
Availability/Consistency Balancing Replication Model

Johannes Osrael, Lorenz Froihofer, Karl M. Goeschka

Vienna University of Technology, Institute of Information Systems
Argentinierstrasse 8/184-1, 1040 Vienna, Austria

johannes.osrael|lorenz.froihofer|karl.goeschka@tuwien.ac.at

Abstract

Replication combined with explicit management of data
integrity constraints can be used to enhance availability of
object-oriented, data-centric distributed systems when node
and link failures occur. Our approach enhances availabil-
ity by temporarily relaxing non-critical data integrity con-
straints during degraded situations. This requires new kinds
of optimistic replication protocols that support the configu-
ration of this trade-off. The contribution of this paper is a
replication model called Availability/Consistency Balanc-
ing Replication Model that allows replicas to diverge in de-
graded situations if data integrity can be temporarily re-
laxed and re-establishes both replica consistency and data
integrity during repair time. The Primary-per-Partition-
Protocol and Adaptive Voting are two concrete protocols
following our model. The feasibility of our approach has
been shown by several prototype implementations.

1. Introduction

Replication is one of the primary mechanisms to en-
hance availability of distributed systems. One correctness
criterion for data-centric applications are data integrity con-
straints, such as value constraints, relationship constraints
(cardinality, XOR), uniqueness constraints and other predi-
cates. A system is constraint consistent if all data integrity
constraints are satisfied.

Traditional replication protocols (partially) block in de-
graded situations (node and link failures) in order to guar-
antee that consistency is not violated. However, some ap-
plications exist where consistency can be temporarily re-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

laxed in order to achieve higher availability. For instance,
in some safety-critical systems (e.g., [1]) or in some con-
trol engineering applications (e.g., [2]) availability is more
important than consistency.

New kinds of replication protocols are required that sup-
port the configuration of this trade-off between availability
and consistency.

Thus, in this paper, we contribute with an enhanced repli-
cation model for balancing data integrity with availability,
the Availability/Consistency Balancing Replication Model
(ACBRM). The ACBRM is an extension of the model pre-
sented by Wiesmann et al. [3]. The Primary-per-Partition-
Protocol [4] and Adaptive Voting [5] are two concrete pro-
tocols that follow our model.

Paper overview: Our system model is presented in sec-
tion 2. Section 3 introduces the key concept of our novel
replication protocols. Section 4 describes the replication
model in detail. Section 5 presents two concrete protocols
that realize the model: The Primary-per-Partition-Protocol
and Adaptive Voting. Section 6 introduces our proof of con-
cept implementations. Related work is discussed in section
7 before we summarize and conclude in section 8.

2. System model

We focus on tightly-coupled, data-centric, object-oriented
distributed systems with a small number of server nodes
(typically 2-10) and an arbitrary number of client nodes.
Server nodes host objects which are replicated to other
server nodes in order to achieve fault tolerance. We consider
both node and link failures (partitioning), i.e., the crash fail-
ure [6] model is assumed for nodes and links may fail by
losing but not duplicating or corrupting messages.

We assume a partially synchronous system, where clocks
are not synchronized, but message time is bound. A group

membership service is assumed in our system, which pro-
vides a single view of the nodes within a partition, i.e., it is
used to detect node and link failures. Furthermore, we as-
sume the presence of a group communication service which
provides multicast to groups with configurable delivery and
ordering guarantees.

We assume the correctness of the system is expressed in
the form of application-specific data integrity constraints,
which are defined upon objects that encapsulate application
data (e.g., Entity Beans in Enterprise Java Beans terminol-
ogy). These objects do not contain business logic and typi-
cally correspond to a row in a table of a relational database.
We assume that read and write operations on such objects
can be distinguished.

Data integrity constraints: Not all constraints of an ap-
plication are of equal importance [7]. Some have to be sat-
isfied at any point in time while others might be relaxed
temporarily when failures occur:

Non-tradeable constraints must never be violated. Thus
they cannot be traded for higher availability during degra-
dation. Tradeable constraints can be temporarily relaxed
during degraded situations.

