
Dependability Modeling and Analysis in Dynamic Systems

Salvatore Distefano and Antonio Puliafito
University of Messina, Engineering Faculty,

Contrada di Dio, S. Agata, 98166 Messina, Italy.
Tel: +39 090 3977318, fax: +39 090 3977471,
Email: salvatdi[apulia]@ingegneria.unime.it

Abstract

Dependability evaluation is an important, often indis-

pensable, step in (critical) systems design and analysis pro-

cesses. The introduction of control and/or computing sys-

tems to automate processes increases the overall system

complexity and therefore has an impact in terms of depend-

ability. When a system grows, dynamic effects, not present

or manifested before, could arise or become significant in

terms of reliability/availability: the system could be affected

by common cause failures, the system components could

interfere, effects due to load sharing arise and therefore

should be considered. Moreover it is of interest to evalu-

ate redundancy and maintenance policies. In those cases it

is not possible to recur to notations as reliability block dia-

grams (RBD), fault trees (FT) or reliability graphs (RG) to

represent the system, since the statistical independence as-

sumption is not satisfied. Also more enhanced formalisms

as dynamic FT (DFT) could result not adequate to the goal.

To overcome those problems we developed a new formal-

ism derived from RBD: the dynamic RBD (DRBD). In this

paper we explain how to use the DRBD notation in system

modeling and analysis, coming inside a methodology that,

starting from the system structure, drives to the overall sys-

tem availability evaluation following modeling and analysis

phases. To do this we use an example drawn from literature

consisting of a multiprocessor distributed computing sys-

tem, also comparing our approach with the DFT one.

1 Introduction

A system is a collection of components, subsystems

and/or assemblies arranged according to a specific design

in order to achieve acceptable performance and reliability

levels. The types of components, their quantities, their qual-

ities and the manner in which they are arranged within the

1-4244-0910-1/07/$20.00 c©2007 IEEE.

system have a direct effect on the system’s reliability. The

main goal of system’s reliability study is the construction

of a model (life distribution) that represents the times-to-

failure of the entire system based on the life distributions of

the components, subassemblies and/or assemblies (“black

boxes”) from which it is composed [6].

Several are the approaches to represent and analyze sys-

tem reliability. The choice is among analytic (Markov mod-

els and derived, Petri nets, stochastic reward nets, Bayesian

networks, ...) or simulation techniques (discrete event,

Monte Carlo, ...). All of them are powerful reliability anal-

ysis methods, but, on the other hand, they are not much

“user friendly”: often it is really hard to obtain a model di-

rectly from the specifications, especially in case of complex

systems. This fact motivated the definition of specific reli-

ability/availability modeling formalisms as reliability block

diagrams (RBD) [20], fault trees (FT) [26] and reliability

graphs (RG) [21]. Although RBD, RG and FT provide a

view of the system close to the modeler, more readable and

understandable than any other formalism, they are defined

on an (heavy) assumption: the components must be statis-

tically independent. They do not provide any elements or

capabilities to model reliability interactions among compo-

nents or subsystems, or to represent system reliability con-

figuration changing, aspects conventionally identified as dy-

namic. Common examples of such relationships are: load-

sharing, standby redundancy, interferences, dependencies,

probabilistic and common mode failures. Moreover a failed

component/subsystem could be repaired (maintenance, re-

liability growth model), the system could be phased mis-

sion, In particular these remarks concern large and

complex parallel, distributed and network-centric comput-

ing systems, where different subsystems, devices or com-

ponents could interacts each other. For example load shar-

ing phenomena could affect the network availability; de-

pendability resources-optimization requirements could be

translated into maintenance and/or redundancy schemes and

policies; some interference or inter-dependence between

devices could arise (wireless devices, sensors, ...); common

1

cause failures could group electric devices, in case of power

jumps or sudden changes of temperature (melting point of

transistors, ...).

These arguments awakened the scientific community to

the need of new formalisms as the dynamic fault trees

(DFT) [4, 12]. DFT extend static FT to enable model-

ing of time dependent failures, introducing new dynamic

gates and elements. DFT are a good attempt in dynamic

reliability modeling, but they cannot adequately represent

several of the dynamic behaviours previously listed. More

specifically, using DFT it is hard (and in some cases not

possible) to compose dependencies reflecting characteris-

tics of complex and/or hierarchical systems, to define cus-

tomizable redundancy schema or policy, to represent load

sharing and probabilistic-common failure mode phenom-

ena, and to adequately model reparability features. To over-

come these problems or lacks in reliability/availability mod-

eling, in [10, 8, 9, 7] we have defined a new notation named

dynamic reliability block diagrams (DRBD), by extending

the RBD formalism.

