
ABARIS: An Adaptable Fault Detection/Recovery Component Framework for

MPIs

Hideyuki Jitsumoto1, Toshio Endo1, Satoshi Matsuoka1,2

1Tokyo Institute of Technology 2National Institute of Informatics
2-12-1 Ookayama, Meguro-ku, 2-1-1 Hitotsubashi, Chiyoda-ku,

Tokyo, 152-8552 JAPAN Tokyo, 101-8430 JAPAN
{jitsumo0, matsu}@is.titech.ac.jp, endo@gsic.titech.ac.jp

Abstract

Long-running MPI applications on clusters and grids

that are prone to node and network failures, motivates the

use of fault tolerant MPI implementations. However, pre-

vious fault tolerant MPIs lack the ability to allow the user

to easily choose appropriate fault recovery strategies ac-

cording to the execution environment, independent of the

application codes—rather, the user often had to hard-code

restoration strateties in accordance to diverse sets of fault

patterns, which could be numerous: for instance, if the

fault is transient to a particular process, we merely have

to restart the process on the same computing node; on the

other hand, if the fault is due to repetitive hardware unre-

liability, we must migrate the process to a new node in its

recovery. ABARIS is our new Fault/Recovery model aware

component framework for MPI, where users can customize

MPI fault detection and recovery algorithms according to

their application and execution environmental requirements

by merely selecting appropriate fault/recovery components,

independent of the application code. Currently, the ARA-

BIS framework prototype is implemented on top of MPICH-

P4MPD. Preliminary evaluation of the prototype using NPB

on our MPI fault simulator demonstrates that overhead

compared to the original MPICH-P4MPD is almost negligi-

ble (less than 1%) under normal execution, and when faults

occur, appropriate selections and pairings of fault model

and recovery method components for corresponding to the

execution environment is significant to the overall execution

time.

This research was partially supported by the Ministry of Education, Sci-

ence, Sports and Culture, Grant-in-Aid for Scientific Research on Prior-
ity Areas, 18049028, 2006. We would lile to thank INRIA Grand-Large

project team and ANL MPICH Group for their advice on FT for MPI.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1 Introduction

Modern scientific applications on large scale MPPs,

large clusters, and girds usually employ MPI[10]LAM[4] as

an underlying communication substrate, and often have ex-

ecution times ranging from days to months. As the systems

scale, these systems have become increasingly fragile; an

ideal MPI implementation thus must embody fault tolerance

properties that support long execution times in fragile un-

derlying execution environments, while being easy and flex-

ible to use as well as being portable and adaptable of their

execution environment and fault characteristics. Previous

fault tolerant MPI implementations such as LAM/MPI[16]

and MPICH-V[3] are easy to use for the user in that fault

tolerance is largely transparent to the programmer, but their

recovery protocol is fixed and thus not adaptable. This

may not be desirable, as for example, the desirable recovery

method is obviously different when a fault is transient soft-

ware one confined in a single process, versus a repetitive

one caused by a faulty hardware. In the latter case, we must

be migrated the recovered process to a new physical node,

but such a strategy may turn out to be wasteful or even un-

feasible, especially if the fault is of the former, i.e., the tran-

sient one. Moreover, such a fault may be misdetected by the

fault detector to be a node failure and unnecessary migra-

tion might occur whereas it might turn out that the fault was

really with the network switch. FT-MPI[8], allows the end

programmer to adapt so that appropriate recovery protocol

would be selected, but it is the responsibility of the user to

not only make the selection but also implement the recov-

ery protocol itself embedded in the user program, making

the system harder to use.

ABARIS, our fault tolerant framework for MPI, achieves

independency/adaptability and ease of use simultaneously

by allowing the user (not necessarily the programmer) to

select a pair of predefined fault model and recovery com-

Figure 1. ABARIS Components

ponents, depending on the execution environment. Fault

model components select appropriate fault recovery proto-

cols (e.g., ignore/restart/migrate) per each fault occurrence.

Moreover, a programmer can customize the components in

an object-oriented fashion to adapt to the characteristics of

execution environments in a fine-grained manner, if neces-

sary.

The current prototype of ARABIS is implementation

on top of MPICH-P4MPD. Preliminary evaluation of our

prototype implementation using NPB on our fault simu-

lator demonstrates that overhead compared to the original

MPICH-P4MPD is almost negligible (less than 1% under

fluctuating time measurements) under normal execution.

The validity of our framework is demonstrated by the fact

that users need not modify their original MPI programs,

and when faults occur, appropriate selections and pairings

of fault model and recovery method components for corre-

sponding to the execution environment is significant to the

overall execution time, in a controlled environment by mod-

ifying the failure occurrence rates of nodes.

