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Abstract
This paper addresses a constrained two-terminal reliability
measure referred to as Distance Reliability (DR) between
the source node u and the destination node I with the
shortest distance, in an n-dimensional star network, Sn. The
shortest distance restriction guarantees the optimal
communication delay between processors and high
link/node utilization across the network. This paper uses a
combinatorial approach by limiting the number of node,
link and node/link failures. For each failure model, two
different cases depending on the relative positions of u and
I, are analyzed to compute DR. Furthermore, DR for the
antipodal communication, where every node must
communicate with its antipode, is investigated as a special
case. For this case, lower bound on DR of those disjoint
paths is also derived.

1. Introduction

Star networks have been known as a viable candidate for
interconnecting a large number of processors [1][2]. The
suitability of a star architecture (like any parallel
architecture) is evaluated by analyzing its performance and
reliability aspects. Previous researches have investigated
star networks using performance metrics such as number of
nodes and links, connectivity, diameter, fault diameter, etc
[3][6][8][10][11]. However, little attention has been paid to
the reliability issues. The reliability or availability
prediction of a star architecture is quite essential since stars
have the potential of use in critical applications.

Because of high similarity between hypercube and star
network [5][7], star network is highly robust. It has been
proved that the connectivity among nodes in this topology
can be preserved despite a substantial number of failures (in
terms of node, link or node/link failures). This fact
motivated us to look beyond the concept of connectivity,
and demand more of this topology in terms of efficient
communication. Hence, we want a given pair of nodes not
only to be connected but to be apart by the optimal distance
(i.e. the shortest distance between the source node u and the
destination node I). This idea consequently arouses a
distance constrained reliability parameter which serves as a
useful assessment to determine the communication delay,
link-node utilization, and robustness. We define Distance

Reliability (DR) as the probability of having an operational
path with the optimal distance between two given nodes u
and I. We propose a combinatorial method to evaluate DR
for any (u, I)-containers in a Sn, under the node failure, link
failure and node/link failure models, respectively.
Meanwhile, DR for the antipodal communication will be
discussed as a special case here.

The paper is organized as follows. In Section 2, we
introduce basic properties of star network. In Section 3, a
combinatorial approach is proposed to derive DR under the
node failure model. Section 4 continues to discuss DR under
the link failure model. And the combined node and link
failure model is used to derive DR in Section 5. Section 6
concludes the paper.

2. Background

A star network of dimension n, Sn is defined as a Calyley
Graph G = (V, E) where V is the set of !n nodes, and E is
the set of ( 1) !/ 2n n− links. The nodes are assigned labels

each of which is a distinct permutation on n symbols (we
use symbols 1, 2, …, n). Two nodes are joined with a link
labeled i if and only if the label of one can be obtained by
swapping the first digit (leftmost) and the ith digit,
where1 i n< ≤ . For example, in a S4 containing 24 nodes,
two nodes 1234 and 3214 are neighbors and joined via a
link labeled 3.

2.1 Routing in star network

Since the star network is node symmetric (i.e. network
looks the same from every node’s viewpoint), for routing
between two nodes, the destination node is commonly
assumed to have the identity permutation I=[12…n] as its
label. Having the label of the destination node fixed to I,
one way to specify the source node is to exploit the fact that
the label, u, is simply a permutation on the digits of I.
Routing between two given nodes is accomplished based on
following two rules [1].
i) If 1 is the leftmost digit, move it to any position not

occupied by the correct digit, and
ii) If i is the leftmost digit (1 i n< ≤ ), move it to its

correct position.
Any permutation can be viewed as a set of cycles, i.e.

cyclically order sets of digits with the property that each
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digit’s desired position is that occupied by next digit in the
set. For example, the source node labeled as [426513] in a
S6, can also be identified by the cyclic representation of its
label, i.e. (145)(2)(36). Note that, any digit already in the
correct position appears in a cycle of length of 1, or a 1-
cycle. From above, it follows that in the representation of a
given permutation by a set of cycles, cycles can appear in
any order; furthermore, within each cycle, any cyclic shift
of the sequence of digits can be used without affecting the
destination node. For instance, in a S5, representations:
(123)(45), (45)(123), and (312)(45) all specify the same
source node labeled as [23154].

2.2 Disjoint paths in star network

The maximum number of node-disjoint paths of the
shortest length between a given pair of nodes in Sn has been
derived in [5] and is known to be “n-1”. The notation ( )iπ
is used to refer to the ith digit of the label of u. If the label of
u, expressed in its cyclic form, has c cycles of length at least
2 and m misplaced digits ( m n≤ ), then it follows:
i) If (1) 1π = , there are 1n − parallel node-disjoint paths

between u and I as follows:
a) m paths of the shortest length c+m;
b) n-m-1 paths of length c+m+2.

ii) If (1) 1π ≠ , there are 1n − parallel node-disjoint paths

between u and I as follows:
a) c paths of the shortest length c+m-2;
b) m-c-1 paths of length c+m, and
c) n-m paths of length c+m+2.

