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Abstract 
The general approach to fault tolerance in 

uniprocessor systems is to maintain enough time 

redundancy in the schedule so that any task instance can 

be re-executed in presence of faults during the execution. 

In this paper a scheme is presented to add enough and 

efficient time redundancy to the Earliest-Deadline-First 

(EDF) scheduling policy for periodic real-time tasks. This 

scheme can be used to tolerate transient faults during the 

execution of tasks. We describe a recovery scheme which 

can be used to re-execute tasks in the event of transient 

faults and discuss conditions that must be met by any 

such recovery scheme. For performance evaluation of 

this idea a tool is developed.  

Keywords: Time-redundancy, real-time scheduling, 

fault-tolerance, uniprocessor embedded systems, earliest-

deadline-first. 

1. Introduction 

Embedded systems account for major part of critical 

application (space, aeronautics, nuclear…) as well as 
public domain applications (automotive, consumer 

electronic, etc.). The correctness of real-time embedded 
systems depends not only on the results of computations, 

but also on the time instants at which these results 

become available [1, 18].  
One important issue in real-time embedded systems is 

the scheduling of tasks in these systems. Modern real-

time scheduling research has mostly concentrated on 
generating efficient algorithms for guaranteeing that tasks 

meet their deadlines without considering faults.  

Several studies in the last three decades have 
concluded that transient faults are significantly more 

frequent than permanent faults [3, 4, 5, 8, 19]. In [19], 
measurement showed that transient faults are 30 times 

more frequent than permanent faults, while in [8], 83% of 

all faults were determined to be transient or intermittent. 

Due to the high occurrence of transient faults in some 
applications, and because hardware redundancy can be 

used to tolerate permanent faults in embedded real-time 

systems [12, 14], we consider only the problem of 
transient and intermittent faults in this paper.  

Transient faults in real-time systems are generally 

tolerated using time redundancy, which involves the retry 
or re-execution of any task running during the occurrence 

of transient faults [6, 7, 9, 13, 16]. Moreover, this is a 

relatively inexpensive method of providing fault-
tolerance in real-time embedded systems. Several studies 

have done for using time redundancy in embedded real-
time systems for tolerating faults. Pandya and Malek in 

[15] have used time redundancy for tolerating a single 

fault. In the event of faults, all unfinished tasks are re-
executed. In [16,17], authors have presented static and 

dynamic allocation strategies to provide fault-tolerance. 

Two algorithms have proposed to reserve time for the 
recovery of periodic real-time tasks on a uniprocessor 

[17]. In [2] authors have provided exact schedulability 

tests for fault-tolerant task sets. In their paper, time 
redundancy has employed to provide a predictable 

performance in the presence of failures. However no 
study has done about adding appropriate and efficient 

time redundancy into the schedule, which is the main 

contribution of this paper.  
In recent years, Earliest- Deadline-First (EDF) 

scheduling policy has been used to schedule real-time 

tasks in variety critical applications. However, EDF does 
not provide mechanisms for managing time redundancy, 

so that real-time tasks will complete within their 

deadlines even in the presence of faults. The goal of this 
paper is to add appropriate and efficient time redundancy 

to the EDF scheduling policy for schedule periodic and 
preemptive tasks.    

It is clear that more tasks are scheduled if less time 

redundancy is added. However in spite of this advantage, 
less number of tasks can be recovered (more tasks are 

missed their deadline). In contrast, if more time 
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redundancy is added into the schedule, fewer tasks are 
lost while less number of tasks can be scheduled. In fact 

for any pair of average task utilization and mean time to 

failure ( , MTTF) the efficient time redundancy is added 
to the schedule. An event driven simulator is designed 

and implemented for performance evaluation. Moreover, 

this scheme can be applied to any non-fault-tolerant 
scheduling policy for preemptive and periodic tasks (e.g., 

Rate-Monotonic (RM) scheduling policy).  
The rest of the paper is organized as follows: section 2 

describes the task, system and faults model. Section 3 

discusses adding time redundancy into the schedule. In 
section 4, we calculate efficient time redundancy for the 

EDF policy. Section 5 discusses our tool.  We present 

simulation results in section 6 and followed by the 
conclusion in section 7.       

