
Fault-Tolerant Earliest-Deadline-First Scheduling Algorithm

1Katholieke Universiteit Leuven, Electrical Engineering, Kasteelpark Arenberg 10, Leuven, Belgium
2 Sharif University of Technology, Computer Engineering Department, Azadi Ave., Tehran, Iran

 1-4244-0910-1/07/$20.00 ©2007 IEEE

Abstract
The general approach to fault tolerance in

uniprocessor systems is to maintain enough time

redundancy in the schedule so that any task instance can

be re-executed in presence of faults during the execution.

In this paper a scheme is presented to add enough and

efficient time redundancy to the Earliest-Deadline-First

(EDF) scheduling policy for periodic real-time tasks. This

scheme can be used to tolerate transient faults during the

execution of tasks. We describe a recovery scheme which

can be used to re-execute tasks in the event of transient

faults and discuss conditions that must be met by any

such recovery scheme. For performance evaluation of

this idea a tool is developed.

Keywords: Time-redundancy, real-time scheduling,

fault-tolerance, uniprocessor embedded systems, earliest-

deadline-first.

1. Introduction

Embedded systems account for major part of critical

application (space, aeronautics, nuclear…) as well as
public domain applications (automotive, consumer

electronic, etc.). The correctness of real-time embedded
systems depends not only on the results of computations,

but also on the time instants at which these results

become available [1, 18].
One important issue in real-time embedded systems is

the scheduling of tasks in these systems. Modern real-

time scheduling research has mostly concentrated on
generating efficient algorithms for guaranteeing that tasks

meet their deadlines without considering faults.

Several studies in the last three decades have
concluded that transient faults are significantly more

frequent than permanent faults [3, 4, 5, 8, 19]. In [19],
measurement showed that transient faults are 30 times

more frequent than permanent faults, while in [8], 83% of

all faults were determined to be transient or intermittent.

Due to the high occurrence of transient faults in some
applications, and because hardware redundancy can be

used to tolerate permanent faults in embedded real-time

systems [12, 14], we consider only the problem of
transient and intermittent faults in this paper.

Transient faults in real-time systems are generally

tolerated using time redundancy, which involves the retry
or re-execution of any task running during the occurrence

of transient faults [6, 7, 9, 13, 16]. Moreover, this is a

relatively inexpensive method of providing fault-
tolerance in real-time embedded systems. Several studies

have done for using time redundancy in embedded real-
time systems for tolerating faults. Pandya and Malek in

[15] have used time redundancy for tolerating a single

fault. In the event of faults, all unfinished tasks are re-
executed. In [16,17], authors have presented static and

dynamic allocation strategies to provide fault-tolerance.

Two algorithms have proposed to reserve time for the
recovery of periodic real-time tasks on a uniprocessor

[17]. In [2] authors have provided exact schedulability

tests for fault-tolerant task sets. In their paper, time
redundancy has employed to provide a predictable

performance in the presence of failures. However no
study has done about adding appropriate and efficient

time redundancy into the schedule, which is the main

contribution of this paper.
In recent years, Earliest- Deadline-First (EDF)

scheduling policy has been used to schedule real-time

tasks in variety critical applications. However, EDF does
not provide mechanisms for managing time redundancy,

so that real-time tasks will complete within their

deadlines even in the presence of faults. The goal of this
paper is to add appropriate and efficient time redundancy

to the EDF scheduling policy for schedule periodic and
preemptive tasks.

It is clear that more tasks are scheduled if less time

redundancy is added. However in spite of this advantage,
less number of tasks can be recovered (more tasks are

missed their deadline). In contrast, if more time

Hakem Beitollahi1

Hakem.Beitollahi@esat.kuleuven.be

Seyed Ghassem Miremadi2

Miremadi@sharif.edu
Geert Deconinck1

Geert.Deconinck@esat.kuleuven.be

redundancy is added into the schedule, fewer tasks are
lost while less number of tasks can be scheduled. In fact

for any pair of average task utilization and mean time to

failure (, MTTF) the efficient time redundancy is added
to the schedule. An event driven simulator is designed

and implemented for performance evaluation. Moreover,

this scheme can be applied to any non-fault-tolerant
scheduling policy for preemptive and periodic tasks (e.g.,

Rate-Monotonic (RM) scheduling policy).
The rest of the paper is organized as follows: section 2

describes the task, system and faults model. Section 3

discusses adding time redundancy into the schedule. In
section 4, we calculate efficient time redundancy for the

EDF policy. Section 5 discusses our tool. We present

simulation results in section 6 and followed by the
conclusion in section 7.