2 The ABARIS Framework

2.1 Overview of the ARABIS Architec-
ture

ABARIS consists of three main components (Figure 1):

the algorithm component that maintains the consistency of

the state of an MPI process (PFTP: Parallel Fault Toler-

ant Protocol component), the fault definition and detector

component (FD: Fault Detector component) and the recov-

ery work component (RP: Recovery Protocol component).

ABARIS also embodies other supplementary components

such as monitoring tools component, and node-local com-

ponents for implementing fault tolerance, such as the check-

pointing component.

Components interfaces in ABARIS can be categorized

into two types: first is the ABARIS Fault tolerant In-

terface (AFI), called from the underlying MPI system or

other ABARIS components to implement some fault tol-

erant function for every component. To be more specific,

ABARIS assumes an MPI implementation where process-

managers (PMs) exist for each rank, and every component

implements a set of interfaces handling the three kinds of

messages, which is between two PMs with different ranks,

between a PM and an MPI process with the same rank and

between two MPI processes. A PFTP component also im-

plements an interface for handling time-interval events that

corresponds to the starting point of recovery.

Another category is the ABARIS MPID Interface (AMI),

which is called by every ABARIS component on the use of

MPI or PM functions, such as sending a message between

PMs or MPI processes. For example, at each MPISends and

MPIReceives, an AFI is called transparently by the under-

lying MPI system. Then, the implementation of the AFI

does some work to perform bookkeeping function for fault

tolerance, e.g., message-logging. Finally, the AFI imple-

mentation invokes an AMI for message transfer etc. that

use the underlying messaging devices used on various MPI

systems.

When a fault occurs, ABARIS starts recovery according

to the following procedure:

1. The FD components are called from PFTP component

with some intervals and compare their fault model to

the information supplied from the monitoring tools.

2. If the information matches its embodied model, the

FD component selects an appropriate RP component

to start fault recovery.

3. The PFTP component initiates recovery by using the

selected RP component above, while maintaining mes-

saging consistency between the processes.

In general, the base implementations of these compo-

nents are intended to be done by trained programmers in

parallel and distributed systems, resulting an arsenal of var-

ious components. Once that is achieved, end-programmers

and system administrators can customize fault tolerance and

recovery models easily to adapt to their requirements by

mere selection of the appropriate components. We will

demonstrate the actual realization of such a scenario in the

latter sections.

2.2 Components and Recovery Models

2.2.1 The Parallel Fault Tolerant Protocol (PFTP)

Component

The PFTP component supplies various functionalities to

maintain the global consistent state of MPI programs. A

global state of a message passing system is a collection of

individual states of the communication channels and their

processes. As such, when the global system is said to be

Table 1. Recovery Protocol

Protocol IGN. RES. MIG. PRO.

Recovery cost 0 medium large small

Necessary nodes 0 0 each fault large

Process FT No Yes Yes Yes

Physical FT No No Yes Yes

consistent, it is necessary to guarantee that if the state of a

particular process indicates message having being received,

then the state of the corresponding sender should reflect

sending of that message other than the consistency of each

processes state[7]. One of the simple PFTP implementation

we have in ARBAIS is coordinated checkpointing, which

we employ here as an example. The coordinated check-

pointing PFTP component is tasked at performing two ac-

tions. First, the PFTP component creates a checkpoint for

its (client) MPI processes at prescribed time intervals which

users define. When creating a checkpoint, the PFTP com-

ponent drains all the messages traveling on the connections

between MPI processes by sending a “drainage” (or “bull-

dozing” in other literatures) packet just prior to the actual

checkpointing. As a result of this draining, all sending mes-

sages will guaranteed to have been received. Secondly, on

fault recovery, the PFTP component recovers the state of all

the MPI processes simultaneously for keeping the consis-

tency of each MPI process state.

2.2.2 The Recovery Protocol (RP) component

These components represent various different strategies for

recovery from faults. In particular, each component embeds

its own policy on deciding how the MPI processes are to

be recovered, and on which nodes they should be recovered

to. On ABARIS, the recovery protocol component roughly

categorized into 4 types below. Here, having to perform

checkpointing is a prerequisite for RESTART and MIGRA-

TION, and process replication of process is a prerequisite

for PROMOTE.

IGNORE a process ignores the fault

RESTART a process restarts on the node it had been as-

signed to prior to fault occurrence.

MIGRATE a process migrates to the node it had not been

assigned to prior to fault occurrence.