For the purpose of simplicity, we use r to denote the
shortest distance between u and I in the rest of this paper.

2.3 Antipode of a node in star network

In a network, the farthest node(s) from a given node
along the shortest path is called the node’s antipode(s) [9].
The antipode of a node is apart from it by nd (diameter of

star network) and can be specified by a maximum
permutation max( )δ . This scenario is explained in [9] as

follows:
i) When n is odd, all cycles of permutations maxδ must be

of length 2 with digit 1 in place. Then

max 2 3 4 5 1 2 3(1)( )( )...( ), where 1 , ,..., n.n n ni i i i i i i i iδ −= < ≤
Here 1, ( 1) / 2.m n c n= − = −

ii) When n is even, there are two possibilities. First, there
is one cycle of length 3 and the rest of cycles have the
length 2 (digit 1 must be in place),

max 2 3 4 5 6 1 2 3(1)( )( )...( ), where 1 , ,..., n.n n ni i i i i i i i i iδ −= < ≤
Here, 1 and ( 2) / 2.m n c n= − = − Second, there

are / 2n 2-cycles with one cycle containing digit 1,

max 1 2 3 4 5 6 1 2 3( )( )( )...( ), where 1 , ,..., n.n n ni i i i i i i i i i iδ −= < ≤
As an example, in a 5-star, one of the antipodes of a

given node can be specified by the following permutation:

max (1)(23)(45)δ =
And for a 6-star, there are two possibilities to specify the

antipodes. For example, maxδ can be either of:

(1)(234)(56) or (12)(34)(56)

3. Node failure model

Let F be the set of faulty nodes with |F| denoted as the
number of the faulty nodes. Here, we only focus on the case
with at most |F| node failures. Links are assumed to be
perfect under this model. The objective is to find DR, i.e.
probability of having at least one operational path of the
shortest distance between u and I at the presence of node
failures. A path is operational if it passes through fault-free
intermediary nodes. From Section 2.2, the shortest distance
of paths between u and I is either c+m or c+m-2.

3.1 Case I: (1) 1π =

There are m optimal node-disjoint paths of the shortest
distance c+m, and n-m-1 non-optimal paths of distance
c+m+2 between u and I ( , ( 1) / 2 , andm n c n< ≤ −� �� �

r c m= + .
Definition 1. The union of all m optimal paths existing
between u and I is referred to as a (u, I)-container. Total
distinct nodes existing in this container is ( 1) 2k m r= − + .

Lemma 1. If | |F m< , there will be at least one optimal

operational path between u and I.
Proof: In a star network there exist m node-disjoint parallel
paths of the shortest distance r between u and I. Each faulty
node can at most belong to one path and since | |F m< , there

will be at least one operational optimal path existing
between u and I.
Corollary 1. A star network is distance reliable for pairs of
u and I, if | |F m< . Therefore it follows:

1DR = , | |F m< (1)

Theorem 1 In a container consisting of m optimal paths
between two given nodes u and I, all links incident on u (or
I) are unique. .
Proof: For any two optimal paths between u and I, which
have two given unique links “i” and “j” incident on u,
assume there is the same link “k” incident on I for these two
optimal paths. Based on the basic permutation of star
networks, the last node in these paths before reaching I will
be the same. These two paths having two links “i” and “j”
incident on u are not node-disjoint anymore. This is in
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contradiction with the conclusion in [5] stating that there are
m optimal node-disjoint paths between u and I. Q.E.D.

Theorem 1 can be further clarified by the following
example. There are four optimal node-disjoint paths in one
of the containers between [132546] and I. In Fig. 1, for the
optimal path incident on u with link “3”, there is a unique
link “5” incident on I such that the optimal path 3-2-3-5-4-5
can be constructed in this (u, I)-container. Other links in this
(u, I)-container follow the same pattern.

Figure 1. Four node-disjoint paths between two nodes.

