems, e.g. EncFS for LINUX or the encrypting file sys-
tem extension for NTFS/Windows.

3. Preselection of Combinations

When combining distribution, fault-tolerant coding,
compression and encryption, the steps can be arranged in
several orders. With a number of 4!=24 different possibil-
ities, more or less appropriate operation sequences can be
formed for distributed storage. Two possible combinations
are illustrated in Figure 1.

For a preliminary selection we group the techniques in
all possible orders. Combinations that are obviously not
appropriate shall be identified in a first step. The appropri-
ateness is constrained by a couple of aspects:

• Deletion-tolerant codes rely on independent fault re-
gions. Bits/blocks in a codeword are assumed to be
stored on different storage resources and thus, distri-
bution has to be done after deletion-tolerant coding.

• Compression prior distribution across several storage
units introduces interdependencies among distributed
data. Thus, compression must not be placed between
fault-tolerant coding and distribution.

• Fault-tolerant encoding should not be directly followed
by encryption. If encryption contains cipher block
chaining, it introduces dependencies among data that
later on will be stored in different fault regions.

A limited application of encryption or compression after
fault-tolerant encoding is still possible when the scope of
the operations is limited to blocks within a fault region.

In order to obtain a compact notation, a letter symbol for
each individual technique is used. A group of four letters
is used to characterize a particular order, e.g. CDEF. The
letters are chosen as following:

D . . . Data distribution F . . . Fault-tolerant encoding
E . . . Encryption C . . . Compression

According this notation, in Table 1 all 24 combinations are
enumerated, together with a note if they are appropriate,
useful in a limited way or an improper choice.

Summarizing, 6 combinations are valid ones without any
limitation (marked with Yes in Table 1). Further 6 combina-
tions are in a limited way useful. The limitation is that com-
pression or encryption have to take the fault-tolerant coding
into account and may not work across blocks assigned to
different fault regions. The rest, further 12 combinations
are not practical (marked with No). In the next sections we
describe the valid combinations more detailed. Particularly,
the computation time and the storage overhead is specified.

4. Appropriate Combinations

Six combinations are proper ones, with a sound order of
the four techniques. After deletion-tolerant encoding, data
is split and stored in parallel on a number of storage units.
The distribution pattern follows the separation into different
fault-regions. This circumstance is expressed by the con-
tinuous subsequence FD which is present for all appropri-
ate combinations. Each combination is getting evaluated in
terms of time required for storing the data and the resulting
storage overhead. The time is decomposed into the follow-
ing components:

TD . . .Time for distribution,
includes data transfer over the network

TF . . .Time for fault-tolerant encoding
TE . . .Time for encryption
TC . . .Time for compression
TS . . .Time for storage access, always as the last step

Further, a few parameters define the concrete system, e.g.
the number of storage resources used for data striping.

d . . . number data blocks (striping factor)

no. order appropriate reason

1 CDEF No F after D does not exploit
indep. fault regions (d1)

2 CDFE No (d1) + E after F does not
support decryption
after faults (d2)

3 DCEF No see (d1)
4 DCFE No see (d1) and (d2)
5 EFCD Limited compression between

fault-tolerant coding
and distribution destroys
structured redundancy (d3)

6 EFDC Yes Compression less effective
but parallel

7 FECD Limited see (d3)
8 FEDC Limited Encryption possibly

across regions that need
to be independent for
structured redundancy (d4)

9 CEDF No see (d1)
10 CEFD Yes
11 ECDF No see (d1)
12 ECFD Yes Previous encryption

causes sub-optimal
compression (d5)

13 FDEC Yes (d5) + compression
less effective

14 FDCE Yes
15 DFEC No see (d1)
16 DFCE No see (d1)
17 CFED Limited see (d4)
18 CFDE Yes
19 FCED Limited see (d3)
20 FCDE Limited see (d3)
21 EDCF No see (d1)
22 EDFC No see (d1)
23 DECF No see (d1)
24 DEFC No see (d1)

