The Design and Implementation of Checkpoint/Restart Process Fault Tolerance
for Open MPI *

Joshua Hursey!, Jeffrey M. Squyres?, Timothy 1. Mattox!, Andrew Lumsdaine’

Indiana University
Open Systems Laboratory
Bloomington, IN USA

{jjhursey, timattox, lums } @osl.iu.edu

Abstract

To be able to fully exploit ever larger computing plat-
forms, modern HPC applications and system software must
be able to tolerate inevitable faults. Historically, MPI im-
plementations that incorporated fault tolerance capabilities
have been limited by lack of modularity, scalability and us-
ability. This paper presents the design and implementation
of an infrastructure to support checkpoint/restart fault toler-
ance in the Open MPI project. We identify the general capa-
bilities required for distributed checkpoint/restart and real-
ize these capabilities as extensible frameworks within Open
MPI’s modular component architecture. Our design fea-
tures an abstract interface for providing and accessing fault
tolerance services without sacrificing performance, robust-
ness, or flexibility. Although our implementation includes
support for some initial checkpoint/restart mechanisms, the
framework is meant to be extensible and to encourage ex-
perimentation of alternative techniques within a production
quality MPI implementation.

1. Introduction

High Performance Computing (HPC) systems continue
to grow in both complexity and size. As these systems grow
they suffer from an increased opportunity for various sys-
tem failures. Many of these systems do not provide trans-
parent fault tolerance services at the system level. Mod-
ern HPC applications generally rely on message passing
libraries such as the Message Passing Interface (MPI) for
inter-process communication [14]. MPI is positioned such
that it has unique knowledge about the state of the paral-
lel job and available resources making it a natural place for

*Supported by a grant from the Lilly Endowment and National Science
Foundation grants NSF ANI-0330620, CDA-0116050, and EIA-0202048.

1-4244-0910-1/07/$20.00 (©2007 IEEE.

2Cisco Systems, Inc.
Server Virtualization Business Unit
San Jose, CA USA

jsquyres @cisco.com

incorporating fault tolerance techniques.

Many MPI implementations couple fault tolerant tech-
niques tightly throughout their code. This makes it difficult
for researchers to explore new techniques and refinements
without forking from the base MPI implementation. These
fault tolerant MPI libraries assume that MPI is the only ser-
vice that the application depends upon which needs to be
aware of a checkpoint or restart request. Many of the fault
tolerance interfaces and tool sets are cumbersome which de-
ter users from exploiting these features.

This paper addresses these issues in a new design incor-
porated into the Open MPI project [8]. This paper first dis-
tills the primary duties involved in a distributed checkpoint
and restart system into five primary tasks. From these tasks
this paper presents a modular design and implementation
which isolates each task. This modular isolation empow-
ers researchers to easily explore new techniques and refine-
ments. The modular design also allows for multiple imple-
mentations of a task to be interchangeable at runtime. This
paper will discuss some of the implementation details in-
volved with incorporating this design into Open MPIL.

An application using a MPI implementation that pro-
vides fault tolerance services is better equipped to adapt to
current and next generation HPC systems. Unfortunately
many of these implementations provide complicated inter-
faces to the application user or require them to decide be-
tween production quality and research quality implementa-
tions.

There are many fault tolerance techniques available.
Checkpoint and restart techniques are a member of the roll-
back recovery class of fault tolerance techniques, and have
been widely adopted by many fault tolerance implementa-
tions. These techniques capture an image (or snapshot) of
a running process and preserve it for later recovery. Dis-
tributed checkpoint and restart techniques rely on various
coordination protocols to produce consistently recoverable

parallel application states.

Open MPI is a high performance, production quality,
MPI-2 standard compliant implementation. The design pre-
sented in this paper augments this implementation provid-
ing users with the option of using checkpoint/restart fault
tolerance techniques.

This design handles synchronous and asynchronous
checkpoint requests. Synchronous checkpoint requests
are handled by an application via a common API. Asyn-
chronous checkpoint requests are handled by various com-
mand line tools. These tools enable system administrators
and support services (e.g., schedulers) the ability to check-
point a user’s job for various reasons such as system main-
tenance. In order for these tools and interfaces to be widely
used they must provide a simple yet robust interface that
makes it easy and flexible to use in production environ-
ments.

The end goal of the fault tolerance implementations in
Open MPI is to provide a high performance, scalable, trans-
parent MPI fault tolerance solution. This paper presents
the first step in that direction for Open MPI. Extensions of
this design include the exploration of message logging[2],
migration[15], automatic recovery, and gang scheduling.