2. Task, System and Faults Model 

Tasks are periodic and preemptive. The tasks are 
eligible for execution at the beginning of the period, and 

have to complete before the end of the period. A set of n 

tasks n,...,, 21  are given with ),,,( iiiii Tdrc

for ni ,...,2,1  where ic , ii dr ,  and iT  are the 

computation time, release time, deadline and period of 

task i , respectively. The tasks are independent, that is, 

have no precedence constraints. The utilization iu  of i

is ii Tc / .  

Only uniprocessor systems are considered. The total    

utilization of the system is the fraction of processor time 
spent in the execution of the task set and is equal to 

n

i
iuU

1
. The cost of preemption is assumed to be 

negligible. 

Faults are assumed to be transient or intermittent. Only 

single task is affected by fault and so faults can be 
tolerated by re-executing.  Fault-detection mechanism 

such as acceptance test is used to detect faults  [10].   

3. Fault-Tolerance by Using Time   

redundancy

The general approach to fault-tolerance in 

uniprocessor systems is to make sure there is enough 
slack in the schedule to allow for re-executing of any 

task instance, if a fault occurs during its execution 
[13].  Tasks are executed following the usual EDF 

scheme if no faults occur (the slack is not used).  

However, when a fault occurs in a task, a recovery 
scheme is used to re-execute that task. In the EDF 

policy with utilization bound less than 100%, there is 

a natural amount of slack in uniprocessor. But this 
natural slack does not enough for re-executing faulty 

tasks. To have one efficient fault-tolerant mechanism 
in the schedule it is necessary that additional slack 

time is added to the schedule.  The insertion of slack 

and recovery mechanism is called the FT scheme. 
The recovery mechanism ensures that the reserved 

slack can be used for task re-executing before its 

deadline, without causing other tasks to miss 
deadlines.  When fault is detected at the end of some 

task r , the system goes into recovery mode. In this 

mode, r will re-execute at its own priority. During 

recovery mode, any instance of a task that has a 

priority than that of r and a deadline greater than 

rd will be delayed until recovery is complete.  

The added slack is distributed throughout the 

schedule such that the amount of slack available over 
an interval of time (L) is proportional to the length of 

the interval (enough to enable the re-execution of any 

task). The ratio of slack S available over an interval 
of time L is thus constant and can be imagined to be 

the utilization of a backup task B, where S/L is the 
backup utilization. Formally, if the backup utilization 

is BU  , and the backup time (slack time) available 

during an interval L is denoted by LB , then  

LUB BL        (3.1) 

One important issue here is calculated schedulability 

bound for fault-tolerant EDF policy. Liu and Layland  

in [11] have shown that, for a non-fault-tolerant EDF 
policy, any set of n  tasks with a total utilization 

below than one is schedulable on uniprocessor 
system. On other words scheduling of tasks feasible 

if and only if 
n

i
iuU

1
1 . However in fault-

tolerant EDF with additional slack time the 

schedulability bound must be less than above bound. 

A straightforward way of computing a shcedulability 
bound for fault-tolerant EDF scheduling policy 

would be to decrease the bound by BU , i.e., 

BLLEDFFT UUU , here Liu and Layland bound 

in [11] is denoted by LLU . So the schedulability 

bound for fault-tolerant EDF is BU1 .

BEDFFT UboundnUtilizatio 1_  (3.2) 

 3.1. Conditions for Recovery: 

A recovery scheme that ensures the re-execution 

of any task after a fault has been detected must 

satisfy the following conditions: 



[C1]: There should be sufficient slack for every 

instance of each task to re-execute. 

[C2]: When a task re-executes, it should not cause 
any other task to miss its deadline.  

[C1] ensures the availability of sufficient slack for 

a task to re-execute, and [C2] ensures that all tasks 
meet their deadlines even when a high priority task 

needs to re-execute.  