Table 1. Combination of techniques in orders

k . . . number redundant blocks
n . . . blocks after fault-tolerant coding; n = d + k
c . . . compression factor, reciprocal of the reduction

factor, i.e. c = 5 when the compressed size is a
fifth of original size, sizecompr = 1

c sizeoriginal

e . . . encryption loss, reduction of compression factor,
e ∈ { 1

c . . . 1}, e = 1 when no reduction is observed,
and e = 1

c when reduction reaches a maximum effect
s . . . separation loss, reduction of compression factor

due to compression on separate blocks
s ∈ { 1

c . . . 1}, s = 1 when no reduction is observed
and s = 1

c when reduction reaches a maximum effect

The combined influence of encryption and separation to the
compression efficiency is bounded to a maximum value that
totally compensates the compression effect, thus e · s ≥ 1

c .

S

S

S

D ... Distribution
S ... Storage Access

... place for operation
out of C,E,F

storage server

D

client

sequence in time

Figure 2. System model

This combined loss l is specified as follows:

l =
{

e · s if e · s ≥ 1
c

1
c otherwise

The computational effort for fault-tolerant encoding linearly
grows with the number of additional storage resources for
redundancy information. Thus it depends on k. In contrast,
this computational effort is independent from d, the number
of storage resources used for the data. This can be explained
by the amount of original data which has to pass the coding
algorithm. This amount does not change when the strip-
ing factor changes. Another observation is the size of the
redundancy information that is - seen from a single redun-
dancy storage - equal to the size of the data on a particular
data storage, the 1

d -fold of the original file size. The system
model is shown in Figure 2, illustrating the access by a sin-
gle client to a farm of parallel storage servers. Operations
can be assigned to the client or to servers, solely (i) distri-
bution is always placed at the interface between client and
servers and (ii) storage access is always that last operation
in the sequence (thus not included in the combinations). In
the following, equations for the time of a write operation
and for the storage overhead will be given. These equations
are used in a model-based evaluation of the operation se-
quences in Section 6.

EFDC - Encryption-FTCoding-Distribution-Compression
Data is encrypted at first and then redundancy for fault-
tolerant storage is added. Data blocks are distributed across
a number of storages and there each data block is com-
pressed separately. An advantage of this combination is that
data is secured at client side at the beginning.

TEFDC = TE + k · TF +
n

d
TD +

1
d
TC +

1
d · c · l TS

OEFDC =
1

c · l ·
n

d

The space efficiency can not be optimal - as described
above. Due to prior encryption and the separation into

shares on different storage units, compression is supposed
to be less efficient.

CEFD - Compression-Encryption-FTCoding-Distribution
Compression is applied at first and the size of the data ob-
ject will be reduced. Then the subsequently executed en-
cryption and fault-tolerant coding work on a reduced data
size and thus will be faster. At the end data is distributed
across the storage nodes. The compression of the whole
data object and its placement before encryption leads to an
efficient solution.

TCEFD = TC +
1
c
TE +

k

c
TF +

n

d · cTD +
1

d · cTS

OCEFD =
1
c
· n

d

Beside the time efficiency, this variant is also space-
efficient with the best compression rate that solely depends
on the input data.

ECFD - Encryption-Compression-FTCoding-Distribution
Data is encrypted and compressed on the client side and
then stored on a fault-tolerant storage system. This is a valid
but a less efficient scheme. Encryption usually increases
the entropy of the data, so that compression will be less
efficient and more data must be handled by the deletion-
tolerant encoder.

TECFD = TE + TC +
k

c · eTF +
1

d · c · e (nTD + TS)

OECFD =
1

c · e · n

d

FDEC - FTCoding-Distribution-Encryption-Compression
After fault-tolerant coding data is split and stored in par-
allel on a number of disks. Each data block is encrypted
and then compressed. The compression efficiency is lower
because entropy is typically increased with encryption. Ad-
ditionally, compression on small blocks is another factor for
a less efficient compression. The advantage of this variant is
the parallel compression and encoding. The disadvantage is
the plain-text transfer of data to the storage resources. Any
sequence DxE, with x ∈ {F,C,FC,CF, } indicates such a
plain text data transfer.