In this paper we explain how to use the DRBD notation

in system modeling and analysis. To do this we propose a

methodology that, starting from the system structure, drives

to the overall system availability analysis by evaluating the

corresponding DRBD model. We try to specify the under-

lined methodology step by step, by parallely describing an

example/case study of a multiprocessor distributed comput-

ing system as complement for the explanation, in order to

clarify this latter. A comparison with the DFT approach

is also provided showing how it is possible to map from

the existing model types to the new model type. By this

way, the capabilities, the flexibility, and the other features

of the DRBD formalism in modeling and analysis of sys-

tem reliability/availability could be adequately pointed out.

The reminder of the paper is organized as follows: section 2

presents the multiprocessor computing system taken as ex-

ample to explain our methodology. In section 3 some back-

ground concepts of the utilized notations are provided. Sec-

tion 4 describes how to apply the DRBD modeling approach

to the motivating example, then, the analysis of the DRBD

model thus obtained is reported in section 5, comparing our

approach to the DFT one through the results. Lastly, section

6 provides some final considerations on the DRBD method-

ology.

2 Motivating Example: a Multiprocessor

Distributed Computing System

In order to better describe our proposed methodology,

we decided to adopt a step by step approach focused around

the reliability analysis of a multiprocessor systems, taken as

a case study.

It refers to a multiprocessor computing system drawn

P1
D11 D12

M1

P2
D21 D22

M2

NPS
M3

CM2

CM1

Figure 1. Schematic representation of the
Multiprocessor Distributed Computing Sys-

tem

from literature ([16, 18]) from which we summarize the fol-

lowing description, accompanied by the scheme reported in

Fig. 1. It is composed by two computing module: CM1

and CM2. Each of them contains one processor (P1 and

P2 respectively), one memory (M1 and M2) and two hard

disks: a primary (D11 and D21) and a backup disk (D12 and

D22). Initially, the primary disk is accessed by the comput-

ing modules, while the backup disk contains the copy of the

information inside the primary disk, and is accessed only

periodically for update operations. If the primary disk fails,

it is replaced in its function by the backup disk. In terms of

reliability the disks are identical, they are characterized by

the same failure rate or reliability cumulative distribution

function (cdf). But, when the primary disk is operational,

the failure rate of the backup disk decreases as consequence

of the management policy that decreases its workload con-

dition.

The computing modules are connected by means of the

bus N ; moreover, P1 and P2 are energized by the power

supply PS: the failure of PS forces P1 and P2 to fail.

M3 is a spare memory replacing M1 or M2 in the case

of failure. If M1 and M2 are operational, M3 is just kept

alive, but it is not accessed to load/store any data by the

processors. When M1 or M2 fail, M3 substitutes the failed

unit.

In order to work properly the multiprocessors comput-

ing system of Fig. 1 requires that at least one computing

module (CM1 or CM2), the power supply PS and the bus

N are operating correctly. Moreover a computing module

(CM1 and CM2) is operational if the processor (P1 and P2

respectively), one between the local memory (M1 and M2)

and the shared memory M3 and one disk (D11 or D21 for

CM1 and D12 or D22 for CM2) are not failed.

The example presented, which comes from [16] and [18],

where it is also analyzed, does not represent/implement

the optimal system’s management configuration available

in terms of reliability. To improve the system reliability,

a better solution could be to consider the two computing

modules CM1 and CM2 as redundant subsystems. An-

other lack of the model is that no load sharing effects are

2

considered between the computing modules: the fact that

both CM1 and CM2 are operating could increase the relia-

bility of each computing module, sharing the workload with

the other one. If only a computing module works, it must

process all the incoming requests, which were previously

elaborated in cooperation with the other CM . For this rea-

son, the single CM could be more stressed and therefore its

probability to fail could increase. These behaviours cannot

be modeled by a DFT because they involve dependencies

composition and/or modeling of uncovered aspects, such as

the load sharing. Aspects that are instead adequately con-

templated in the DRBD approach.