Intra-object constraints can be evaluated on a single
(logical) object, e.g. object.attribute < constant. Inter-
object constraints need access to two or more objects, e.g.
object1.attr1 < object2.attr2.

Critical operations affect at least one non-tradeable con-
straint while non-critical operations affect only tradeable
constraints.

3. Key concept

Traditional replication protocols (partially) block in de-
graded situations, e.g., if the primary is not reachable in a
passive replication scheme or a quorum of replicas cannot
be acquired in case of quorum consensus protocols. How-
ever, as discussed in section 1, some systems do not require
strict data integrity at all times, i.e., constraint consistency
can be temporarily relaxed during degraded situations.

Thus, our key idea is to enhance availability of traditional
replication protocols by allowing non-critical operations in
degraded situations in all partitions, even if replicas might
diverge and data integrity constraints are possibly violated
(threatened). Different reconciliation policies are required
to re-establish replica and constraint consistency after nodes
rejoin.

Our new replication protocols distinguish three modes of
operation: normal mode, degraded mode, and reconciliation
mode. The current mode of the replication protocol depends
on the system state, as it is locally perceived by each node
(see Fig. 1).
Our replication protocols are in the normal mode when all
nodes are reachable and all constraints are satisfied, i.e., no

partitions are present and all repair activities (reconcilia-
tion) are finished.

The protocols switch into the degraded mode when not
all nodes are reachable. Since node and link failures cannot
be distinguished [8], node failures are treated as network
partitions until repair time.

The protocols enter reconciliation mode when two or
more partitions rejoin. The objective of reconciliation is
to re-establish replica and constraint consistency of the sys-
tem. System-wide consistency can only be re-established
if all nodes are reachable. Thus, if partitions rejoin but
the merged partition does not contain all nodes, either con-
straint consistency is re-established within the partition or
constraint consistency is ignored and only replica consis-
tency is re-established.

no partitions, no
reconciliation

(normal mode)

partitions, no
reconciliation

(degraded mode)

no partitions,
reconciliation
(reconciliation

mode)

partitions,
reconciliation
(reconciliation

mode)

partition

partition

rejoin

rejoin
reconciliation
complete

partition

last rejoin

last rejoin
reconciliation
complete

partition

Figure 1. System states and protocol modes

4. Availability/Consistency Balancing Replica-
tion Model

Our contribution is a replication model called Availabil-
ity/Consistency Balancing Replication Model (ACBRM)
that extends the functional model for replication protocols
introduced by Wiesmann et al. [3] with respect to the trad-
ing of constraint consistency against availability.

In Wiesmann et al’s model, replication protocols are de-
scribed as a sequence of five generic phases:

• Request (RE): The client submits an operation to
one or more replicas.

• Server coordination (SC): The replicas co-
ordinate with each other to synchronize the execution
of the operation (ordering of concurrent operations).

• Execution (EX): The operation is executed on
the replicas.

• Agreement coordination (AC): The repli-
cas agree on the result of the execution (e.g., to guar-
antee atomicity).

• Response (END): The outcome of the operation is
transmitted back to the client.

2

Some of the replication techniques skip one or more phases,
order them in another way, iterate over some, or merge some
of the phases.

We extend the model of Wiesmann et al. by introduc-
ing new phases that enable the balancing of data integrity
with availability. The new phases are only required for non-
critical operations except the constraint validation phase
which is also required for critical operations. Beside this
phase, critical operations are treated as in Wiesmann et al’s
model.

4.1. Normal mode

In normal mode, replication protocols for trading availabil-
ity against consistency behave similar as traditional replica-
tion protocols, with the only extension that data integrity
constraints are explicitly supported and validation of the
constraints is triggered. Thus a new phase, called constraint
validation (CV), is required.

4.1.1 Constraint validation

The constraint validation phase starts immediately after the
execution (EX) phase of a write operation. Constraint vali-
dation is not performed in case of read operations.