2. Related Work

A checkpoint/restart system is responsible for saving the
current state of a single process for later restart. Many
checkpoint/restart system implementations are available
such as: libckpt [16], Condor checkpoint library [12], and
BLCR (Berkley Lab’s Checkpoint/Restart) [5]. These im-
plementations differ in many ways including how process
state is preserved, how much of the process state is pre-
served, how the state is stored, APIs, and command line
interfaces.

Distributed checkpointing and restarting of parallel ap-
plications requires the coordination between individual pro-
cesses to create consistent recoverable states for the paral-
lel application. There have been many techniques proposed
in literature [6], with most techniques falling into one of
three categories: coordinated, uncoordinated, and commu-
nication (or message) induced.

A few MPI libraries have attempted to integrate fault tol-
erance techniques. The techniques integrated range from
user interactive process fault tolerance (FT-MPI [7]) to net-
work failure recovery (LA-MPI [10]). Other MPI imple-
mentations integrate checkpoint/restart techniques to save
and restore the state of the parallel application. Starfish
[1] provides support for coordinated and uncoordinated
checkpoint/restart protocols. Egida [18] provides a gram-
mar for experimenting with new message logging protocols.
CoCheck [20] uses the Condor [12] checkpoint/restart sys-
tem and a ready message checkpoint/restart coordination
protocol. That protocol allowed a subset of the processes
in the job to quiesce their network channels before taking a

checkpoint.

MPICH-V [3] uses an uncoordinated checkpoint/restart
protocol in conjunction with message logging to preserve
the process state and automatically recover failed processes.
This project introduces the use of event logger and check-
point server processes which assist in alleviating the over-
head of these fault tolerant techniques. They use the Condor
[12] checkpoint/restart system.

Many of these implementations are tightly coupled with
a specific checkpoint/restart system. LAM/MPI modular-
ized its checkpoint/restart approach and allowed support for
integrating multiple checkpoint/restart systems into its code
base [19]. They support communication over both TCP and
Myrinet interconnects. They support the BLCR and SELF
checkpoint/restart systems, the latter being a set of user-
level callbacks to assist in user-level checkpointing. The
framework design allowed LAM/MPI to incorporate vari-
ous checkpoint/restart systems uniformly throughout.

LAM/MPI only supports a coordinated check-
point/restart protocol, and therefore only supports the
checkpoint and restart of the entire parallel application.
LAM/MPI also requires that the checkpoint/restart systems
provide a notification thread to mpirun to initiate the
checkpoint of a parallel job. The command line tools
provided for asynchronous checkpointing require the user
to recall the exact parameters that were used to launch the
original process in order to checkpoint and restart it cor-
rectly. LAM/MPI did not provide any API for synchronous
checkpointing and/or restarting from within a process.

The design presented by this paper extracts the best prac-
tices from previous implementations, and incorporates them
with some refinements into Open MPI. The modular de-
sign presents researchers with a medium for the accurate
comparison of various fault tolerance techniques keeping
all other variables constant. Usability improvements in tool
parameters and APIs encourage end users to use the fault
tolerance features presented. One such API addition is the
notification callback surrounding checkpoint and restart re-
quests allowing modern HPC applications the opportunity
to maintain libraries and services outside of MPI.

3. Open MPI Architecture

Open MPI consists of three abstraction layers that com-
bine to provide a full featured MPI implementation. Be-
low the user application is the Open MPI (OMPI) layer that
presents the application with the expected MPI standard
interface. Below that is the Open Run-Time Environment
(ORTE) layer that provides a uniform parallel run-time in-
terface regardless of system capabilities. Next is the Open
Portable Access Layer (OPAL) that abstracts the peculiari-
ties of a specific system away to provide a consistent inter-
face aiding portability. Below OPAL is the operating system
and other standard services running on the local machine.

Open MPI uses the Modular Component Architecture

(MCA) to define internal APIs called Frameworks for par-
ticular services such as process launch. Each framework
contains one or more Components which are specific imple-
mentations for a framework (e.g., SLURM and RSH com-
ponents of the process launch framework). Components can
be dynamically selected at runtime.

3.1. MPI Standard Coverage

The implementation of the design presented in this paper
ultimately desires to support the entire MPI-2 standard [9].
However there exist many implementation and MPI stan-
dard functionality support issues that make this difficult, for
example: how to properly handle dynamic processes, one-
sided communication and hardware collectives.