2. Task, System and Faults Model

Tasks are periodic and preemptive. The tasks are
eligible for execution at the beginning of the period, and

have to complete before the end of the period. A set of n

tasks n,...,, 21 are given with),,,(iiiii Tdrc

for ni ,...,2,1 where ic , ii dr , and iT are the

computation time, release time, deadline and period of

task i , respectively. The tasks are independent, that is,

have no precedence constraints. The utilization iu of i

is ii Tc / .

Only uniprocessor systems are considered. The total

utilization of the system is the fraction of processor time
spent in the execution of the task set and is equal to

n

i
iuU

1
. The cost of preemption is assumed to be

negligible.

Faults are assumed to be transient or intermittent. Only

single task is affected by fault and so faults can be
tolerated by re-executing. Fault-detection mechanism

such as acceptance test is used to detect faults [10].

3. Fault-Tolerance by Using Time

redundancy

The general approach to fault-tolerance in

uniprocessor systems is to make sure there is enough
slack in the schedule to allow for re-executing of any

task instance, if a fault occurs during its execution
[13]. Tasks are executed following the usual EDF

scheme if no faults occur (the slack is not used).

However, when a fault occurs in a task, a recovery
scheme is used to re-execute that task. In the EDF

policy with utilization bound less than 100%, there is

a natural amount of slack in uniprocessor. But this
natural slack does not enough for re-executing faulty

tasks. To have one efficient fault-tolerant mechanism
in the schedule it is necessary that additional slack

time is added to the schedule. The insertion of slack

and recovery mechanism is called the FT scheme.
The recovery mechanism ensures that the reserved

slack can be used for task re-executing before its

deadline, without causing other tasks to miss
deadlines. When fault is detected at the end of some

task r , the system goes into recovery mode. In this

mode, r will re-execute at its own priority. During

recovery mode, any instance of a task that has a

priority than that of r and a deadline greater than

rd will be delayed until recovery is complete.

The added slack is distributed throughout the

schedule such that the amount of slack available over
an interval of time (L) is proportional to the length of

the interval (enough to enable the re-execution of any

task). The ratio of slack S available over an interval
of time L is thus constant and can be imagined to be

the utilization of a backup task B, where S/L is the
backup utilization. Formally, if the backup utilization

is BU , and the backup time (slack time) available

during an interval L is denoted by LB , then

LUB BL (3.1)

One important issue here is calculated schedulability

bound for fault-tolerant EDF policy. Liu and Layland

in [11] have shown that, for a non-fault-tolerant EDF
policy, any set of n tasks with a total utilization

below than one is schedulable on uniprocessor
system. On other words scheduling of tasks feasible

if and only if
n

i
iuU

1
1 . However in fault-

tolerant EDF with additional slack time the

schedulability bound must be less than above bound.

A straightforward way of computing a shcedulability
bound for fault-tolerant EDF scheduling policy

would be to decrease the bound by BU , i.e.,

BLLEDFFT UUU , here Liu and Layland bound

in [11] is denoted by LLU . So the schedulability

bound for fault-tolerant EDF is BU1 .

BEDFFT UboundnUtilizatio 1_ (3.2)

 3.1. Conditions for Recovery:

A recovery scheme that ensures the re-execution

of any task after a fault has been detected must

satisfy the following conditions:

[C1]: There should be sufficient slack for every

instance of each task to re-execute.

[C2]: When a task re-executes, it should not cause
any other task to miss its deadline.

[C1] ensures the availability of sufficient slack for

a task to re-execute, and [C2] ensures that all tasks
meet their deadlines even when a high priority task

needs to re-execute.

Example: consider two tasks with

,2,5,2 2111 cdTc 822 dT . The two

utilizations are 4.05/2 and

25.08/2 respectively. Assuming that backup

utilization is 0.2, i.e., 2.0BU . (3.2), gives us a

bound of 0.8 while the sum of utilizations of the task

is 0.65. Since 8.065.0
1 EDFFT

n

i
i UuU ,

the tasks are schedulable. In figure 1.a no fault has

occurred while the tasks are executed. In figure 1.b a

fault has occurred when 12 (12 denotes the second

period of 1) was being executed and has been

detected at time 7, then recovery scheme has been

called, i.e., new copy of 1 has been added to the

schedule (figure 1.c), and has been completed using
the slack time (time redundancy).