Figure 2. Protocol phases in normal mode for
write operations

The write operation is aborted — independent of the type
of the constraint (tradeable or non-tradeable) — if one of
the constraints is not met since our protocols guarantee data
integrity in the healthy system. The CV phase is identical
for all our concrete protocols.

4.2. Degraded mode

The key idea of our replication protocols is to allow
non-critical operations in degraded situations in order to
enhance availability, even if the consequence is that replicas
might diverge and data integrity is threatened. Critical
updates are treated as in normal mode.

Three new phases are introduced for the degraded
mode of our protocols:

4.2.1 Configuration adjustment (CA)

Replication protocols are configured with respect to various
system parameters as the number of nodes, read to write ra-
tio, load, etc. For example, in a quorum consensus scheme,

the read and write quorums need to be configured. In a
primary-backup approach, the roles (primary vs. backup)
of the replicas have to be defined. Some replication proto-
cols require reconfiguration in response to failures in order
to provide fault tolerance, e.g., a new primary needs to be
elected if the original primary crashes. In other protocols, as
static quorum schemes, no intervention is necessary when
failures occur, i.e., failures are masked.

Our protocols allow non-critical operations in all parti-
tions during degraded situations. Thus, we adapt the pro-
tocols in degraded situations: For instance, in case of our
Primary-per-Partition-Protocol (see section 5.1) we elect a
temporary primary in each partition for objects that are only
affected by tradeable constraints. Configuration adjustment
is partition-internal and must be based on partition-specific
parameters as the number of replicas or the roles of the
replicas residing in the partition.

4.2.2 Constraint validation (CV)

For critical operations, constraint validation is performed
as in normal mode. However, for non-critical operations,
which are allowed in different partitions, constraint valida-
tion has limited significance: A tradeable constraint that is
satisfied based on the objects in the current partition might
be violated retrospectively if one of the involved objects is
changed in another partition. Thus, it can be configured
whether or not constraint consistency within the partition
shall be enforced. In the latter case, tradeable constraints do
not have to be validated in degraded mode but are marked
(in the reconciliation preparation phase) for validation at
reconciliation time.

4.2.3 Reconciliation preparation (RP)

In order to allow maximum flexibility for reconciliation
when nodes rejoin, the replication protocol needs to log in-
formation about non-critical updates during degraded mode.
In principle, either operations or states can be logged. Fur-
thermore, depending on the reconciliation strategy, it is
required to log either all, some, or none of the opera-
tions and/or states. Logging everything (full history) offers
all options during reconciliation but is the most resource-
consuming approach. Keeping a partial history is a com-
promise between resource consumption and reconciliation
flexibility and the third, no history, approach limits recon-
ciliation to roll-forward or compensation actions that do not
require a history of tentative operations/states.

Furthermore, the tradeable constraints affected by up-
dates during degraded situations are marked for re-
evaluation at reconciliation time.

Read operations do not require this phase: Read-write
conflicts can be ignored during reconciliation since the
application is aware that non-critical read operations

3

performed during degraded situations return possibly stale
objects.

Figure 3 depicts the sequence of the protocol phases
in degraded mode for non-critical write operations. The
configuration adjustment is the first phase and is triggered
by the group membership service when the number of
replicas in the current partition changes. However, not all
changes require reconfiguration. For instance, this phase
can be skipped in case of our primary-backup scheme if
the original primary is still in the partition. If constraint
consistency shall be enforced within the partition, con-
straint validation is performed immediately after the write
operation is executed. Preparation for reconciliation starts
afterwards.

Figure 3. Protocol phases in degraded mode
for non-critical write operations

4.3. Reconciliation mode

Reconciliation mode starts after the new group view is es-
tablished because of (partial) partition re-unification. The
overall goal of reconciliation is to re-establish constraint
consistency which implies re-establishment of replica con-
sistency. Full consistency (i.e., system-wide) can only be re-
established if all nodes are available (full constraint consis-
tency re-establishment). If this is not the case, we consider
two options: Either constraint (and thus also replica) con-
sistency is re-established within the partition (partial con-
straint consistency re-establishment) or only replica con-
sistency is re-established (partial replica consistency re-
establishment). Our concrete replication protocols that fol-
low the ACBRM allow to plug-in different reconciliation
policies.