In this paper we describe how to model the multiproces-

sors computing system of Fig.1, using both DFT and DRBD

in order to better explain the DRBD methodology and, at the

same time, to compare the two approaches. In other words,

the comparison between DRBD and DFT is subordinated

and finalized to the DRBD methodology explanation, with-

out specifying any mapping rules between DRBD and DFT,

nor penetrating into the advanced DRBD modeling where

behaviours not representable by DFT are investigated.

3 System Reliability Modeling Notations

To model and analyze the example described in the pre-

vious section it is necessary to briefly introduce the nota-

tions used. In subsection 3.1 an overview of FT and DFT is

provided. Then, in subsection 3.2, we outline the RBD no-

tation to better introduce the DRBD, which are discussed in

subsection 3.3. More details on the DRBD formalism can

be found in [10, 8, 9, 7].

3.1 FT and DFT

Fault trees provide a compact, graphical method to ana-

lyze system reliability. Static trees [26] use Boolean gates

to represent how component failures combine to produce

system failure. The static gates are therefore purely combi-

natorial logic gates applied to the input failure events. Al-

though static fault trees are more commonly used, they are

limited in modeling systems that have no sequential rela-

tionships among their component failures. Component fail-

ure sequences are best captured using dynamic fault trees

([4, 12, 11]) that extend static trees to enable modeling of

time dependent failures. Dynamic trees add a temporal no-

tion, since system failures can depend on the order of com-

ponent failures. They can model dynamic replacement of

failed components from pools of spares (CSP, WSP and

HSP gates); failures that occur only if others occur in cer-

tain orders (PAND gates); dependencies that propagate the

failure of one component to others (FDEP gates); and spec-

ification of constraints on failure orders that simplify anal-

ysis computations (SEQ gates).

3.2 RBD

The main virtue of a RBD is that it is easy to read. In a

RBD, the logic diagram is arranged to indicate which com-

binations of component failures result in the failure of the

system, or which combinations of properly working com-

ponents keep the system operational. A block in RBD rep-

resents the working physical component, and the failure of

this component is indicated by the removal of the corre-

sponding block. If enough blocks are removed in an RBD

to interrupt the connection between the input and output

points, the system fails.

Generally three main types of connection (series, parallel

and non series-parallel) can be established between two or

more components [20]. The blocks in series, parallel and

non series-parallel structure can be merged into a new block

which reliability can be computed by using the series and

parallel structure equations.

3.3 DRBD

RBD ensure interesting features in reliability modeling

such as simplicity, versatility and expressive power. Such

interesting features are inherited in a DRBD model, which

moreover allows taking into account the system dynam-

ics. A system is considered time-variant, if its components’

states evolve taking into account the sequence of events oc-

curred. It is possible to define reliability relationships (de-

pendencies) among components by associating such rela-

tionships to events. DRBD implement this issue through

two key points: characterizing each component by an own

system dynamics and specifying the concept of dependency

as the building block of dynamic reliability modeling.

ACTIVE

FAILED

wake-up

failuresleep

STANDBY
failure

ββββ

sdep-switch

adep-switch

reparation

ββββ

Figure 2. DRBD States-Events Machine

In a DRBD model each component is characterized by a

variable state identifying its operational condition at a given

time. The evolution of a component’s state (component’s

dynamics) is characterized by the events occurring to it. The

states a generic DRBD component can assume are: active if

the component works without any problem, failed if compo-

nent is not operational, following up its failure, and standby

if it is reliable but not available. Active components partic-

ipate actively to perform the system’s task, while standby

3

components do not contribute to this, they do not interact

with the other components. But, at the same time, a com-

ponent in standby is not failed, it just performs its internal

activities.

An event represents the transition from a components

state to another one: the failure event models a states

changes from active or standby to the failed state, the wake-

up switches from standby to active states, the sleep from

active to standby states, the reparation from failed to ac-

tive state, the adep-switch represents the transitions between

two active states and the sdep-switch between two standby

states. These two latter events are related to the concurrency

property of dependencies. Fig. 2 summarizes DRBD states

and events. For details see [10, 8, 7].

A BpA Bp ββββ

W|R|S|F /
W|R|S|F

W|R|S|F /
W|R|S|F

(a) (b)
Figure 3. DRBD order (a) and strong (b) de-
pendencies representation

The main enhancement introduced by DBRD is the ca-

pability to model dependencies among subsystems or com-

ponents concerning their reliability interactions. A de-

pendency establishes a reliability relationship between two

components or subsystems, a driver and a target. When

a specified event, named action or trigger, occurs to the

driver, the dependency condition is applied to the target.