4. Determining Efficient Value of Time

Redundancy

Increasing the value of time redundancy has a
considerable impact on the efficiency of scheduling

and recovering tasks. In this section we determine

appropriate and efficient value of time redundancy in
the system for any pair of average task utilization ()

and mean time to fault (MTTF), i.e., any pair of (,

MTTF). To facilitate the discussion, the following
variables are defined:

BU : the backup utilization of the system.

MTTF: the mean time to failure of the system.

: the average task utilization.

Schedulability_value: the number of tasks that

can be scheduled.

Lost_tasks_value: the number of task instances

lost as a result of faults.

: the weight of Lost_tasks_value, which

indicate the importance of Lost_tasks_value.

: the weight of Schedulability_value, which

indicate the importance of Schedulability_value.
In order to obtain an efficient value of time

redundancy, we need only to obtain an appropriate value

of BU . So the main goal of this section is to determine

efficient value of BU for any pair of (, MTTF).

To solve the problem, we define the Gain variable that

depends on Schedulability_value and Lost_tasks_value,
and can be calculated using the following equation:

valuetasksLostvaluelitySchedulabiGain ___

 (4.1)

In systems where the cost of losing a task instance is
negligible, the value of is 0. For these systems, the

Figure 1. (a) tasks are scheduled in not present faults, (b) 12 has encountered with a fault , (c) the

recover scheme has been called and 12 has been re-executed using time-redundancy

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 140

11 21 12
'
12 1322

1 2 3 4 5 6 7 8 9 10 11 12 13 140

11 21 12 22

(a)

13

1 2 3 4 5 6 7 8 9 10 11 12 13 140

11 21 12 1322

fault

(b)

Gain variable only depends on how many tasks are
scheduled, so the value of is considered to be high. On

the other hand, when the gain of losing a task instance is

high, the value of is much higher than the value of . In
this case both value of and are important and must be

determined correctly. In the case of the systems that the

Schedulabilty_value as important as Lost_tasks_value, it
is better to determine an equal value for and , i.e.,

1 .

The ultimate goal of the system is to maximize

Schedulabilty_value and to minimize Lost_tasks_value.
In other words, the Gain variable should to be maximized.

If chart of the Gain variable is plotted for different values

of BU , MTTF, and , we get the desired point where the

Gain is maximized. Based on this point, the appropriate

value of BU is determined. For example, if the task set

has of 10% while MTTF is 10 and 1 , then the

value of BU , for which the Gain variable is maximized,

is 15%. Such graphs can be generated for any known task

set, and using fault injection, the appropriate value of BU

can be determined.

In the simulation results section for different cases, the

value of BU is determined.

5. The Tool

Our idea has been evaluated by a simulator that has been

written in the C++ programming language. An event-
driven simulator is designed and implemented. A queue

of events is maintained by the simulator and the events

are handled according to their order. The simulator is
sufficiently modular that different modules can be

plugged in for various events to simulate a new
scheduling, recovery or fault-tolerance policy. The

simulation works as follows:

Scheduling of tasks: The Earliest-Deadline-First

(EDF) scheduling policy is used to schedule tasks.

Fault injection: Faults are injected into the schedule

while tasks are running. Faults are generated based
on a value of MTTF specified by the user.

Fault recovery: The recovery scheme used for
tolerating transient faults.

The following events are used to trigger an action:

Task arrival: The task is scheduled in the system.

Task begin: This is a time at which the task starts
running.

Task end: This is the event when a task finishes
running. A flag is checked to determine if faults have

occurred during the execution of this task. If faults

have occurred, then a recovery function is called.

Injected fault: A flag is raised to indicate that a fault

has occurred.

The pseudo code of the simulator looks as following:

Function FT-EDF (task set , Start_time,

End_time) /* task set is input */

/* n,...,, 21 and),,,(iiiii Tdrc */

/* Start_time: indicate the start time of simulation. */

/* End_time: indicate the end time of simulation. */

Generate_Tasks(BU ,);

Generate_faults(end_time, MTTF);

Get_nexet_event();

time_current = Start_time.