4.3.1 Full/partial replica consistency re-establishment
(RCR)

If updates have occurred in only one partition, the updates
of this partition are applied on a certain number of replicas
(depending on the concrete protocol) in the merged parti-
tion.

Replica conflict detection: Replica conflicts — caused
by updates in different partitions — can be detected based
on syntactic and/or semantic information. Syntactic ap-
proaches use information about when, where, and by whom
operations have been submitted. Examples for syntactic
techniques are version vectors [9], time-stamps [10], or
precedence graphs [11]. Semantic techniques [12] exploit

properties such as commutativity of idempotency of oper-
ations. Our replication protocols use only syntactic infor-
mation (version numbers) for detection of replica conflicts
since syntactic approaches provide better scalability than
semantic ones. Thus, conflicts are detected by comparing
the version histories of the partitions. How the version his-
tories are generated depends on the concrete protocol.

Replica conflict resolution: If conflicts have been de-
tected, one of the conflicting updates is chosen and the other
updates are replayed or rolled back. Selection criteria are
the number of updates, number of nodes in the partition,
etc. Alternatively, a completely new or a default version
can be installed to solve the conflict.

Constraint consistency re-establishment can only be per-
formed if replica consistency is re-established beforehand.
One option is to completely decouple replica and constraint
consistency re-establishment to reduce complexity. Another
option is to combine both phases: For instance, another se-
lection criterion for replica conflicts is whether or not data
integrity is satisfied by choosing one or the other version.
If none of the replicas satisfies the constraints, one can be
chosen according to the previously mentioned policies.

4.3.2 Full/partial constraint consistency re-
establishment (CCR)

If at least one constraint is violated after re-establishment
of replica consistency, the following policies can be distin-
guished to re-establish constraint consistency:

Re-schedule and replay: One option is to replay all ten-
tative operations based on the last (replica and constraint)
consistent state in a schedule that accepts as many opera-
tions as possible, under the conditions that both ordering
and data integrity constraints are satisfied. This approach
requires logging of all operations during degradation and
suffers from scalability problems.

Stepwise rollback: Another option is to stepwise revert
objects affected by the violated constraint to previous ver-
sions till the constraint is satisfied. In the worst case, all
operations are undone. This approach requires logging of
all tentative states in degraded mode (i.e., full history ap-
proach).

Compensation actions: In order to avoid time-
consuming rollbacks or replays, application-specific
compensation actions can be defined for some applications.
For instance, a simple compensation action is to choose
a default or completely new (agreed) version in case of a
conflict. This approach is even possible if no history is
maintained.

The chosen version that satisfies the constraints is ap-
plied at a certain number of objects (depending on the
concrete protocol) in the merged partition. If constraint

4

consistency is re-established system-wide, the version
histories are cleaned and constraint re-evaluation flags are
set to false.

4.3.3 Configuration adjustment (CA)

The configuration of our replication protocols is re-adjusted
depending on the new situation after consistency is (par-
tially) re-established. For instance, in our primary-backup
scheme one of the two (temporary) primaries of the merged
partition needs to be demoted to a secondary replica. In
case of our adaptive voting protocol, the quorum sizes are
adapted to the size of the partition.

Figure 4 depicts the sequence of the protocol phases in
reconciliation mode. Replica consistency re-establishment
is followed by constraint consistency re-establishment or
might even be combined. Finally, the configuration of the
protocol is adjusted (CA phase).