Example: consider two tasks with 

,2,5,2 2111 cdTc 822 dT . The two 

utilizations are 4.05/2 and 

25.08/2 respectively. Assuming that backup 

utilization is 0.2, i.e., 2.0BU . (3.2), gives us a 

bound of 0.8 while the sum of utilizations of the task 

is 0.65. Since 8.065.0
1 EDFFT

n

i
i UuU ,

the tasks are schedulable. In figure 1.a no fault has 

occurred while the tasks are executed. In figure 1.b a 

fault has occurred when 12 ( 12 denotes the second 

period of 1 ) was being executed and has been 

detected at time 7, then recovery scheme has been 

called, i.e., new copy of 1 has been added to the 

schedule (figure 1.c), and has been completed using 
the slack time ( time redundancy). 

4. Determining Efficient Value of Time 

Redundancy  

Increasing the value of time redundancy has a 
considerable impact on the efficiency of scheduling 

and recovering tasks. In this section we determine 

appropriate and efficient value of time redundancy in 
the system for any pair of average task utilization ( )

and mean time to fault (MTTF), i.e., any pair of ( ,

MTTF).  To facilitate the discussion, the following 
variables are defined: 

BU : the backup utilization of the system.  

MTTF: the mean time to failure of the system. 

: the average task utilization.  

Schedulability_value: the number of tasks that 

can be scheduled. 

Lost_tasks_value: the number of task instances 

lost as a result of faults. 

: the weight of Lost_tasks_value, which 

indicate the importance of Lost_tasks_value. 

: the weight of Schedulability_value, which 

indicate the importance of Schedulability_value. 
In order to obtain an efficient value of time 

redundancy, we need only to obtain an appropriate value 

of BU . So the main goal of this section is to determine 

efficient value of BU  for any pair of ( , MTTF).  

To solve the problem, we define the Gain variable that 

depends on Schedulability_value and Lost_tasks_value, 
and can be calculated using the following equation: 

                         

valuetasksLostvaluelitySchedulabiGain ___

    (4.1) 

In systems where the cost of losing a task instance is 
negligible, the value of  is 0.  For these systems, the 

Figure 1. (a) tasks are scheduled in not present faults, (b) 12 has encountered with a fault , (c) the 

recover scheme has  been called and  12   has been re-executed using time-redundancy 

(c) 
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Gain variable only depends on how many tasks are 
scheduled, so the value of  is considered to be high. On 

the other hand, when the gain of losing a task instance is 

high, the value of  is much higher than the value of . In 
this case both value of  and  are important and must be 

determined correctly. In the case of the systems that the 

Schedulabilty_value as important as Lost_tasks_value, it 
is better to determine an equal value for  and , i.e., 

1 .

The ultimate goal of the system is to maximize 

Schedulabilty_value and to minimize Lost_tasks_value.  
In other words, the Gain variable should to be maximized. 

If chart of the Gain variable is plotted for different values 

of BU , MTTF, and , we get the desired point where the 

Gain is maximized. Based on this point, the appropriate 

value of BU  is determined. For example, if the task set 

has  of 10% while MTTF is 10 and 1 , then the 

value of BU , for which the Gain variable is maximized, 

is 15%. Such graphs can be generated for any known task 

set, and using fault injection, the appropriate value of BU

can be determined. 

In the simulation results section for different cases, the 

value of BU  is determined.  

5. The Tool 

Our idea has been evaluated by a simulator that has been 

written in the C++ programming language. An event-
driven simulator is designed and implemented. A queue 

of events is maintained by the simulator and the events 

are handled according to their order. The simulator is 
sufficiently modular that different modules can be 

plugged in for various events to simulate a new 
scheduling, recovery or fault-tolerance policy. The 

simulation works as follows: 

Scheduling of tasks: The Earliest-Deadline-First 

(EDF) scheduling policy is used to schedule tasks. 

Fault injection: Faults are injected into the schedule 

while tasks are running. Faults are generated based 
on a value of MTTF specified by the user.  

Fault recovery: The recovery scheme used for 
tolerating transient faults. 

The following events are used to trigger an action: 

Task arrival: The task is scheduled in the system. 

Task begin: This is a time at which the task starts 
running.  

Task end: This is the event when a task finishes 
running. A flag is checked to determine if faults have 

occurred during the execution of this task. If faults 

have occurred, then a recovery function is called. 

Injected fault: A flag is raised to indicate that a fault 

has occurred. 