This condition is associated to a specific target event, named

reaction. When a satisfied dependency condition becomes

unsatisfied, the target component comes back to the fully

active state. The dependency is the tool to model several dy-

namic reliability aspects of a generic system in the DRBD

domain, as those cited in section 1. A dependency could

model two kinds of different relationships between a cou-

ple of driver-target components: the order (Fig. 3 (a)) es-

tablishes the sequence order between trigger and reaction

events, the strong (Fig. 3 (b)) forces the target component

to react when a trigger event occurs.

A dependency is also characterized by the action (trig-

ger) and the reaction events. Four types of trigger and re-

action events can be identified: wake-up (W), reparation

(R), sleep (S) and failure (F). Combining action and reac-

tion, 16 types of dependencies are identified, 32 in consider-

ing the relationships. Moreover, since the two relationships

model two different behaviors, they can also be composed

into more complex dependencies, identifying stronger con-

ditions of dependence [7]. In the examples shown in Fig. 3,

A is the driver component and B the target. The dependency

action or trigger event is indicated by a letter (W, R, S or F

as above), and the reaction by another letter (from the same

set), separated from the action by a slash. The total string

is placed near the circle. In case of order dependencies an

arrow is placed inside the circle (Fig. 3 (a)), while a num-

ber characterizes strong dependencies (the of Fig. 3 (b)): it

indicates the dependency rate β. This latter characterizes

strong dependencies with wake-up (W) and/or sleep (S) re-

action, weighting, in terms of reliability, the dependence of

target component from driver.

The concept of dependency is exploited in DRBD as the

basis to represent all the dynamic reliability behaviors. For

example, redundancy can be easily represented by exploit-

ing and combining dependencies among units. Other pos-

sible applications of dependencies in dynamic system relia-

bility modeling could be load sharing, common cause fail-

ure, reparation, and so on. Further details of these interest-

ing capabilities of DRBD are out of the scope of the present

work and can be found in [10, 8, 9, 7].

4 The Modeling

In this section we describe the process of modeling the

multiprocessor computing system introduced in section 2,

by mean of DFT (in subsection 4.1) and DRBD (subsection

4.2) in order to compare the two modeling approaches.

4.1 The DFT Model

Figure 4. DFT model of the Multiprocessor
Distributed Computing System

The DFT modeling the multiprocessor computing sys-

tem is depicted in Fig. 4, in correspondence to the scheme

of Fig. 1 through the names. The DFT model is composed

by a FDEP and four WSPs. The FDEP gate models the

functional dependency among the power supply (PS) and

the two processors P1 and P2. WSP1 and WSP4 represent

the hard disks management policy: the primary disks D11

and D21 drive WSP1 and WSP4 gates respectively in the

control of the corresponding backup disks D12 and D22. In

4

other words, the backup disks D12 and D22 are considered

as spare units of the primary disks D11 and D21 respec-

tively. From the probabilistic/analytical point of view, this

choice well describes the reliability behaviour of the com-

ponents, but, from a semantic viewpoint, it does not ade-

quately represent the real condition: the backup disks do

not assume a standby configuration because they commu-

nicate with the primary disks, making active operations. A

more realistic modeling should therefore take into account

this fact.

The partly-loaded standby redundancy policy applied to

the memory units M1, M2 and M3, is represented by the

WSP2 and WSP3 gates: if M1 or M2 fail, M3 is acti-

vated. The other DFT gates are static: the internal events

DISK1 and DISK2 represent the failure of the storage

blocks related to the computing modules CM1 and CM2 re-

spectively, analogously MEM1 and MEM2 represent the

computing modules’ memory block failure. The failure of

the processor (P1 and P2) or of the memory block (MEM1

and MEM2) or of the disk block (DISK1 and DISK2)

drives to the failure of the corresponding computing module

(CM1 and CM2 internal events). Finally, if both the com-

puting modules fail, or the power supply PS goes down, or

the bus N fails, the overall system fault occurs, represented

in the DFT as the top event TE.