TFDEC = k · TF +
n

d
TD +

1
d
TE +

1
d
TC +

1
d · c · l TS

OFDEC =
1

c · l ·
n

d

FDCE - FTCoding-Distribution-Compression-Encryption
This combination is similar to FDEC, with the difference
that data is compressed at first and than encrypted. The ad-
vantage is a better compression factor.

The plain text transfer of data is still a point of criticism.

TFDCE = k · TF +
n

d
TD +

1
d
TC +

1
d · c · s (TE + TS)

OFDCE =
1

c · s · n

d

CFDE - Compression-FTCoding-Distribution-Encryption
Data is encrypted after distribution, in parallel for each data
block. With the compression step at first, this variant is
space-efficient, comparable with the CEFD combination. A
disadvantage can be seen in the plain text data transfer - as
encryption is done only at the storage units.

TCFDE = TC +
k

c
· TF +

n

d · cTD +
1

d · c (TE + TS)

OCFDE =
1
c
· n

d

5. Combinations with Limited Appropriatness

Further six combinations are useful with the limitation
that at least one operation - compression or/and encryption
- is to apply separated onto several blocks. The block
boundaries were introduced by a previous erasure-tolerant
coding that assigns blocks to independent fault-regions.

EFCD - Encryption-FTCoding-Compression-Distribution
Data is encrypted and then redundancy is added for fault-
tolerance. Original data and redundant data is compressed
and distributed. To preserve the fault-tolerance property it
has to be ensured that compression is not applied across the
blocks.

TEFCD = TE + k · TF +
n

d
TC +

1
d · c · l (n TD + TS)

OEFDC =
1

c · l
n

d

When there is no other reason for applying FT-coding
before compression, one should first compress, then
encrypt and apply the erasure-tolerant code at last. This
leads to CEFD, which is appropriate without limitation.

FECD - FTCoding-Encryption-Compression-Distribution
After adding redundancy, data is encrypted and compressed.
Encryption and compression has to take into account that
the structure of the redundancy is not violated, by work-
ing within the block boundaries. In a last step, data is dis-
tributed block-wise.

TFECD = k · TF +
n

d
TE +

n

d
TC +

1
d · c · l (n TD + TS)

OFECD =
1

c · l
n

d

FEDC - FTCoding-Encryption-Distribution-Compression
After adding redundancy for erasure-tolerance, the resulting
file is encrypted, again with the requirement that the struc-
tured redundancy is kept. After distribution data blocks are
compressed separately.

TFEDC = k · TF +
n

d
TE +

n

d
TD +

1
d
TC +

1
d · c · l TS

OFEDC =
1

c · l
n

d

CFED - Compression-FTCoding-Encryption-Distribution
Data is at first compressed to reduce the data size. In a next
step, structured redundancy for fault-tolerance is added and
data gets encrypted. The encryption is to apply on separate
blocks.

TCFED = TC +
k

c
TF +

n

d · cTE +
n

d · cTD +
1

d · cTS

OCFED =
1
c
· n

d

FCED - FTCoding-Compression-Encryption-Distribution
After erasure-tolerant encoding, the code blocks are com-
pressed and encrypted separately for blocks. Then the
blocks are distributed across the storage units.

TFCED = k · TF +
n

d
TC +

1
d · c · s (n TE + n TD + TS)

OFCED =
1

c · s · n

d

FCDE - FTCoding-Compression-Distribution-Encryption
FCDE is similar to FCED, but encryption is shifted at the
last position and executed at the side of the storage servers.
Encryption can be done parallel on several blocks which
should result in a performance improvement. This improve-
ment must be traded for the disadvantage of plain–text data
transfer over the network.