Now we investigate DR when | |F m= . If all faults

happen to be in one of the optimal paths, one optimal fault-
free path between u and I can be guaranteed. Here we
consider the worst scenario: m faults distributions will
destroy all optimal m paths. This can only happen when all
m faults are neighbors of either u or I. The conditional
probability associated with this event is:

1

Pr(all r-paths destroyed | |

2 2
2 ... / 2 /

1 0
m

F m

m m m k k

m m m m
+

= =

� � − −� � � � � � � � � �	 	+ + + =
 ��  �  �  �  � −	 	� � � � � � � � � �� �

(2)

Above equation accounts for the 12m+ mutually-exclusive
distributions that destroy m optimal paths. Subtraction of
the probability of the occurrence of these events from 1 will
naturally give the probability of having at least one
operational r-path in the container and thus the DR. Two of
them are shown in Fig. 2. In Fig. 2(a), u has m faulty
neighbors and all neighbors of I are fault-free; Fig. 2(b) is a
general case where u has i arbitrary faulty neighbors and m-
i fault-free neighbors, and I has m-i faulty neighbors (none
of them is in the path having any faulty neighbors of u) and
i fault-free neighbors (each of them is in the path having
one of faulty neighbors of u).

Figure 2. Two fault distributions.

In reality the likelihood of having all r-paths failed due
to node failures is very small. The probability of having at
least one optimal path when |F|=m are presented in Table 1.
In our experiments, we only consider the case with maximal
m and c. The first column is the dimension of star network,
the second and third ones are values for m and c, the fourth
one is the shortest distance, the fifth one is total nodes in the
container except u and I, and the last column is the
probability of existing at least one optimal path between u
and I, separately. For example, the existence of at least one
optimal path between u and I can be assured when the
shortest distance between two given nodes is larger than 7.
This is can be visualized in Fig. 3.

Table 1. Prob. of destroying all r-paths when |F| = m.

Table 2. Prob. of destroying all r-paths when |F| = c.

3.2 Case II: (1) 1π ≠

The container under this case has c optimal paths of the
shortest distance c+m-2, m-c-1 paths of distance c+m, and
n-m paths of distance c+m+2 between u and I

(
2

, , and 2nm n c r c m� �≤ ≤ = + −� � ) with ( 1) 2k c r= − +

distinct nodes in one (u, I)-container.
There will be at least one operational path between u

and I if |F|<c. Further, since nodes are equally likely to fail,
it is possible to have one operational path between u and I
even when |F|<c.

Now we investigate DR when |F|=c. The conditional
probability associated with this event is:

1

Pr(all r-paths destroyed | |

2 2
2 ... / 2 /

1 0
c

F c

c c c k k

c c c c
+

= =

� � − −� � � � � � � � � �	 	+ + + =
 ��  �  �  �  � −	 	� � � � � � � � � �� �

(3)

n
max.

m
max.

c
r

# of nodes
in container

Prob. having at least
one optimal path

4 3 1 4 9 0.80952381
5 4 2 6 20 0.993395253
6 5 2 7 30 0.999550896
7 6 3 9 48 0.999989569
8 7 3 10 63 0.999999537
9 8 4 12 88 0.999999992

10 9 4 13 108 1

n
max.

m
max.

c
r

# of nodes
in container

Prob. having at least
one optimal path

4 4 2 4 10 0.822222222
5 5 2 5 12 0.878787879
6 6 3 7 24 0.992094862
7 7 3 8 27 0.994529915
8 8 4 10 44 0.999764274
9 9 4 11 48 0.999835543
10 10 5 13 70 0.999994712
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These 12c+ mutually-exclusive distributions are similar to
Case I except different number of node-disjoint paths of the
shortest distance. The probability of existing at least one
optimal path with the increase of the shortest distance
between two given nodes when |F|=c is shown in Table 2.
From Fig. 3, it can be concluded that the existence of at
least one optimal path between u and I can be assured when
the shortest distance is larger than 10.

3.3 Special case: antipode reliability

a. Stochastic model

Determinations of DR when |F| is greater than the
number of node-disjoint paths, is difficult due to the
numerous possible distributions. Under this circumstance,
and for a given |F| obtained from the network reliability data
and its mission time, we can develop reliability expression
based on a stochastic model as follows.

In the stochastic graph model G(V, E) for the star
network Sn, the following assumptions are made:
i) Source and destination nodes are always fault-free;
ii) The operational probability of all nodes (links) are the

same and is equal to pn (pl), and
iii) Failures are independent and identically distributed.

b. Antipode reliability

Since the number of antipodes is more than one (for
n>3), the antipodal communication we are concerned about
is the communication between u and its unique basic
antipode (assuming to be I). Due to the symmetry in star
network, similar analysis can be extended to the
communication between the source node and other
antipodes. The basic antipode can be reached from the
source node by applying the following permutations:

max (1)(23)(45)...( , 1)...( 1, ), for odd n;i i n nδ = + −

nevenfor),,1)...(1,)...(56)(34)(12(

),1)...(1,)...(56)(234)(1(max

nnii

nnii

−+
−+=δ

(4)

As such, the antipodal communication can be done
concurrently according to the following sequence:

2 3 2 ... ( 1) ... ( 1) ( 1), for odd ;

2 3 4 2 ... ( 1) ... ( 1) ( 1) or

2 3 4 3 ... ( 1) ... ( 1) ( 1), for even .

i i i n n n n

i i i n n n

i i i n n n n

− − − + − − − − −
− − − − + − − − − −
− − − − + − − − − −

(5)

To have at least one operational optimal path between u
and I, two different scenarios need to be considered.