4.2 The DRBD Model

PS

P1

M1

M3

D11

D12

N

P2

M2

M3

D21

D22

0.5
W/S

W/W
0.5

0.5W/S
W/W

0.5

0.5W/S

0.5W/S

CM1

CM2

Figure 5. DRBD model of the Multiprocessor
Distributed Computing System

The DRBD model reported in Fig. 5 represents the mul-

tiprocessors computing system object of this study. As

in the DFT case, there is a name correspondence between

the DRBD components and the system devices. Since the

power supply PS energizes the two processors P1 and P2,

we interpret this behaviour, and consequently represent it

in the DRBD model, as a simple series between each pro-

cessor and the PS. As in the case of the warm spare disks

discussed in the previous subsection, this is just a semantic

imperfection of the DFT model, in the fact that the failure

of PS generally does not mean the processors failure; this

behaviour does not implement a common failure mode con-

dition. Anyway, exploiting the same principle applied for

DFT modeling, this could be a good solution to map a FDEP

gate into the DRBD domain, in the case that no reparability

features must be modeled.

The disks management policy is represented in DRBD

by a wake-up/wake-up strong dependency: when the pri-

mary disks D11 and/or D21 are operational, the backup

disks D12 and/or D22 respectively are partial active (0 <

β < 1), maintaining the backup. When a primary disk fails,

the corresponding backup disk that substitutes it becomes

fully active and fully energized since the dependency con-

dition becomes unsatisfied.

Wake-up/standby strong dependencies are instead ex-

ploited to model the redundancy policy managing the mem-

ories. These represent the disabling conditions applied by

M1 and M2, when they are operational, on M3, keeping

this latter in standby. The overall dependency must be ap-

plied to M3 if and only if both M1 and M2 are at the same

time operational; when one of these fails, M3 must switch

to the fully active state. To realize this condition the two

wake-up/standby strong dependencies, from M1 to M3 and

from M2 to M3 are series composed: when both are simul-

taneously satisfied the component M3 is placed in standby,

otherwise M3 is active. This composed dependency is du-

plicated in the DRBD model for the sake of clarity, identi-

fying and separating the two computing modules CM1 and

CM2.

5 The Analysis

The purposes of this section are to describe how a DRBD

can be analyzed, also confronting the DRBD approach to

the DFT one in order to demonstrate the effectiveness of the

former. Firstly, in subsection 5.1, an overview of the possi-

ble DRBD solution techniques is introduced, specifying the

solution algorithm then applied, as reported in subsection

5.2, in the analysis.

5.1 DRBD Analysis

The DRBD formalism is a powerful notation to model

system reliability, deriving from RBD. If the independence

assumption stands, i.e. each component of the DRBD

model is stochastically independent from the others, the

DRBD model can be considered as a RBD and therefore

analyzed by applying the combinatorial structures equa-

tions [20], obtaining the total reliability function analyt-

5

ically. Unfortunately the combinatorial/analytic method

cannot be applied or extended to DRBD models with de-

pendence among components. In these cases it is necessary

to map the DRBD model onto an analyzable domain, imple-

menting a two step methodology where the DRBD model is

an intermediate model interposed between the modeler and

the analysis domain, as also done in DFT. Therefore, refer-

ring to the DFT case for analogy and inspiring on literature

([17, 15, 24, 5]), a wide range of possibilities are available

for analyzing a “dynamic” DRBD model by translating it

into an analysis domain. As introduced in section 1, the

choice is between analytic or simulation methods. For what

regards the analytic methods there are many possible al-

ternatives, according to the nature of the reliability cdfs or

the overall complexity. The most widely used is the con-

tinuous time Markov chain (CTCM), but it is limited in the

reliability cdfs tractable. A more general approach should

be based on Petri nets (PN), queueing networks, Bayesian

networks (BN) or similar analytic formalisms. For exam-

ple the approaches described in [27, 16] are applications

of the PN formalism in DFT analysis. Other interesting

techniques to analyze a DFT exploit stochastic reward nets

[19, 16], Markov reward models [25], Bayesian networks

[29], stochastic well-formed nets [1] and queueing networks

[3]. Some of these methodologies remove the restrictions

related to the CTMC methods.

For what concerns DRBD, at now, we have developed a

solution based on CTMC, with the restrictions mentioned

above. To overcome this restrictions we are investigating

about a solution based on non-Markovian stochastic PN

(NMSPN) [2], applied in [9] and here to analyze the mo-

tivating example, but in the actual version also restricted to

constant failure rate assumption. For more details refer to

[7].