Many fault tolerance MPI implementations only support
the MPI-1 standard [14] when using these techniques. The
MPI-1 standard tends to be sufficient for many MPI appli-
cations. This first implementation provides a solid founda-
tion of MPI-1 support, and support for MPI collective rou-
tines when internally layered over point-to-point communi-
cation. This foundation was designed to be built upon in the
future to support additional portions of the MPI standards,
and component advancements (e.g., hardware collectives).

4. Snapshot Representations

One of the hurdles standing in the path of wider user
fault tolerance adoption is usability and integration over-
head. The fault tolerance interfaces provided by the system
should be convenient, intuitive and easy to use without sac-
rificing robustness and flexibility.

Previous implementations required the user to remem-
ber specifics regarding exactly how the job was started in
order to successfully checkpoint and/or restart the parallel
job. Since long running applications are the primary target
for fault tolerance acceptance it is common that the user will
not remember all the runtime specifics at a later time. Fur-
ther a system administrator or scheduler developer is com-
pletely precluded from this runtime information, and must
consult the user before taking action with a job.

Additionally, these same implementations tended to bur-
den the user with the responsibility of tracking the location
of all the checkpoint generated files. Depending on the
checkpoint/restart system the file set may be one or many
files with specific naming conventions. Tracking sets of re-
quests quickly becomes tedious and error prone.

The design presented in this paper addresses both of
these issues by introducing an abstract snapshot reference.
A snapshot reference is a single named reference to the
checkpoint that was taken of a single process or a parallel
job. There are two types of snapshot references. The lo-
cal snapshot reference is a single process checkpoint. The
local snapshot reference refers to a directory containing a
metadata file describing: the checkpointer used, applica-
tion specific parameters, and checkpoint interval informa-
tion. The directory also contains all of the single process

checkpoint/restart system specific files. Each snapshot gen-
erated is designated an interval number that differentiates
one from another in a logical ordering.

The second type of snapshot reference is the global snap-
shot reference that references a collection of local snap-
shots resulting from a single checkpoint request. The global
snapshot reference is represented as a directory contain-
ing a metadata file describing: the aggregated local snap-
shot references, process information (e.g., last known rank),
runtime parameters, and a global checkpoint interval. The
global snapshot directory also contains the physical set of
local snapshots, one from each process in the checkpoint
interval.

The snapshot references abstract the user away from the
number and name of the checkpoint generated files allevi-
ating the need for them to track multiple different files for a
single distributed checkpoint interval. The user is only re-
sponsible for the preservation of a directory containing all
the relevant checkpoint information. Additionally the user
does not need to know the underlying checkpoint/restart
system used in order to properly preserve the checkpoint
files.

This design alleviates the need for the user to know
which runtime parameters the job was originally started
with by automatically detecting them when checkpointing
and placing a reference to the parameters in the metadata
files in the snapshot references. During restart the meta-
data files are used to determine how to restart the entire job
properly.

This level of abstraction allows for the possibility of het-
erogeneous checkpoint/restart system support. Single pro-
cess checkpoint/restart systems tend to be closely tied to
the operating system on which they run, and generate bi-
nary files intended to be restarted on the same type of sys-
tem. A job spanning a heterogeneous environment must
incorporate the checkpoints produced by potentially differ-
ent checkpoint/restart systems into a single global snapshot.
The files generated from these distinct checkpoint/restart
systems are likely to be incompatible due to implementa-
tion differences, but can still be incorporated into the same
global snapshot if the restart mechanism is able to properly
map onto the heterogeneous environment as required by the
global snapshot.

Asynchronous checkpointing is supported by a variety
of command line tools. They allow the user to check-
point/restart processes, and disconnect from a long running
checkpoint operation.

5. Design

Five primary tasks were distilled from a review of pre-
vious fault tolerant MPI implementations that incorporate
distributed checkpoint and restart techniques.

e Launching, monitoring and aggregation of checkpoint
requests.

e Managing checkpoint related files and directories in a
distributed environment incorporating potentially local
and global file systems.

e Incorporating the checkpoint/restart coordination pro-
tocol that guarantees a consistently recoverable dis-
tributed state upon restart [4].

o Interfacing with a single process checkpoint/restart
system provided by or for the system.

e Notifying and coordinating subsystems of the MPI im-
plementation around a checkpoint or restart request.

Previous fault tolerant MPI implementations incorporat-
ing checkpoint and restart fault tolerance techniques have
tightly integrated some subset of these tasks with the MPI
implementation. This tight integration makes it difficult to
explore alternative techniques.