TFCDE = k · TF +
n

d
TC +

1
d · c · s (n TD + TE + TS)

OFCDE =
1

c · s · n

d

6. Experimental Evaluation

In this section, first realistic parameters are discovered
and then applied on the model to compare the combinations,
particularly the write operation of data to the distributed
storage system. The parameters c, e, s will be determined
by experiments on different data. For that, we applied the

operations compression, encryption and distribution to sev-
eral files. The experiments follow the paths shown in Figure
3. The obtained values are listed in Table 2. Three classes
can be identified – well compressible (c ≈ 5.4), moder-
ately compressible (1.4 < c < 2.6) and practically non-
compressible (c ≈ 1).

The time factors in the formulas TE , TC and TS are as-
sessed by observing data processing rates for the files and
shown in table 3. For a further analysis, data rates are con-
verted into processing times for a normalized file size of 1
GByte.

encrypted
compressed

stripes

compressed
encrypted

data

compressed
encrypted

stripes

compressed
data

data
compressed
encrypted

splitted
data

"Stripes"

data
encrypted

compressed
stripes

encrypted
stripes

original
data

Figure 3. Evaluation paths

compress. loss factors
file size (Byte) factor (c) e s

channel 0 1024000 5.45 0.183 0.95
cfiles.tar 512000 5.42 0.1854 0.9196

scifi-book.pdf 2024743 1.446 0.691 0.9897
lecture.pdf 1076754 2.54 0.3929 0.9923

j7jac.mat 6233334 1.004 0.996 0.9996
bluemoon.mp3 23711411 1.0082 0.992 0.9999

Table 2. Observed parameters on several file
types

Particularly TD, the distribution time that includes net-
work transfer and TS that is strongly dependent on the par-
ticular storage resources are taken from measurements on
the NetRAID system. Thus, to provide realistic parameters
for TF , TD and TS, measurements with different functional
coverage were performed. For one experiment, the func-

operation rate (MByte/s) normalized Time (s)

Encrypt (AES) 19.9 TE = 50.25

Compress 15 . . . 50 TC = 20 . . . 66, 6
(gzip -best)
Disk write 30 . . . 50 TS = 20 . . . 33.3

Table 3. Observed rates for encryption, com-
pression and disk access

tionality covered solely the erasure-tolerant coding at the
client side, whereby the other functions were deactivated
in the NetRAID system. With that, the rate for erasure-
tolerant coding could be measured. Another measurement
setup included erasure-tolerant coding and distribution of
data across the storage servers. In that case, the actual ac-
cess to the server disks was deactivated and the rate for the
two steps - erasure tolerant-coding and distribution - could
be measured. In a third step, we measured the rate for the
complete storage system activity, including access to the
server disks. Two storage layouts were selected for further
analysis Parity(7+1) and Reed/Solomon(6+2). The opera-
tion times (normalized to a file size of 1 GByte) and the
storage overhead are plotted in Figure 5 for a parity code
and in Figure 6 for a R/S code.

The rates are converted to operation times on a file size
of 1 GByte. In result, the time consumption for erasure-
tolerant coding (FTCoding), distribution and disk access on
servers can be extracted. These time values are used for
evaluation by formulas presented in Section 4 and 5, with
factors in order to express the ratio of actual transferred data
size and file size - as assumed in the formulas. The particu-
lar times and factors are depicted in Figure 4.

In Figure 5 the time consumption of a write operation
and the storage overhead are plotted for a storage system
with a parity code. The plot’s x-axis classifies the three
regions of compression factors. Figure 6 depicts the mod-
elling results when an R/S code is applied. The results show
that wrt. operation times three classes originate. The first
class are combinations that are fast (low operation times). A
slight positive influence of the compression effect is visible.
Members of this class are FDEC, CFDE, FCDE and FDCE
- with FDCE as the fastest combination. All combinations
in this class execute encryption on the server side in parallel
and thus gain operation speed.
A second class are combinations that are slower, but still
faster than many others when data can be compressed well.
Members of this class are FEDC, CFED and CEFD. Com-
binations with an encryption prior distribution can be found
in this class - for secured network transfer. The rest of com-
binations - a third class - are slow wrt. operation speed. The
reason is that compression has no effect due to prior encryp-
tion and in most cases parallelization of the time consuming