An attractive alternative to analytic approaches is the

simulation [28, 13], because it allows the modeling of any

reliability distribution without any particular restrictions.

One of the drawback of simulation is the long elaboration

time needed to achieve accuracy in the solution. However,

using variance reductions techniques the elaboration time

could be dramatically reduced. The great part of the simu-

lation methodologies applied to the DFT analysis [17, 14],

exploit the Monte Carlo technique. Since the Monte Carlo

simulation approach is very flexible, we retain it could be

successfully applicable to the DRBD analysis and we are

actually investigating in this way.

However the optimal solution is to combine different

techniques [25, 17] by adequately decomposing the DRBD

model into independent parts or subsystems. The parts in-

volving dependencies are identified as dynamic subsystems.

The others are identified as static subsystems. The static

subsystems are analyzed using the combinatorial/analytic

equations, while the dynamic subsystems can be analyzed

referring to one of the methods introduced above, according

to the nature of the reliability distributions and the complex-

ity of the considered part. After a separated elaboration of

each subsystem, the results must be merged by applying the

structure equations to the subsystems. This algorithm can

be summarized in three steps:

1. Split the DRBD in as much static and dynamic subsys-

tems as possible. Each subsystem must be independent

from the others.

2. Analyze the subsystems: the static ones are analyzed

by applying the RBD structure equations, while the

dynamic parts are mapped onto an analytic/simulation

method, evaluating case by case, according to the na-

ture of the reliability functions contained in the subsys-

tem, the complexity of the subsystem and the expected

accuracy.

3. Rejoin the results coming from the different elabora-

tions by applying the RBD structure equations.

5.2 Results

The example described in section 2 and modeled in sec-

tion 4, has been studied in depth by analyzing the overall

system reliability cdf trend in time, knowing the compo-

nents’ reliability cdfs or the corresponding failure rates. All

the components have been modeled by a constant failure

rate λ characterizing exponential reliability cdfs or memo-

ryless systems.

Component λ α β

N 2

P1, P2 500

PS 6000

D11, D21 80000 0.5 0.5

D12, D22 80000 0.5 0.5

M1,M2 30

M3 30 0.5 0.5

Table 1. Parameters related to the multipro-
cessors computing system example

The values contained in Table 1, drawn from literature

([16, 18]) as the motivating example, report the parameters

used to analyze this latter. λ, as introduced above, is the

failure rate, α indicates the dormancy factor and β the de-

pendency rate of the dependency between the correspond-

ing components, where β = 1 − α. The λ values are ex-

pressed in failures in time (FITs), i.e. number of faults per

billion device hours (1 FIT = 1 fault/10
9 hours).

By applying the underlined algorithm to the multipro-

cessors computing systems DRBD reported in Fig. 5, it can

be subdivided in three subsystems: the first, static, is com-

posed by the series among the power supply PS and the

6

M 1_A M 1_F

M 2_FM 2_A

M 3_FM 3_A

M 3_S

M EM 1_F

M EM 2_F

M 1_AF

M 2_AF

M 3_AF

M 3_AS

M 3_SF

M 3_SA1

M 3_SA2

FM EM 1

FM EM 2

D11_A
D11_F

D12_PA

D12_A
D12_F

DISK1_F

D11_AF D12_PAFD12_APA

D12_AF

D12_PAA

FDISK1

(a) (b)

Figure 6. GSPN modeling the memory (a) and the disk (b) blocks

bus N , series connected with the parallel between the two

computing modules CM1 and CM2 that are the other two

subsystems. Since these latter are identical, it is possible to

study only one computing module subsystem and then ap-

ply the parallel structure equation to obtain the reliability of

the parallel between the two computing modules. A com-

puting module is further subdivided onto the series of three

blocks: the processor, the memory and the disk. The mem-

ory and the disk blocks are dynamic parts. To study these

dynamic parts the generalized SPNs (GSPNs) reported in

Fig. 6 are exploited. Analyzing the two GSPNs through the

WebSPN tool [22] and putting all together by applying the

RBD structures equations, the results shown in Fig. 7 are

obtained. Fig. 7 reports the overall multiprocessors com-

puting system reliability cdf.