5.1. Snapshot Coordinator

Distributed checkpoint/restart implementations are all
required to do the following tasks upon receiving distributed
checkpoint/restart requests: initiate the per process local
checkpoints; monitor the progress of the global checkpoint;
aggregate the local checkpoints into a global checkpoint and
preserve it on a stable storage medium.

Implementations of this distributed checkpoint/restart
task should be given the flexibility to support a wide variety
of snapshot coordination techniques. Example techniques
include the spawning of replicated checkpoint servers, initi-
ating multiple local checkpoints concurrently in a hierarchal
tree structure, and grouping remote file movement request
as to avoid network congestion.

Processes should have the ability to choose between be-
ing able to be checkpointed and not. Processes may choose
not to be checkpointable for various reasons including the
use of unsupported algorithms such as hardware collectives
or dynamic operations. The snapshot coordinator is re-
sponsible for taking the checkpoint request from the user
and checking this against the processes that have identi-
fied themselves as able to be checkpointed. If any of the
processes in the checkpoint request cannot be checkpointed
then the user should be notified and no processes participat-
ing in the request should be affected.

5.2. File Management

Remote file management enables the runtime system to
preload files or binaries on remote systems before starting
remote processes providing usability conveniences.

This task must support broadcast, gather, and remove op-
erations. The broadcast operation supports the preloading
of checkpoint related files on remote machines during pro-
cess recovery. The gather operation supports the movement
of remote local snapshots to a stable storage medium. The
remove operation allows for cleanup of temporary check-
point data that was preloaded on a remote machine.

A stable storage system is defined as a storage medium
that ensures that the recovery information persists through
the tolerated failures and their corresponding recoveries [6].
In practice, non-transient failure of one or more machines in
the system need to be tolerated. Therefore many adminis-
trators provide a shared RAID file system that persists past
the failure of any machine in the system.

Many methods exist for physically moving a file from a
local to a potentially remote file system including standard
UNIX and RSH copy commands. The interface should al-
low multiple file management requests to be given to the file
management system at the same time. This interface allows
it to use collective algorithms to optimize the operation.

5.3. Distributed Checkpoint/Restart Coor-
dination Protocol

A snapshot of a process is defined as the state of the pro-
cess and all connected communication channels [4]. Lo-
cal checkpoint/restart systems are unable to account for the
state of communication channels as they require knowledge
of and the ability to coordinate with remote processes. Pro-
vided this restriction a higher level protocol is required to
coordinate all the processes to create known channel states.
Knowing the state of all connected communication chan-
nels is critical when forming a consistent global snapshot
of the parallel job from which the process can be accurately
restarted at a later time. Many checkpoint/restart coordina-
tion protocols exist and can be generally classified into one
of three categories: coordinated, uncoordinated, and com-
munication or message induced [6]. Each protocol balances
the demand for low overhead failure-free operation with the
complexity of recovery in the event of unexpected process
termination due to system failure.

Distributed checkpoint/restart coordination protocol ser-
vices must provide a consistent API for the MPI implemen-
tation to use internally when such a protocol is required.
Many protocols require the ability to track all point-to-point
messages in the system to aid in recovery [21]. Other proto-
cols require the ability to piggyback data on outgoing mes-
sages, and take action on incoming messages such as tak-
ing forced checkpoints [13]. Therefore these coordination
services need to be provided access to the MPI implemen-
tations internal point-to-point layer. By doing so these co-
ordination services are then allowed to watch the network
traffic as it moves through the system and take necessary
actions.

Coordination services should receive checkpoint notifi-
cation before any MPI subsystem. This ordering provides
coordination services flexibility in their protocol implemen-
tation by not restricting the MPI subsystems available.
5.4. Local Checkpoint/Restart System

Many single process checkpoint/restart systems exist for
various platforms. Examples include BLCR [5], libckpt
[16], and Condor [12]. System level checkpoint/restart sys-

tem implementations tend to be tied to a specific operating
system type or revision. This tight coupling provides them
with a more detailed view of the process target allowing for
a more detailed coverage of the process in the checkpoint.
User level implementations tend to exist above the operating
system making them more portable by sacrificing their abil-
ity to view some process details. Both varieties of check-
point/restart systems capture a snapshot of a single process
on the system and save it to storage. Many times they are
not able to account for the state of entities that exist outside
of the process scope such as file system or network intercon-
nect states which maybe required for the proper recovery of
an application.

In essence a local checkpoint/restart system is required
to provide the following two tasks:

e Request a checkpoint of a specific PID, and return
a reference to the generated local snapshot for later
restart. The PID may be that of the requesting process
or another process on the same machine.

e Request the restart of a process on the local machine
provided a local snapshot reference generated by the
checkpoint command.