0.557 s

1,975 s 9.384 s 0.145 s

d
n

4.553 s 5.134 s 5.949 s 9.180 s

factor=factor =1 factor= factor=

1
2

factor=

factor=

7
8 8 8

46

0.133 s 4.374 s 1.410 s 2.530 s

parity (7+1) R/S (6+2) Repl. (4+4)redundant (8)
non−

calculated time = 4,167 s

basis time for
interfacing

time for
erasure−tolerant
coding

time for
distribution

time for
parallel
disk access

Figure 4. Times from experiments with fac-
tors for application in model

parts is not applied.
Regarding overhead, only two classes originate, a class with
combinations that can exploit the reduction of data size for
efficient operation and the second class that does not. Mem-
bers of the first class (the advantageous ones) are: CEFD,
FDCE, CFDE, CFED, FCED and FCDE. It is obvious that
solely the fact that compression is placed prior encryption
is the reason for reaching the low overhead.

7. Implications for Storage System Design

From our measurements and the modeling, a couple of
design rules for distributed storage systems can be rea-
soned:
Encryption and Compression – Encryption typically in-
creases the entropy of the symbol stream. So it is disadvan-
tageous to apply compression after encryption. The only
way is to use the techniques in a combined algorithm, ex-
amples for such combinations can be found in [5, 14]. If
there is an encryption on client side, compression should
be placed before encryption. Another alternative is to move
both compression and encryption to the server nodes. This
allows efficient parallelization of the most time-consuming
operations. It provides safety against attacks on storage re-
sources, and against theft of storage nodes. It can protect
privacy for data stored on untrusted Internet peers as long
as the key for encryption can not be used again for decryp-
tion.

Erasure-tolerant Coding and Compression – These
techniques are opposed because coding adds structured re-

EFDC
CEFD
ECFD
FDEC
FDCE
CFDE
EFCD
FECD
FEDC
CFED
FCED
FCDE

 0

 20

 40

 60

 80

 100

nonemoderatelywellno
rm

al
iz

ed
 o

pe
ra

tio
n

tim
e

(s
ec

s
fo

r
1

G
B

yt
e)

EFDC
CEFD
ECFD
FDEC
FDCE
CFDE
EFCD
FECD
FEDC
CFED
FCED
FCDE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

nonemoderatelywell

st
or

ag
e

ov
er

he
ad

Figure 5. Comparison of combinations with
parity(7+1) as erasure-tolerant code.

dundancy while compression removes any kind of redun-
dancy. If data is compressed before coding to decrease data
space, the amount of original data as input for redundancy
coding is reduced. This is combined with an encoding time
reduction. Compression still can be done separately on parts
of data that is already assigned a single fault region. It was
shown that separation does not strongly influence the com-
pression efficiency. So, compression on server nodes is a
fast variant, when data does not have to transferred securely
and the network bandwidth is not a limiting factor.

Erasure-tolerant Coding and Encryption – Encryption
can be applied prior erasure-tolerant coding without any
limitation. The erasure-tolerant codes work on any kind of
data streams, independently if plain data or encrypted data
is processed. To apply encryption after erasure-tolerant cod-
ing introduces the restriction that no dependencies across
data on several fault regions may be introduced, for instance
by cipher block chaining. So, the scope of encryption must
be restricted to separate regions on data. As encryption is
relatively time consuming - in spite of efficient algorithms -
one may place encryption on the server side.

EFDC
CEFD
ECFD
FDEC
FDCE
CFDE
EFCD
FECD
FEDC
CFED
FCED
FCDE

 0

 20

 40

 60

 80

 100

 120

nonemoderatelywellno
rm

al
iz

ed
 o

pe
ra

tio
n

tim
e

(s
ec

s
fo

r
1

G
B

yt
e)

EFDC
CEFD
ECFD
FDEC
FDCE
CFDE
EFCD
FECD
FEDC
CFED
FCED
FCDE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

nonemoderatelywellst
or

ag
e

ov
er

he
ad

Figure 6. Comparison of combinations with
R/S as erasure-tolerant code.