Figure 4. Protocol phases in reconciliation
mode

4.4. Dependencies between degraded and
reconciliation mode

The number of reconciliation options depends on the recon-
ciliation preparation phase as depicted in Fig. 5. Vice versa,
reconciliation mode retrospectively influences the replica-
tion behavior in degraded mode. In case of the “resched-
ule/replay” and the “compensation actions” reconciliation
approaches, the protocol behavior in degraded mode can
be overwritten. For instance, it is even possible to retro-
spectively switch from a primary-backup based scheme to a
voting algorithm. By applying a “stepwise rollback” recon-
ciliation strategy, the effects of the degraded mode cannot
be changed, though (partly) revoked.

5. Concrete protocol examples

In this section we present two concrete replication protocols
that realize our availability/consistency balancing replica-
tion model. One is based on the primary-backup approach
while the other one builds upon quorum consensus. In prin-
ciple, other protocols as coordinator-cohort [13] or active
replication [14] can be adapted in a similar way.

5.1. Primary-per-Partition-Protocol

In contrast to the traditional primary partition approach
[15], which allows only one partition to continue, a tem-

Figure 5. Dependencies between degraded
and reconciliation mode

porary primary is chosen if the original primary of an ob-
ject (that is only affected by tradeable constraints) is not
available in a partition. Hence we call it the Primary-per-
Partition-Protocol (P4) [4].

Normal mode: Clients send their requests to the primary
replica which executes the request, validates the constraints,
and propagates the updates to the backups if the constraints
are met. We use synchronous (eager) update propagation,
i.e., a response is sent to the client after the replicas are
updated.

Degraded mode: The P4 re-configures (CA phase) once
failures are detected and the primary is not in the current
partition, i.e., a new temporary primary is elected for objects
that are only affected by tradeable constraints. The tentative
states are logged in the RP phase.

Reconciliation mode: Conflicts between concurrent up-
dates in different partitions which are merged can be easily
detected by comparing the version histories of the two tem-
porary primaries (RCR phase). The P4 allows to plug-in
different reconciliation protocols (e.g. [16]).

5.2. Adaptive Voting Protocol

We enhance availability of traditional voting by allowing
non-critical operations even if no quorums exist, i.e., opera-
tions are allowed that may violate tradeable constraints but
do not affect non-tradeable constraints. Thus our adapta-
tion of quorum consensus for balancing data integrity with
availability is called Adaptive Voting (AV) [5].

Normal mode: In normal mode, AV behaves as the tradi-
tional voting protocol with the enhancement that invariant
constraints are checked in case of write operations: Write
operations are performed on a write quorum WQ of repli-
cas and read operations on a read quorum RQ. The quorum

5

conditions RQ + WQ > N and WQ > N
2 must be met in

order to prevent write-write and read-write conflicts. N is
the number of nodes in the system, i.e., we assume all nodes
have the same number of votes. Each node hosts a replica
of an object.

Degraded mode: AV allows non-critical operations even
if the quorums of the healthy system cannot be acquired.
However, within a partition, read-write and write-write con-
flicts shall be prevented and the tuning of read against write
operations shall be supported. Thus, a quorum scheme
adapted to the size of the partition is applied in the CA
phase. The tentative states are logged in the RP phase.

Reconciliation mode: In contrast to the P4, no individual
node contains the full version history of a partition1 since
updates are performed on a write quorum which is smaller
or equal than the number of nodes in the partition. Thus, in
order to detect conflicting updates (RCR phase), the version
history needs to be calculated based on the (partial) version
histories of the nodes. As the P4, the Adaptive Voting pro-
tocol allows to plug-in several reconciliation strategies. The
quorums are re-adjusted according to the size of the merged
partition and the histories are cleaned up in the CA phase.

6. Proof of concept implementations

6.1. Usage in industrial applications

The platform-independent system architecture of the
DeDiSys replication middleware, which is targeted to these
adaptive replication protocols for balancing data integrity
with availability, has been presented in [5]. The DeDiSys
middleware has been implemented on three different plat-
forms: EJB [2], CORBA [17], and .NET [18]. The Primary-
per-Partition-Protocol (P4), which is one of the concrete
protocols that follows the ACBRM, has been implemented
on all of these platforms. The Adaptive Voting (AV) pro-
tocol has been implemented for the .NET-based prototype
[19].