Additional functionality may be added to the design such as
memory inclusion and exclusion hints for checkpoint/restart
systems that support such operations [17].

5.5. MPI Library Notification Mechanisms

A single process checkpoint/restart system may only pre-
serve a subset of the process state. As previously men-
tioned, they tend not to account for the state of commu-
nication channels. Therefore subsystems within an MPI
implementation need to receive notification around check-
point/restart requests.

In this design each subsystem that requires such a noti-
fication implements a ft_event function defined as fol-
lows: int ft_event (int state) ;. This function is
meant to encapsulate most, if not all, of the subsystem spe-
cific logic needed to respond to a checkpoint and/or restart
notification. By attempting to isolate this logic to this func-
tion checkpoint/restart notifications can have a minimal im-
pact upon the implementation of the subsystem making
the entire checkpoint/restart integration more maintainable.
The ft _event function takes a single state argument indi-
cating the state of the checkpoint/restart protocol at the time
of the function call.

A driver notification routine is responsible for calling
each subsection’s ft_event function in the proper order
upon receiving a checkpoint or restart request. These rou-
tines are called Interlayer Notification Callbacks (INCs).
For a monolithic library design only a single INC may be
needed. For library designs involving multiple layers of
abstraction, such as Open MPI, one INC may be needed

for each layer. Once the INCs finish preparing the library
for a checkpoint, it then calls the single process check-
point/restart system. Once the checkpoint has completed
then it uses the ft_event function to notify the subsys-
tems of the resulting state of the process.

The presented design provides the MPI library the op-
portunity to prepare for and respond to checkpoint/restart
requests. However since some modern HPC applications
may also need to be notified of such requests the design
needs to be extended to provide such a notification. The ap-
plication can be viewed as a layer existing above the MPI
library. Therefore the design can present the application
with functionality to register an INC. Multilayered MPI li-
braries can use this mechanism to register their INCs. INCs
have the same function definition as ft _event. The INCs
are registered by calling a registration function which will
return the previous registered callback. It is the newly reg-
istered INC’s responsibility to call the previous INC from
within their own. This responsibility ensures a stack-like
ordering of INC calls, and gives an INC the opportunity to
take action before and after calling the previous INC which
is often from a lower level in the software hierarchy. An
example of this is described in Section 6.5.

6. Implementation

This section explores the implementation in Open MPI
of the five primary tasks identified in Section 5. Open MPI’s
modular architecture allows for each of the five tasks to be
logically separated into frameworks. Components of these
frameworks present different techniques for achieving the
goals of the individual frameworks.

The components implemented in this first round are ref-
erence implementations intended to prove the completeness
of the design. The implementation presented provides Open
MPI with a LAM/MPI-like checkpoint/restart implementa-
tion.

6.1. Snapshot Coordinator

There exist many different techniques for achieving the
duties described in Section 5.1. Open MPI provides the
ORTE SNAPC framework to compartmentalize these tech-
niques into components with a common API. This compart-
mentalization allows for a side-by-side comparison of these
techniques in a constant environment.

The initial ORTE SNAPC component implements a
centralized coordination approach. It involves three sub-
coordinators: a global coordinator, a set of local coordi-
nators and a set of application coordinators. Each sub-
coordinator is positioned differently in the runtime environ-
ment as shown in Figure 1.

The global coordinator is a part of the mpirun process.
It is responsible for interacting with the command line tools
(Figure 1-A), generating the global snapshot reference, ag-
gregation of the remote files into a global snapshot (Fig-

shell$ ompi-checkpoint PID_MPIRUN

MPIRUN

Global Coordinator

(SnapC Global Coordinator
requests remote file transfer)

Figure 1. lllustration of Open MPI frameworks
participating in a distributed checkpoint. 3D
boxes represent nodes containing white ap-
plication processes. Rounded boxes repre-
sent processes.

ure 1-F), and monitoring the progress of the entire check-
point request (Figures 1-B,E).

The local coordinator is a part of the ORTE per node
daemons (orted). It works with the global coordinator to
initiate the checkpoint of a single process on their machine
(Figure 1-C), and to move the files back to the global co-
ordinator for storage as a part of the global snapshot (Fig-
ure 1-F).

The application coordinator is a part of each application
process in the distributed system. This coordinator is re-
sponsible for starting the single process checkpoint. Such
a responsibility involves interpreting any parameters that
have been passed down from the user (e.g., checkpoint and
terminate), and calling the OPAL entry_point function
which begins the interlayer coordination mechanism shown
in Figure 2.