/* time_current : indicate the current time in the

simulator*/

While (timeEndcurrenttime __) Begin

 Case (next_event): Begin

 TASK ARRIVE:

schedule_task_with_EDF_policy();

 TASK BEGIN : task_status = RUNNING;

 TASK END :

 If (fault_occurred== TRUE) Then

 Fault_recovery();

 FAULT : fault_occured = TRUE;

 END Case;

 Display_queue();

Increment time_current;

Get_next_event();

END While;

Analysis ();

END Function FT-EDF

6. Simulation Results

In this section, we present simulation results to

determine efficient value of BU for any pair of

average task utilization and mean time to failure (,
MTTF).

A set of periodic tasks is generated for every run of

the simulation. On each task set, iT is generated

following a uniform distribution with

10010 iT and ic is generated following a uniform

distribution in the range ii Tc 20 , where is

average task utilization.
For each result, the simulation was run 1000 times

and the individual values were averaged. Each
simulation was run for 10,000 time units First, the

effect of BU on Schedulability_value is studied. As

BU increased, the Schedulability_value is decreased.

Figure 2 shows the Schedulability_value of the task

sets using different values of .

Next, the effect of BU on Lost_tasks_value is

studied. As BU is increased, the Lost_tasks_value is

decreased. In Figure 3 and 4 the percentage of task

instances lost due to faults for different values of
MTTF are shown. For a higher failure rate (smaller

MTTF), the larger number of incoming task instances

are lost. In fact the number of lost tasks decreases

monotonically as BU increases. As the failure rate

decreases (larger MTTF), the number of lost tasks are

decreases.

After observing the effect of BU on

Schedulability_value and Lost_tasks_value, now

appropriate value of BU can be determined. Figures

5 and 6 show the Gain variable of the system for two

different value of , = 0.1 and = 0.2.

Determining the appropriate value of BU for four

value of is measured (= 0.05, = 0.1, = 0.15,
= 0.2), but for space restriction in this paper only

=0.1 (range 0 to 0.2) and =0.2(range 0 to 0.4) are

shown in figures.

Table 1 shows the appropriate value of BU for

four pair of and MTTF.

MTTF=10 MTTF=20 MTTF=40 MTTF=80

 = 0.2 0.25 0.2 0.1 0.05

 = 0.15 0.2 0.15 0.1 0.05

 = 0.1 0.15 0.1 0.05 0.05

 = 0.05 0.1 0.05 0.05 0.05

Table 1. Appropriate value of BU for

pairs of (, MTTF)

Figure 6. Gain variable for = 0.1

-15

-10

-5

0

5

10

15

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

UB

G
a
in

 v
a
ri
a
b
le

M TTF=10 M TTF=20

M TTF=40 M TTF=80

Figure 5. Gain variable for = 0.2

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

UB

G
a
in

 v
a
ri
a
b
le

M TTF=10 M TTF=20

M TTF=40 M TTF=80

Figure 4. Percentage of faulty tasks (failure rate) for

four different values of MTTF (= 0.1)

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

UB

p
e
rc

e
n
ta

g
e
 o

f
fa

u
lty

ta
s
k
s
 (

fa
ilu

re
 r

a
te

)

M TTF=10 M TTF=20

M TTF=40 M TTF=80

Figure 3. Percentage of faulty tasks (failure rate) for
four different values of MTTF (= 0.2)

0

5

10

15

20

25

30

35

40

45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

UB

p
e
rc

e
n
ta

g
e
 o

f
fa

u
lty

 t
a
s
k
s

(f
a
ilu

re
 r

a
te

)

M TTF=10 M TTF=20

M TTF=40 M TTF=80

Figure 2. Average number of tasks scheduled

for different values of as function of BU

0

2

4

6

8

10

12

14

16

18

20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

UB

a
v
e
ra

g
e
 t
a
s
k
s
 s

c
h
e
d
u
le

d

=0.05 =0.1

=0.15 =0.2

7. Conclusions

In this paper, an approach is studied for providing fault

tolerance in the Earliest-Deadline-First (EDF) scheduling
policy. Here, a scheme is presented to add appropriate

and efficient time redundancy to the EDF scheduling
policy for periodic real-time tasks. This scheme is added

in order to tolerate transient faults. A recover mechanism

is described to re-execute tasks in the event of faults. The
effect of time redundancy is analyzed on both

schedulability and recovery. Finally for sixteen pair of

average task utilization and mean time to failure an
appropriate and efficient value of time redundancy is

determined. For performance evaluation an event-driven

simulator is designed and implemented.