The pseudo code of the simulator looks as following: 

Function   FT-EDF ( task set , Start_time, 

End_time)           /* task set is input  */

/* n,...,, 21 and ),,,( iiiii Tdrc  */ 

/* Start_time: indicate the start time of simulation. */ 

/* End_time: indicate the end time of simulation.  */ 

Generate_Tasks( BU ,  ); 

Generate_faults(end_time, MTTF); 

Get_nexet_event(); 

time_current = Start_time. 

/* time_current : indicate the current time in the 

simulator*/  

While ( timeEndcurrenttime __ ) Begin

           Case ( next_event ): Begin

                        TASK ARRIVE:             

schedule_task_with_EDF_policy(); 

                       TASK BEGIN  : task_status = RUNNING; 

                      TASK END     :  

                                   If ( fault_occurred== TRUE) Then

                                                           Fault_recovery(); 

                                             

                    FAULT      :  fault_occured = TRUE; 

          END Case;

 Display_queue(); 

Increment time_current; 

Get_next_event(); 

END While;

Analysis ();  

END Function FT-EDF

6. Simulation Results 

In this section, we present simulation results to 

determine efficient value of BU  for any pair of 

average task utilization and mean time to failure ( ,
MTTF).  

A set of periodic tasks is generated for every run of 

the simulation. On each task set, iT  is generated 

following a uniform distribution with 

10010 iT and ic is generated following a uniform 

distribution in the range ii Tc 20 , where  is 

average task utilization.    
For each result, the simulation was run 1000 times 

and the individual values were averaged. Each 
simulation was run for 10,000 time units First, the 

effect of BU  on Schedulability_value is studied. As 

BU  increased, the Schedulability_value is decreased. 

Figure 2 shows the Schedulability_value of the task 

sets using different values of .



Next, the effect of BU  on Lost_tasks_value is 

studied. As BU  is increased, the Lost_tasks_value is 

decreased. In Figure 3 and 4 the percentage of task 

instances lost due to faults for different values of 
MTTF are shown. For a higher failure rate (smaller 

MTTF), the larger number of incoming task instances 

are lost. In fact the number of lost tasks decreases 

monotonically as BU  increases. As the failure rate 

decreases (larger MTTF), the number of lost tasks are 

decreases.  

After observing the effect of BU  on 

Schedulability_value and Lost_tasks_value, now 

appropriate value of  BU  can be determined. Figures 

5 and 6 show the Gain variable of the system for two 

different value of ,  = 0.1 and  = 0.2. 

Determining the appropriate value of BU  for four 

value of  is measured (  = 0.05,  = 0.1,  = 0.15, 
= 0.2), but for space restriction in this paper only 

=0.1 (range 0 to 0.2) and =0.2(range 0 to 0.4) are 

shown in figures.  

Table 1 shows the appropriate value of BU  for 

four pair of  and MTTF. 

MTTF=10 MTTF=20 MTTF=40 MTTF=80

 = 0.2    0.25 0.2 0.1 0.05

 = 0.15 0.2 0.15 0.1 0.05

 = 0.1   0.15 0.1 0.05 0.05

 = 0.05 0.1 0.05 0.05 0.05

Table 1. Appropriate value of BU  for 

pairs of ( , MTTF) 

Figure 6. Gain variable for  = 0.1 
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Figure 5. Gain variable for  = 0.2 
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Figure 4. Percentage of faulty tasks (failure rate) for 

four different values of MTTF (  = 0.1)
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Figure 3. Percentage of faulty tasks (failure rate) for 
four different values of MTTF (  = 0.2)
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Figure 2. Average number of tasks scheduled 

for different values of  as function of BU
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7. Conclusions 

In this paper, an approach is studied for providing fault 

tolerance in the Earliest-Deadline-First (EDF) scheduling 
policy. Here, a scheme is presented to add appropriate 

and efficient time redundancy to the EDF scheduling 
policy for periodic real-time tasks. This scheme is added 

in order to tolerate transient faults. A recover mechanism 

is described to re-execute tasks in the event of faults. The 
effect of time redundancy is analyzed on both 

schedulability and recovery. Finally for sixteen pair of   

average task utilization and mean time to failure an 
appropriate and efficient value of time redundancy is 

determined. For performance evaluation an event-driven 

simulator is designed and implemented.    
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