Once the application coordinator has completed the pro-
cess checkpoint it notifies the local coordinator (Figure 1-
D) that in turn notifies the global coordinator (Figure 1-E).
The global coordinator then requests the transfer of the lo-
cal snapshots while the processes resume normal operation
(Figure 1-F). Once these local snapshots have been aggre-
gated and saved to stable storage the global snapshot refer-
ence is returned to the user (Figure 1-A).

6.2. File Management

Open MPI provides a file management framework en-
titled ORTE FILEM. This implementation requires knowl-
edge of all of the machines in the job, but does not require
knowledge of MPI semantics therefore it is implemented as
a part of the ORTE layer. The framework interface provides
Open MPI the ability to pass a list of peers and local and
remote file names. If the remote file location is unknown by
the requesting process then the remote process is queried

for its location.

The first component available for the ORTE FILEM
framework uses RSH/SSH remote execution and copy com-
mands. Additional components of this framework may in-
clude standard UNIX commands and high performance out-
of-band communication channels.

6.3. Distributed Checkpoint/Restart Coor-
dination Protocol

Open MPI provides a checkpoint/restart coordination
protocol framework entitled the OMPI CRCP (Check-
point/Restart Coordination Protocol). Since this framework
may require knowledge of MPI semantics it is placed at
the OMPI layer. The OMPI CRCP framework provides a
consistent API for Open MPI to use internally when such a
protocol is required. Each component implements a single
protocol. The components are provided access to the in-
ternal point-to-point management layer framework (PML)
[22] by way of a wrapper PML component. The wrapper
PML component allows the OMPI CRCP components the
opportunity to take action before and after each message is
processed by the actual PML component.

The MCA framework provides runtime selectable com-
ponents allowing researchers to easily compare differ-
ent protocols to each other while keeping all other vari-
ables constant. This runtime comparison produces a re-
producible, accurate comparison of two proposed proto-
cols or refinements of a given protocol. By isolating the
checkpoint/restart coordination protocol to a framework, re-
searchers can focus on the development of a small compo-
nent instead of the development of an entire MPI library
implementation in order to try out a new technique.

The first component of the OMPI CRCP framework is a
LAM/MPI-like coordinated checkpoint/restart protocol pre-
sented in [19]. The protocol uses a bookmark exchange to
coordinate processes to form a consistent global snapshot
of the parallel job. This component refines the protocol
slightly by operating on entire messages instead of bytes.
Outstanding messages are posted by the receiving peer and
used during failure free operation.

Once the OMPI CRCP component has completed its
coordination of the processes then the PML’s ft_event
function is called. The PML ft_event function involves
shutting down interconnect libraries that cannot be check-
pointed and reconnecting peers when restarting in new pro-
cess topologies.

6.4. Local Checkpoint/Restart System

Open MPI provides a single process checkpoint/restart
service framework entitled the OPAL CRS (Check-
point/Restart Service). Since this framework’s functionality
is limited to a single machine by the single process check-
point/restart service it is implemented at the OPAL layer.
The OPAL CRS framework provides a consistent API for

Prepare for a Checkpoint Continue/Restart/Termination
-
=R =}
= |2 T
Z | I E
i - o -
=
Elg 5 ° g
z |2 Z. E
STl . 4|z B
F-1+-F % I] -
~| £ 2 =]
T-3 NI REE- R B
k- | |
o o
35 2 £
Py
a -1
]
© g Y Y,
RO) ‘e
E' D Incoming Acknowledge v
= checkpoint request checkpoint completion
o

Checkpoint taken by checkpoint/restart system (OPAL_CRS_CHECKPOINT)

Figure 2. lllustration of Open MPI Handling a
Checkpoint Request

Open MPI to use internally regardless of underlying check-
point/restart system available on a specific machine. Each
such system implements a component in the OPAL CRS
framework that interfaces the framework API to the check-
point/restart system’s API.

The framework API provides the two basic operations of
checkpoint and restart. In addition the OPAL CRS frame-
work requires components to implement the ability to en-
able and disable checkpointing in the system to assist in
protecting non-checkpointable sections of code.

In Open MPI checkpointing is enabled upon completion
of MPLINIT and disabled upon entry into MPI_FINALIZE.
This restriction allows checkpointing only while MPI is en-
abled since the checkpoint/restart framework is a part of the
MPI infrastructure and is therefore initialized and finalized
within the library. The framework interface is described in
more detail in [11].

There currently exist two components of the OPAL CRS
framework. The first is a BLCR implementation. The
second is a SELF component supporting application level
checkpointing by providing the application callbacks upon
checkpoint, restart and continue operations.