8. Conclusions

Appropriate combinations of compression, encryption,
erasure-tolerant coding were identified for distributed stor-
age systems. We modeled the chain of operations, taking
into account the compression effect, loss factors by the in-
fluence of encryption and data separation. Parallel process-
ing on the server side allows to move time-consuming op-
erations, e.g. encryption, on the server side. The model pa-
rameters are taken from measurements on a real distributed
storage system, to be realistic. For example, the sequence
compression, encryption, deletion-tolerant coding, distri-
bution and storage access reaches the least storage over-
head, is relatively fast and provides secure network trans-
fer. Faster systems can be build by shifting compression
and encryption to the server side for parallel operation. Us-
ing the model, one is able to select a appropriate combina-
tion either with the focus on a combination that provides
the highest access bandwidth or the lowest storage over-
head. Constraints in the operation environment, e.g. a low-
bandwidth network can be considered in the model with ac-
cording parameters. A future objective is to let the storage
system components decide autonomously about the appro-

priate combination, taking user and system constraints into
account.

References

[1] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
Storage Resource Broker. In CASCON ’98: Proceedings of
the 1998 conference of the Centre for Advanced Studies on
Collaborative research, page 5. IBM Press, 1998.

[2] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Stag-
gered Striping in Multimedia Information Systems. Techni-
cal Report CSD-930042, University of California, Computer
Science Deptartment, December 1993.

[3] P. J. Braam et al. The Lustre Storage Ar-
chitecture. 2004. Cluster File Systems Inc.,
http://www.lustre.org/docs/lustre.pdf.

[4] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. Lecture Notes in Computer Science, 2009:46ff,
2001.

[5] V. Govindan and B. Shajee-Mohan. An Intelligent Text Data
Encryption and Compression for High Speed and Secure
Data Transmission over Internet. In International Confer-
ence on Information Technology Coding and Compression,
ITCC. IEEE Computer Society, April 2005.

[6] R. Katz, G. Gibson, and D. Patterson. Disk System Architec-
tures for High Performance Computing. In Proceedings of
the IEEE, pages 1842–1858. IEEE Computer Society, Dec.
1989.

[7] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An Architecture for
Global-scale Persistent Storage. In Proceedings of ACM AS-
PLOS. ACM, November 2000.

[8] S. Microsystems. ZFS: the last word in file systems -
http://www.sun.com/2004-0914/feature/. 2004.

[9] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weath-
erspoon, and K. J. Maintenance Free Global Data Storage.
IEEE Internet Computing, pages 40–49, September/October
2001.

[10] B. Schneier. Applied Cryptography: Protocols, Algorithms,
and Source Code in C. John Wiley & Sons, Inc., New York,
NY, USA, 1993.

[11] P. Sobe. Data Consistent Up- and Downstreaming in a Dis-
tributed Storage System. In Proceedings of the Interna-
tional Workshop on Storage Network Architecture and Par-
allel I/Os, pages 19–26. IEEE Computer Society, 2003.

[12] P. Sobe and K. Peter. Construction of OR-based Deletion-
tolerant Coding Schemes. In IPDPS 2006 Proceed-
ings, Workshop on Dependable Parallel, Distributed and
Network-centric Computing. IEEE Computer Society, 2006.

[13] P. D. Team. Parallel Virtual File System, Version 2.
http://www.pvfs.org/pvfs2/pvfs2-guide.html, 2003.

[14] C.-E. Wang. Cryptography in Data Compression. Code-
Breakers Journal, Security and Anti-Security - Attack and
Defense, 1, 2006.

[15] A. Wiebalck, P. Breuer, V. Lindenstruth, and T. Steinbeck.
Fault-Tolerant Distributed Mass Storage for LHC Comput-
ing. In CCGrid 2003, 2003.