Scenario 1. When n is odd, there are a total of 1n −
disjoint paths of the shortest length of nd between u and I,

( (1) 1, 1, ( -1) / 2, 3( 1) / 2 ).nm n c n r c m n dπ = = − = = + = − =� �� �

Paths distributions can be verified by the following
example. For example, there are 6 node-disjoint paths
between u and I when n=7. Total six disjoint paths can be
formulated based on the following permutations:

(1) 2 3 2 4 5 4 6 7 6

(2) 3 2 4 5 4 6 7 6 3

(3) 4 5 4 6 7 6 2 3 2

(4) 5 4 6 7 6 2 3 2 5

(5) 6 7 6 4 5 4 2 3 2

(6) 7 6 4 5 4 2 3 2 7

− − − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −

A Boolean technique for the reliability evaluation starts
with a sum of products expression for min-paths or cutsets
and converts it into an equivalent sum of disjoint products
(SDP) expression [9]. In the SDP form, an UP or success
(DOWN or failure) state of a node is replaced by its
reliability pn or (1- pn), and the Boolean sum (product) by
the arithmetic sum (product). In other words, the SDP
expression is interpreted directly as an equivalent
probability expression of symbolic reliability. Let P1, P2 , …
, Ph be all r-paths between u and I, (note that h = m-1).
Then the SDP expression is obtained as follows:

11121 ...... −+++ hh PPPPPP (6)

where jP , denotes DOWN events of path Pj. The

probability of UP (operational) for the ith term 11... −ii PPP can

be evaluated using the conditional probability and the
standard Boolean operations. It has been shown that the
reliability evaluation for star networks with non-disjoint
paths is NP-hard [4]. Clearly, for the same reason, the
determination of DR is also intractable. Thus, we attempt to
do the next best thing, i.e. derive bounds on DR of the node-
disjoint paths.
Lower Bound: A lower bound on DR can be obtained by
considering only the set of n-1 node-disjoint paths between
u and I with the distance r.

1 11 (1 )r n
r nDR p − −≥ − − (7)

Above expression uses the principles for a simple parallel
reliability block diagram. Note that the bound is quite
pessimistic; even for small size star networks, it renders a

Fig. 3. Prob. of existence of at least one optimal path.
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large deviation. Next section presents a tight lower bound.
Consider two nodes u and I, i.e. r = 3 when n is 3. There are
only two node-disjoint 3-paths (Fig. 4-a). The expression
for DR3 in terms of path labels can be attributed to the
following:

2 2
3 1 (1 )nDR p= − − (8)

When n=5, there are two hexagons between u and I
having four node-disjoint paths. The corresponding DR can
be obtained as follows shown in Fig. 4-b:

1 2 2 2 2
6 1 {1 [1 (1 ) ] }n nD R P P= − − − − (9)

Similarly, extending the above concept, the following
equation holds for DRr:

3
3 3 3

1 2 2

2 2

1 {1 [1 (1 ) ] }

3( 1)
1 {1 [1 (1 ) ] } ,where 3,6,9

2

r r r

c c c
r n n

n n

DR P P

n
P P r

−

−= − − − −
−= − − − − = ⋅ ⋅ ⋅

(10)

Scenario 2. When n is even, there are two possibilities:
either (1) 1π = or (1) 1π ≠ , which has been explained in

Section 2.3. Paths distribution will be similar to Scenario 1.
The lower bound for DR can be derived similarly.

4. Link failure model

This section analyzes DR under the link failure model
with at most |F| failures, where F represents the set of faulty
links. Nodes are assumed to be perfect under this model. As
with the node failures, the interest is in the system
configuration that has at least one operational optimal path
between u and I at the presence of link failures. Since DR
analysis under this model is the same as Section 3 except
the antipodal communicators, detailed analysis process is
not given here for brevity. For the antipodal
communications, path distributions will be the same as
Section 3.3. The lower bound on DR for the antipodal
communication under this model is given as follows:

3 33 2 3( 1)
1 {1 [1 (1 ) ] } , where 3,6,9

2

r r

r l
n

DR P r
−= − − − − = ⋅⋅⋅ (11)

Above expressions are only for the case where n is odd.
Similar lower bound on rDR can be derived where n is even.