Future OPAL CRS framework API refinements will al-
low for checkpoint/restart system hints such as memory in-
clusion and exclusion operations.

6.5. Open MPI Notification Mechanisms

In Open MPI each process in the parallel job has a thread
running in it waiting for the checkpoint request. This thread
is called the checkpoint notification thread. The thread re-
ceives a checkpoint request notification from the system and
proceeds into the OPAL entry_point function to begin
the notification process, as seen in Figure 2. This function
then calls the top most registered interlayer notification call-
back (INC) function. There are three INC functions in Open
MPI, one for each layer in the software stack described in
Section 3. If the application registered an INC then it has
the opportunity to use the full suite of MPI functionality
before allowing the library to prepare for a checkpoint.

Since the checkpoint notification thread executes concur-
rently with other threads in the process, the notification pro-
cess typically does not interfere with the progress of the pro-
cess. A thread in the process is only stopped when it tries to
access a part of the Open MPI library that has been notified
and restricts that particular operation from continuing until
the checkpoint is complete. For example the point-to-point
layer may not allow a call to MPI_SEND to begin between
when a checkpoint was requested and its completion.

In Open MPI each INC uses the ft_event function to
notify framework components of the checkpoint request.
This function is an extension to existing framework APIs.
Using a separate function for this type of notification has
proven useful in isolating fault tolerance specific logic.

7. Results

The purpose of the infrastructure developed in this paper
is to support fault tolerance in MPI applications, not to be
a complete fault tolerance system. Accordingly, one impor-
tant performance measurement for our design is the amount
of overhead it introduces to MPI communication opera-
tions. NetPIPE latency comparison showed that Open MPI
incurs about 3% overhead for small messages (0% for large
messages) when using this infrastructure and passthrough
components. The overhead is attributed to function call
overhead. Bandwidth overhead was 0%.

Tests were run on a Linux cluster of dual 2.0 GHz
Opteron nodes, each with 4 GB of RAM. Machines are con-
nected via gigabit ethernet and Infiniband.

Regarding usability and modularity of the infrastructure,
we note that once the infrastructure was in place that it took
only a few weeks to fully implement the LAM/MPI-like co-
ordinated checkpoint/restart protocol component. By way
of contrast, many months were required to implement the
original checkpoint/restart support directly into LAM/MPIL.

8. Conclusions

HPC systems will (and do) require application program-
mers to adapt to adverse runtime conditions that may pre-
clude correct parallel applications from running to comple-
tion. MPI implementations provide a single process within
a job with the ability to view and interact with the entirety of
a parallel job. Given MPI implementation’s unique knowl-
edge about the state of the processes and communication
channels in the parallel job it is a natural candidate to as-
sist in application fault tolerance integration. There are
many different fault tolerant techniques available; check-
point/restart rollback recovery techniques being one popu-
lar choice.

Open MPI is an open source, high performance, MPI-2
compliant implementation of the MPI standard. This pa-
per describes the current design and implementation details
for the integration of checkpoint/restart fault tolerance into
Open MPIL. The design presented in this paper has taken
the best practices and experiences from previous projects

and presented a modular, extensible framework set. This
framework set maps directly to the basic responsibilities of
a distributed checkpoint/restart system. Each framework is
designed to allow fault tolerance researchers sufficient flex-
ibility in their implementations while keeping a logical sep-
aration from the rest of the code. The modular design em-
powers researchers by allowing them to focus on the spe-
cific algorithm designs and optimizations that interest them
without the burden of supporting a production quality MPI
implementation.

One of the primary hurdles for fault tolerance acceptance
by the user community is ease of use. This paper iden-
tified some primary problems with previous designs, and
presented solutions that are integrated into the Open MPI
implementation.

Additional fault tolerance capabilities that we intend to
support with our design include process migration; gang
scheduling; automatic, transparent recovery; and message
logging. The extensible and modular infrastructure pre-
sented in this paper will allow researchers to investigate
these (and other) capabilities in the context of a production-
quality MPI implementation.

References

[1] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dy-
namic MPI programs on clusters of workstations. In HPDC
'99: Proceedings of the The Eighth IEEE International
Symposium on High Performance Distributed Computing,
page 31, Washington, DC, USA, 1999. IEEE Computer So-
ciety.

[2] L. Alvisi and K. Marzullo. Message logging: Pessimistic,
optimistic, causal, and optimal. IEEE Trans. Softw. Eng.,
24(2):149-159, 1998.