Multiprocessors System Reliability cdf

0

0,2

0,4

0,6

0,8

1

0 10000 20000 30000 40000 50000 60000 70000

time (x1000 hrs)

p
ro

b
a
b

il
it

y

Figure 7. Trend of the system reliability cdf

By the same way, the DFT model depicted in Fig. 4 cor-

responding to the motivating example discussed, has been

analyzed in [18] by exploiting three different tool: DB-

Net [18], DRPFTproc [1] and Galileo [23]. The first an-

alyzes the DFT by translating it into a dynamic Bayesian

network (DBN) and therefore by solving the DBN. DRPFT-

proc is based on modularization and conversion to stochas-

tic well-formed nets (SWN) of the dynamic gates, tracing

back the problem to a SWN solution. Galileo approaches

the problem by firstly modularizing it, then solving the ob-

tained modules by exploiting binary decision diagrams and

CTMCs.

Time DBNet DRPFTproc Galileo DRBD

1000 0.006009 0.006009 0.006009 0.006009

2000 0.012245 0.012245 0.012245 0.012245

3000 0.019182 0.019183 0.019183 0.019183

4000 0.027352 0.027355 0.027355 0.027354

5000 0.037238 0.037241 0.037241 0.037240

Table 2. Unreliability results obtained analyz-

ing the multiprocessors computing system
example

The results obtained by such analysis are summarized in

Table 2, where they are compared each other also referring

to the DRBD approach. Tab 2 summarizes some system un-

reliability probabilities calculated in specific time instants.

The time is expressed in hours. These results demonstrate

and validate the effectiveness of the DRBD approach, pro-

viding consistent values for all the tests.

6 Conclusions

In this paper the effectiveness of the DRBD methodol-

ogy in representing dynamic reliability/availabillity aspects,

is demonstrated by exploiting a multiprocessors computing

system example drawn from literature. Basing on this lat-

ter the DRBD methodology is explained step by step, also

establishing a deep comparison with the DFT approach.

The problem to analyze a DRBD model is faced in the

paper, describing an interesting algorithm that combines

different solutions. This algorithm is applied to the mul-

tiprocessors system analysis, in order to obtain the overall

system reliability. These results compared to the one ob-

tained by the DFT analysis, allow to identify the DRBD as

7

a valid alternative in dynamic reliability/availability analy-

sis scenario, also considering its potentiality in flexibility,

modeling power an the other capabilities.

References

[1] A. Bobbio, G. Franceschinis, R. Gaeta, and L. Portinale.

Parametric fault tree for the dependability analysis of redun-

dant systems and its high-level petri net semantics. IEEE

Trans. Softw. Eng., 29(3):270–287, 2003.
[2] A. Bobbio, A. Puliafito, and M. Telek. A modeling frame-

work to implement preemption policies in non-markovian

spns. IEEE Transaction on Software Engineering, 26(1):36–

54, 2000.
[3] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queue-

ing Networks and Markov Chains: Modeling and Per-

formance Evaluation with Computer Science Applications.

Wiley-Interscience, 2
nd edition, May 2006.

[4] M. A. Boyd. Dynamic Fault Tree Models: Techniques

for Analysis of Advanced Fault Tolerant Computer Systems.

PhD thesis, Duke University, Department of Computer Sci-

ence, Apr. 1991.
[5] D. Coppit, K. J. Sullivan, and J. B. Dugan. Formal semantics

for computational engineering: A case study on dynamic

fault trees. In ISSRE, pages 270–282, 2000.
[6] R. Corporation. System Analysis Reference: Reliability

Availability and Optimization. Reliasoft Publishing, 2003.
[7] S. Distefano. System Dependability and Performances:

Techniques, Methodologies and Tools. PhD thesis, Univer-

sity of Messina, 2005.
[8] S. Distefano and A. Puliafito. System modeling with

dynamic reliability block diagrams. In Proceedings of

the Safety and Reliability Conference (ESREL06). ESRA,

September 2006.
[9] S. Distefano, M. Scarpa, and A. Puliafito. Modeling dis-

tributed computing system reliability with drbd. In SRDS

’06: Proceedings of the 25
th IEEE Symposium on Reliable

Distributed Systems (SRDS’06), pages 106–118, Washing-

ton, DC, USA, 2006. IEEE Computer Society.
[10] S. Distefano and L. Xing. A new modeling approach:

Dynamic reliability block diagrams. In Proceedings of

the 52
nd Annual Reliability and Mantainability Symposium

(RAMS06). IEEE, January 2006.
[11] J. B. Dugan, S. Bavuso, and M. Boyd. Dynamic fault tree

models for fault tolerant computer systems. IEEE Transac-

tions on Reliability, 41(3):363–377, September 1992.
[12] J. B. Dugan and S. A. Doyle. New results in fault-tree anal-

ysis. In Reliability and Maintainability Symposium, pages

568 – 573, January 1996. Tutorial Notes.
[13] K. D. Figiel and D. R. Sule. A generalized reliability block

diagram (rbd) simulation. In Simulation Conference, pages

551 – 556, 1990.
[14] S. G. Gedam and S. Beaudet. Monte carlo simulation us-

ing excel(r) spreadsheet for predicting reliability of a com-

plex system. In Reliability and Maintainability Symposium,

pages 188 – 193, 2000.
[15] M. Malhotra and K. S. Trivedi. Reliability and performabil-

ity techniques and tools: A survey. In MMB, pages 27–48,

1993.

[16] M. Malhotra and K. S. Trivedi. Dependability modeling us-

ing petri-nets. IEEE Transaction on Reliability, 44(3):428–

440, September 1995.
[17] R. Manian, J. B. Dugan, D. Coppit, and K. J. Sullivan. Com-

bining various solution techniques for dynamic fault tree

analysis of computer systems. In IEEE International High-

Assurance Systems Engineering Symposium, 1998.
[18] S. Montani, L. Portinale, A. Bobbio, and D. C. Raiteri.

Automatically translating dynamic fault trees into dynamic

bayesian networks by means of a software tool. In Proceed-

ings of the The First International Conference on Availabil-

ity, Reliability and Security, ARES 2006,, pages 804–809.

IEEE Computer Society, 2006.
[19] J. Muppala, G. Ciardo, and K. Trivedi. Stochastic reward

nets for reliability prediction. Communications in Relia-

bility, Maintainability and Serviceability, 1(2):9–20, July

1994.
[20] M. Rausand and A. Høyland. System Reliability Theory:

Models, Statistical Methods, and Applications. Wiley-IEEE,

3
rd edition, November 2003.

[21] R. Sahner, K. Trivedi, and A. Puliafito. Performance and Re-

liability Analysis of Computer Systems: An Example-based

Approach Using the SHARPE Software Package. Kluwer

Academic Publisher, 1996.
[22] M. Scarpa, A. Puliafito, and S. Distefano. A parallel

approach for the solution of non Markovian Petri Nets.

In J. Dongarra and D. Laforenza and S. Orlando, editor,

10th European PVM/MPI Users’ Group Conference (Eu-

roPVM/MPI03), pages 196–203, Venice, Italy, Septem-

ber/October 2003. Springer Verlag - LNCS 2840.
[23] K. J. Sullivan, J. B. Dugan, and D. Coppit. The galileo fault

tree analysis tool. In Proceedings of the 29th Annual In-

ternational Symposium on Fault-Tolerant Computing, pages

232–5, Madison, Wisconsin, 15–18 1999. IEEE.
[24] K. S. Trivedi, S. Hunter, S. Garg, and R. Fricks. Reliabil-

ity analysis techniques explored through a communication

network example. In International Workshop on Computer-

Aided Design, Test, and Evaluation for Dependability, July

1996.
[25] M. Veeraraghavan and K. S. Trivedi. A combinatorial algo-

rithm for performance and reliability analysis using multi-

state models. IEEE Trans. Comput., 43(2):229–234, 1994.
[26] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl.

Fault Tree Handbook. U. S. Nuclear Regulatory Commis-

sion, NUREG-0492, Washington DC, 1981.
[27] V. V. Volovoi. Modeling of system reliability using petri

nets with aging tokens. Reliability Engineering and System

Safety, 84(2):149–161, 2004.
[28] W. Wang, J. M. Loman, R. G. Arno, P. Vassiliou, E. R. Fur-

long, and D. Ogden. Reliability block diagram simulation

techniques applied to the ieee std. 493 standard network.

IEEE Transaction on Industry Applications, 40(3):887–895,

May-June 2004.
[29] Z. Zhou, G. Jin, D. Dong, and J. Zhou. Reliability anal-

ysis of multistate systems based on bayesian networks. In

ECBS ’06: Proceedings of the 13th Annual IEEE Interna-

tional Symposium and Workshop on Engineering of Com-

puter Based Systems (ECBS’06), pages 344–352, Washing-

ton, DC, USA, 2006. IEEE Computer Society.

8