References

[1] R. Al-Omari, A. K. Somani, G. Manimaran, “Efficient

overloading techniques for primary-backup scheduling in

real-time systems”, Journal of Parallel and Distributing

Computing, 64 (2004) 629–648, March. 2004.

[2] A. Burns, R. Davis, and S. Punnekkat, “Feasibility Analysis

of Fault-Tolerant Real-Time Task Sets”, in 8th Euromicro

Workshop on Real-Time Systems, Jun 1996.

[3] A. Burns, S. Punnekkat, L. Stringini, D.R. Wright,

 “Probabilistic Scheduling Guarantees for Fault-Tolerant

 Real-Time Systems”, Proceeding of the 7th International

 Working Conference on Dependable Computing for

 Critical Applications, Jan 1999.

[4] G. Buttazzo, “Hard Real-Time Computer Systems:

 Predictable Scheduling Algorithms and Applications,

 Kluwer Academic Publishers, 1997.

[5] X.Castillo, S.R.McConnel, and D.P. Siewiorek, “Derivation

and Caliberation of Transient Error Reliability Model”,

IEEE Trans. On Computers, C-31(7): 658-671, July 1982.

[6] S.Gosh, R. Melhem, and D.Mosse, “Enhancing Real-Time

Schedules to Tolerate Transient Faults”, In Real-Time

Systems Symposium, Dec 1995.

[7] S. Ghosh, R.Melhem and D.Mosse, “Fault-Tolerant Rate-

 Monotonic Scheduling”, Journal of Real Time Systems,

 15(2): 149-181, Sept 1998.

[8] R.K. Iyer, D.J. Rossetti, and M.C. Hsueh, “Measurement and

Modeling of Computer Reliability as Affected by System

Activity”, ACM Trans. On Computer System, 4(3):214-237,

Aug. 1986.

[9] C.M. Krishna and A.D. Singh,” Reliability of

Checkpointed Real-Time Systems Using Time

Redundancy”, IEEE Trans. On Reliability, 42(3):427-435,

Sept 1993.

[10] M. Lyu (ed), “Software Fault Tolerance”, John Wiley &

 Sons, New York, 1995.

[11] C.Liu and J.Layland, “Scheduling algorithms for

Multiprogramming in a Hard Real-Time Environment”,

Journal of the ACM, vol. 20, no.1, pp. 46-61, January

1973.

[12] D. Mosse, R.Melhem, and S.Ghosh, “Analysis of a Fault-

Tolerant Multiprocessor Scheduling Algorithm”, In 24th

int,l Symposium on Fault-Tolerant Computing, Austian,

TX, June 1994. IEEE.

[13] D. Mossé, R. G. Melhem, S. Ghosh, “A Nonpreemptive

Real-Time Scheduler with Recovery from Transient Faults

and Its Implementation”, IEEE Trans. Software Eng.,

vol.29, no.8, pp. 752-767 , 2003.

 [14] Y.oh, “The Design and Analysis of Scheduling Algorithms

for Real-Time and Fault-Tolerance Computer Systems”,

Ph.D. Thesis, University of Virginia, May 1994.

[15] M.Pandya and M. Malek, “Minimum Achievable

Utilization for Fault-tolerant Processing of Periodic Tasks”

Technical Report TR 94-07, Univ of Texas at Austin, Dept

of Computer Science, 1994.

[16] S. Ramos-Thuel, “Enhancing Fault Tolerance of Real-Time

Systems through Time Redundancy. Ph.D. Thesis, Carnigie

Mellon University, May 1993.

[17] S. Ramos- Thuel and J.K. Strosnider, “Scheduling Fault

Recovery Operations for Time-Critical Applications”, In

4th IFIP Conference on Dependable Computing for Critical

Applications, Jan 1995.

[18] K.G.Shin and P.Ramanathan, “Real-time computing: A

new discipline of computer science and engineering”, proc.

IEEE, vol.82, no.1, pp.6-24, jan. 1994.

[19] D.P. Siewiorek, V. Kini, H. Mashburn, S, McConnel, and

M.Tsao, “A case Study of C.mmp, CM*, and C.vmp: part 1

– Experiences with Fault Tolerance in Multiprocessor

Systems. Proceedings of the IEEE, 66(10):1178-1199, Oct.

1978.