[3] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak,
C. Germain, T. Herault, P. Lemarinier, O. Lodygensky,
F. Magniette, V. Neri, and A. Selikhov. MPICH-V: Toward a
scalable fault tolerant MPI for volatile nodes. In Supercom-
puting '02: Proceedings of the 2002 ACM/IEEE conference
on Supercomputing, pages 1-18, Los Alamitos, CA, USA,
2002. IEEE Computer Society Press.

[4] K. M. Chandy and L. Lamport. Distributed snapshots: de-
termining global states of distributed systems. ACM Trans.
Comput. Syst., 3(1):63-75, 1985.

[5] J. Duell, P. Hargrove, and E. Roman. The design and imple-
mentation of Berkeley Lab’s linux checkpoint/restart. Tech-
nical Report LBNL-54941, Lawrence Berkeley National
Lab, 2003.

[6] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son. A survey of rollback-recovery protocols in message-
passing systems. ACM Comput. Surv., 34(3):375-408, 2002.

[71 G. E. Fagg and J. Dongarra. FT-MPI: Fault tolerant
MPI, supporting dynamic applications in a dynamic world.
In Lecture Notes in Computer Science: Proceedings of
EuroPVM-MPI 2000, pages 346-353, 2000.

[8] E. Garbriel, G. E. Fagg, G. Bosilica, T. Angskun, J. J. Don-
garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

and T. S. Woodall. Open MPI: goals, concept, and design
of a next generation MPI implementation. In Proceedings,
11th European PVM/MPI Users’ Group Meeting, 2004.

A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine,
E. Lusk, W. Saphir, T. Skjellum, and M. Snir. MPI-2: Ex-
tending the Message-Passing Interface. In Euro-Par *96 Par-
allel Processing, pages 128—135. Springer Verlag, 1996.

R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desali,
R. G. Minnich, C. E. Rasmussen, L. Risinger, and M. W.
Sukalski. A network-failure-tolerant message-passing sys-
tem for terascale clusters. In International Journal of Paral-
lel Programming, volume 31, pages 285-303, August 2003.
J. Hursey, J. M. Squyres, and A. Lumsdaine. A checkpoint
and restart service specification for Open MPI. Technical
Report TR635, Indiana University, Bloomington, Indiana,
USA, July 2006.

M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.
Checkpoint and migration of UNIX processes in the Con-
dor distributed processing system. Technical Report CS-TR-
199701346, University of Wisconsin, Madison, 1997.

D. Manivannan, R. H. B. Netzer, and M. Singhal. Finding
consistent global checkpoints in a distributed computation.
IEEE Trans. Parallel Distrib. Syst., 8(6):623-627, 1997.
Message Passing Interface Forum. MPI: A Message Passing
Interface. In Proc. of Supercomputing ’93, pages 878—883.
IEEE Computer Society Press, November 1993.

D. S. Miloji¢i¢, F. Douglis, Y. Paindaveine, R. Wheeler,
and S. Zhou. Process migration. ACM Comput. Surv.,
32(3):241-299, 2000.

J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under Unix. Technical report,
Knoxville, TN, USA, 1994.

J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley. Mem-
ory exclusion: Optimizing the performance of checkpoint-
ing systems. In Software — Practice and Experience, vol-
ume 29, pages 125-142, 1999.

S. Rao, L. Alvisi, and H. M. Vin. Egida: An extensible
toolkit for low-overhead fault-tolerance. In FTCS ’99: Pro-
ceedings of the Twenty-Ninth Annual International Sympo-
sium on Fault-Tolerant Computing, page 48, Washington,
DC, USA, 1999. IEEE Computer Society.

S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine,
J. Duell, P. Hargrove, and E. Roman. The LAM/MPI
checkpoint/restart framework: System-initiated checkpoint-
ing. International Journal of High Performance Computing
Applications, 19(4):479—-493, Winter 2005.

G. Stellner. CoCheck: Checkpointing and process migration
for MPIL,. In 10th International Parallel Processing Sympo-
sium (IPPS ’96), page 526, 2996.

Y.-M. Wang. Consistent global checkpoints that contain
a given set of local checkpoints. IEEE Trans. Comput.,
46(4):456-468, 1997.

T. S. Woodall, G. M. Shipman, G. Bosilca, R. L. Graham,
and A. B. Maccabe. High performance RDMA protocols
in HPC. In Proceedings of EuroPVM-MPI 2006, volume
4192/2006 of Lecture Notes in Computer Science, pages 76—
85. Springer berlin /Heidelberg, September 2006.