Detailed test and validation reports of the DeDiSys mid-
dleware (including the replications protocols) and three dif-
ferent industrial applications (ATS (Alarm Tracking Sys-
tem [1]), ACS (Advanced Control System [20]), and EPICS
(Experimental Physics and Industrial Control System [2])
Directory Service) that build upon DeDiSys can be found
in [1, 2, 20].

Since reconciliation time is one of the key factors for
overall availability of replication protocols that follow the
ACBRM (see [19] for an availability analysis of Adaptive

1Except a read-one/write-all scheme is applied in a partition.

Voting) we provide some results from our experiments in
the next subsection.

6.2. Performance of reconciliation

The measurements were conducted on a 100MBit full
duplex switched network with up to ten machines with
similar strengths (1-3GHz, 1-3GB RAM, Windows Server
2003). Spread [21] has been used as group communication
toolkit. For every experiment we performed three (indepen-
dent) iterations of 1000 runs. In order to reduce the effects
of just-in-time compilation (JIT), we performed 1000 runs
before each iteration. The figure in this paper shows the
average values over all iterations and runs.

We have evaluated the performance of Adaptive Voting
using the following simple scenario: The state of an ob-
ject a/b of class A/B is represented by an integer value
x. Three constraints exist: C1: a.x < constant1, C2:
b.x < constant1, C3: a.x + b.x < constant2. C1 and
C2 are non-tradeable but C3 is tradeable.

We have measured (see Fig. 6) the worst and best case
for reconciliation time in our scenario, depending on the
number of operations applied in each partition during de-
graded mode. Our system splits into two partitions contain-
ing three nodes each. A Majority scheme, i.e. Write Quo-
rum = Read Quorum = 2, is applied in both partitions and
constraints are enforced within the partitions. Object a is
updated in partition 1, object b is updated in partition 2. The
best case for reconciliation is if the two partitions can sim-
ply be merged without violating the inter-object constraint.
However, if the inter-object constraint cannot be fulfilled
by simply merging the partitions, one partition is stepwise
rolled back till the constraint is fulfilled — in the worst case
to the initial state before degradation occurred.

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

operations/partition

s

Best case: simple
merging of two partitions
Worst case: complete
rollback of one partition

Figure 6. Example for reconciliation time

6

7. Related work

Trading replica consistency for increased availability has
been addressed in distributed object systems as [22, 23, 24].
However, these systems either guarantee strong replica con-
sistency or no replica consistency at all. TACT (Tunable
Availability and Consistency Trade-offs) [25] fills the space
in between by providing a continuous consistency model
based on logical consistency units (conits). The consis-
tency level of each conit is defined using three application-
independent metrics — numerical error, order error, and
staleness. TACT provides a fine-grained trade-off between
replica consistency and availability but does not focus on
constraint consistency.

While our approach treats disconnected operation as a
failure scenario, disconnections are inherent in mobile en-
vironments. Thus, different solutions for reconciliation of
divergent replicas have been proposed for mobile environ-
ments: In Bayou [26], application developers need to de-
fine application-specific conflict detection and reconcilia-
tion policies. Replica consistency is re-established by an
anti-entropy protocol with eventual consistency guarantees.
Our approach offers the same flexibility as Bayou but of-
fers pre-defined reconciliation policies in addition. Gray
et al. [27] introduced the concept of tentative transactions:
Transactions are tentatively committed on replicated data
on mobile (disconnected) nodes and later applied at a mas-
ter copy when the nodes rejoin. If the commit on the master
copy fails, the originating node is informed why it failed.
Application-specific semantics are used for conflict reso-
lution in the mobile transaction management system pre-
sented in [28].

Beside the already mentioned differences to our ap-
proach, all of the above replication and reconciliation ap-
proaches have one commonality: In contrast to our ap-
proach, they either do not address constraint consistency
explicitly or presume strong data integrity.