5. Combined node and link failure model

In the previous two sections, we only consider either
nodes or links could fail. However, all network components
(nodes and links) can fail in reality. A combined failure
model is developed to analyze DR under the case with at
most |F| failures, where F represents the sum of faulty
nodes and links. As with node failures, the interest is in the
system that has at least one operational optimal path
between u and I at the presence of node/link failures.

5.1 Case I (1) 1π =

There are m optimal node-disjoint paths of the shortest
distance c+m, and n-m-1 non-optimal paths of distance
c+m+2 between u and I ( , ( 1) / 2 , andm n c n< ≤ −� �� �

)r c m= + . Total distinct nodes and links in this container

is 2)12( +−= rmk .

There will be at least one operational path between u
and I if |F|<m. Further, since nodes and links are equally
likely to fail, it is possible to have one operational path
between u and I even when 12|| −< mF .

Now we investigate DR when 22|| −= mF . The

conditional probability associated with this event is:

2 1 2
Pr(all r-paths destroyed | | 2 2 2 / (12)

2 2
m k

F m
m

− −� �
= − = � −� �

Table 3. Prob. of destroying all r-paths.

Table 4. Prob. of destroying all r-paths.

Above equation accounts for 2 12 m− mutually-exclusive
distributions destroying all m optimal paths. Subtraction of
the probability of occurrence of these events from 1 will

n
max.

m
max.

c
r

# of failures
in container

Prob. having at
least one optimal

path
4 4 2 4 10 0.911111111
5 5 2 5 12 0.939393939
6 6 3 7 24 0.996047431
7 7 3 8 27 0.997264957
8 8 4 10 44 0.999882137
9 9 4 11 48 0.999917772

n
max.

m
max.

c
r

# of failures
in container

Prob. having at
least one

optimal path
4 3 1 5 21 0.994653300
5 4 2 7 44 0.999981867
6 5 2 8 65 0.999999899
7 6 3 10 102 1.000000000
8 7 3 11 133 1.000000000
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Fig. 4. Hexagon construction of node-disjoint paths
between u and its basic antipode I.
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naturally give probability of having at least one operational
r-path in the container and thus the DR. In reality the
likelihood of having all r-paths failed due to the node and
link failures is very small. The probability of existing at
least one optimal path when 22|| −= mF are presented in

Table 3. Results in Fig. 4 show that chance of existing one
optimal path at the presence of node/link failures can be
assured when the shortest distance is larger than 10.

5.2 Case II: (1) 1π ≠

There will be at least one operational path between u
and I if | |F c< . Further, since nodes and links are equally

likely to fail, it is possible to have one operational path
between two given node u and I even when 12|| −< cF .

Now we investigate DR when |F| = 2c-2. The conditional
probability associated with this event is:

2 1 2
Pr(all r-paths destroyed | | 2 2 2 /

2 2
m k

F m
m

− −� �
= − = � −� �

(13)

Above equation accounts for the 2 12 c− mutually-exclusive
distributions that destroy all c optimal paths. The
probability of existing at least one optimal path when |F| =
2c-2 are presented in Table 4. Compared with Fig. 3, DR
under this model shown in Fig. 5 demonstrates higher
robustness of the star network. Even in the low shortest
distance region, star networks under the combined node and
link failure model have better tolerance to failures than the
cases where either node or link will fail. .

Fig. 4. Prob. of existence of at least one optimal path.

5.3 Special case: antipodal reliability

Antipode reliability under this model can be analyzed
similar to the node failure mode described in Section 3.3.
The lower bound on DR of the antipodal communication
(only for odd n case) is derived as follows by using the
same analysis scheme in Section 3.3:

3
3 3 32 3 2 3( 1)

1 {1 [1 (1 ) ] } , where 3,6,9
2

r r r

r n n l
n

DR P P P r
− −= − − − − = ⋅⋅⋅ (14)

6. Conclusion

A figure of merit called distance reliability has been
introduced for the reliability analysis of star interconnection
networks. This measure is appealing for the robust networks
(such as star network) since it poses stringent requirements
on the connection of two nodes; i.e. not only do two nodes
have to be connected, but the distance between them must
be the shortest. We presented a deterministic formulation of
distance reliability when the number of faults is bounded
using the combinatorial method. For each of the node, link
and node/link failure model, two different cases depending
on the relative positions of the source & destination, are
analyzed to compute DR. The antipodal reliability is also
considered as a special case to further demonstrate the fault
tolerance of star networks.
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