8. Summary and conclusion

We presented the Availability/Consistency Balancing Repli-
cation Model (ACBRM), an enhancement of Wiesmann et
al’s replication model [3] that enables the balancing of data
integrity with availability in degraded situations when node
and link failures occur. The key idea is to allow non-critical
operations in degraded situations in all partitions even if
replicas might diverge and data integrity constraints are pos-
sibly violated (threatened). We have defined different rec-
onciliation policies in order to re-establish replica and con-
straint consistency when nodes recover and network parti-
tions rejoin.

The Primary-per-Partition-Protocol [4] and Adaptive
Voting [5] are two concrete protocols that follow the

ACBRM. The feasibility of our approach has been shown
by several prototype implementations ([29, 19, 17]).

9. Acknowledgements

This work has been partially funded by the European
Community under the FP6 IST project DeDiSys (De-
pendable Distributed Systems, contract number 4152,
www.dedisys.org). We thank Norbert Chlaupek for imple-
mentation and performance measurements of the Adaptive
Voting replication protocol.

References

[1] H. Kuenig (ed.). FTNS/EJB. Technical Report D3.2.2,
DeDiSys Consortium (www.dedisys.org), 2006.

[2] I. Habjan (ed.). FTNS/.NET. Technical Report D3.3.2,
DeDiSys Consortium (www.dedisys.org), 2006.

[3] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso. Understanding replication in databases and
distributed systems. In Proc. of 20th Int. Conf. on Dis-
tributed Computing Systems. IEEE CS, 2000.

[4] Stefan Beyer, Mari-Carmen Bañuls, Pablo Galdámez,
Johannes Osrael, and Francesc Muñoz. Increasing
availability in a replicated partitionable distributed ob-
ject system. In Proc. 4th Int. Symp. on Parallel and
Distr. Processing and Appl. (ISPA’06), volume 4330
of LNCS, pages 682–695. Springer, 2006.

[5] Johannes Osrael, Lorenz Froihofer, Matthias Gladt,
and Karl M. Goeschka. Adaptive voting for balanc-
ing data integrity with availability. In On the Move to
Meaningful Internet Systems 2006: Confederated Int.
Workshops Proc., volume 4278 of LNCS, pages 1510–
1519. Springer, 2006.

[6] F. Cristian. Understanding fault-tolerant distributed
systems. Commun. ACM, 34(2):56–78, 1991.

[7] Lorenz Froihofer, Johannes Osrael, and Karl M.
Goeschka. Trading integrity for availability by means
of explicit runtime constraints. In Proc. 30th Int. Com-
puter Software and Applications Conference, pages
14–17. IEEE CS, 2006.

[8] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impos-
sibility of distributed consensus with one faulty pro-
cess. Journal of the ACM, 32(2):374–382, 1985.

[9] D.S. Parker Jr., G.J. Popek, G. Rudisin, A. Stoughton,
B.J. Walker, E. Walton, J.M. Chow, D.A. Edwards,

7

S. Kiser, and C.S. Kline. Detection of mutual incon-
sistency in distributed systems. IEEE Trans. Software
Eng., 9(3):240–247, 1983.

[10] S.K. Madria. Handling of mutual conflicts in dis-
tributed databases using timestamps. The Computer
Journal, 41(6):376–385, 1998.

[11] S.B. Davidson. Optimism and consistency in par-
titioned distributed database systems. ACM Trans.
Database Syst., 9(3):456–481, 1984.

[12] A.-M. Kermarrec, A. Rowstron, M. Shapiro, and
P. Druschel. The icecube approach to the reconcili-
ation of divergent replicas. In PODC ’01: Proc. 20th
ACM Symp. on Principles of Distributed Computing,
pages 210–218. ACM Press, 2001.

[13] K.P. Birman, T.A. Joseph, T. Raeuchle, and A. El Ab-
badi. Implementing fault-tolerant distributed objects.
IEEE Trans. on Software Engineering, 11(6):502–
508, 1985.

[14] F.B. Schneider. Replication management using the
state-machine approach. In S.J. Mullender, editor,
Distributed Systems, chapter 2, pages 17–26. ACM
Press, Addison-Wesley, 2nd edition, 1993.

[15] A. Ricciardi, A. Schiper, and K. Birman. Understand-
ing partitions and the ”non partition” assumption. In
IEEE Proc. of 4th Workshop on Future Trends of Dis-
tributed Systems. IEEE CS, 1993.

[16] Mikael Asplund and Simin Nadjm-Tehrani. Post-
partition reconciliation protocols for maintaining con-
sistency. In Proc. Symposium on Applied computing,
pages 710–717. ACM Press, 2006.

[17] Stefan Beyer, Francesc D. Munoz-Escoi, and Pablo
Galdamez. Corba replication support for fault-
tolerance in a partitionable distributed system. In
Workshop Proc. of the 17th Int. Conf. on Database and
Expert Systems Applications, pages 406–412. IEEE
CS, 2006.

[18] Johannes Osrael, Lorenz Froihofer, Georg Stoifl, Lu-
cas Weigl, Klemen Zagar, Igor Habjan, and Karl M.
Goeschka. Using replication to build highly available
.NET applications. In Workshop Proc. of the 17th Int.
Conf. on Database and Expert Systems Applications,
pages 385–389. IEEE CS, 2006.

[19] Johannes Osrael, Lorenz Froihofer, Norbert Chlaupek,
and Karl M. Goeschka. Availability and performance
of the adaptive voting replication protocol. In Proc.
2nd Int. Conf. on Availability, Reliability and Security.
IEEE CS, 2007.

[20] K. Zagar (ed.). FTNS/CORBA. Technical Re-
port D3.4.2, DeDiSys Consortium (www.dedisys.org),
2006.

[21] J. Stanton Y. Amir, C. Danilov. A low latency, loss
tolerant architecture and protocol for wide area group
communication. In Proc. of The Int. Conf. on Depend-
able Systems and Networks, pages 327–336. IEEE CS,
2000.

[22] P. Felber and P. Narasimhan. Reconciling replication
and transactions for the end-to-end reliability of corba
applications. In Proc. of OTM 2002, volume 2519 of
LNCS, pages 737–754. Springer, 2002.

[23] R. Guerraoui, P. Felber, B. Garbinato, and K. Ma-
zouni. System support for object groups. In OOP-
SLA ’98: Proc. of the 13th ACM SIGPLAN Conf.
on Object-oriented programming, systems, languages,
and applications, pages 244–258. ACM Press, 1998.

[24] Y. Ren, D.E. Bakken, T. Courtney, M. Cukier, D.A.
Karr, P. Rubel, C. Sabnis, W.H. Sanders, R.E. Schantz,
and M. Seri. Aqua: An adaptive architecture that pro-
vides dependable distributed objects. IEEE Trans. on
Computers, 52(1):31–50, Jan. 2003.

[25] H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for repli-
cated services. ACM Trans. Comput. Syst., 20(3):239–
282, 2002.

[26] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers,
M.J. Spreitzer, and C.H. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated stor-
age system. In Proc. 15th ACM Symp. on Operat-
ing Systems Principles, pages 172–182. ACM Press,
1995.

[27] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In Proc. Int.
Conf. on Management of Data, pages 173–182. ACM
Press, 1996.

[28] N. Preguica, C. Baquero, F. Moura, J. Legatheaux
Martins, R. Oliveira, H. Domingos, J. Pereira, and
S. Duarte. Mobile transaction management in mo-
bisap. In Current Issues in Databases and Informa-
tion Systems, volume 1884 of LNCS, pages 379–386.
Springer, 2000.

[29] Lorenz Froihofer, Gerhard Glos, Johannes Osrael, and
Karl M. Goeschka. Overview and evaluation of con-
straint validation approaches in Java. In Proc. 29th Int.
Conf. on Software Engineering. IEEE CS, 2007.

8