PROMOTE a standby, replicated process is promoted to

becoming the primary process in place of the failed

process.

We show a partial list of properties of these protocols

(Table 1). For recovery, MIGRATE has the largest overhead

due to the cost of process image migration. PROMOTE re-

quires less overhead but will require many extra standby

nodes for redundancy, whereas MIGRATE does not need

such extra nodes as process migration occurs only on pro-

cess failure. In this fashion, an end-user (not necessarily the

programmer) can prioritize either the overall running time

or the resource usage, according to his requirements and the

property of the underlying system, as well as the frequency

of faults. For example, qualitatively PROMOTE would be

advantageous in an environment that embodies numerous

available nodes. Another example would be that, we could

simply say IGNORE if the application facilitates its own

fault tolerance mechanism.

2.2.3 The Fault Detector (FD) component

This component defines faults and mechanisms for their de-

tections. It continuously compares information from the

monitoring tools to some thresholds prescribed for the FD

component and decides on which RP to choose out of the

above 4 types. FD uses information such as whether the

node is currently working or not, how many failures have

occurred in the past and how many processes executes on

the node.

Here are some examples of the simple fault models we

have defined for ARABIS:

Process Fault This model indicates that a failure occurred

only within a user process, and the node accommodat-

ing the process is alive. We can implement the model

by examining the status of user process by a heartbeat

technique, and status of the nodes from a monitoring

tool such as the Ganglia Cluster Toolkit[13].

Physical Fault This model says that a failure occurred in

the hardware resource itself. We can easily decide

whether this model holds as is with the case of the Pro-

cess Fault with appropriate node monitoring.

Network Fault This model indicates that a failure oc-

curred in the network resource. His model is diffi-

cult to implement merely on the nodes themselves,

but rather require information from the underlying

switches in the network with the knowledge of network

topologies. For most clusters this is not a problem

since switches and their topologies are well-known by

the administrators. For grids and other large systems,

there are various proposed methods to detect switch

topologies[12]

Repeated or cascaded fault occurrences, has to be treated

in a special fashion in our framework. For example, a

node that experiences a uncorrectable memory ECC fail-

ures could cause faults in a repeated fashion for the same

process, but in somewhat of a irreproducible way. Initially,

such faults may show up as Process Faults. However, with

repeated faults the component can direct further investiga-

tion to see whether ECC memory error has occurred, and if

it has, the users can choose the Physical Fault to avoid any

more faults. Our architecture can deal with such repeated

faults by a FD which embodies a repetition threshold and

would delegate a decision to other FD upon reaching the

threshold.

3 Prototype Implementation

We have implemented a prototype of our ABARIS

framework on MPICH. Among several device modules that

MPICH provides[5], we have chosen P4MPD, because its

daemon-based architecture conform to ABARIS architec-

ture well. Each ABARIS component is implemented as a

dynamic library. Set of components to be loaded actually is

specified by a configuration file.

The current prototype implementation does not deal with

real faults; instead, we have implemented a simulator that

simulates multiple kinds of faults and recovery.

3.1 Adaptation of MPICH-P4MPD to
ABARIS

In MPICH-P4MPD device architecture, a daemon pro-

cess called MPD runs on each node, as described in Figure

3. All MPDs are connected in a ring topology. MPDs and

mpdmans, which are described below, play roles of process

manager (PM) in section 2.1.

MPICH-P4MPD invokes MPI processes as follows:

1. When a user invoke a mpirun process, it sends a ‘in-

voking message’ to its local MPD.

2. The invoking message is transmitted via the MPD

ring. When a MPD receives the message, it invokes

an mpdman process. After that, mpirun process makes

a connection to its local mpdman.

3. All the mpdman processes composes a ring topology

by connection.

4. Each mpdman invokes its corresponding MPI process

and starts application.

Figure 3 describes modification of MPICH-P4MPD

for supporting ABARIS. White boxes represent compo-

nents that originate from original MPICH-P4MPD. As de-

scribed in the figure, ABARIS components are embedded

both in MPI processes and process managers (MPDs and

mpdmans). The original MPICH-P4MPD components are

Figure 2. Structure of MPICH-P4MPD archi-
tecture

Figure 3. Prototype ABARIS implementation
on MPICH-P4MPD

modified so that they invoke ABARIS components via AFI.

By doing so, ABARIS components can capture all mes-

sages among all MPI processes and process managers. In

addition, mpdman is modified so that it invokes PFTP com-

ponent periodically. Conversely, ABARIS components call

original components via AMI. AMI is mainly used to con-

duct raw communication and obtain information related to

MPI such as process rank.

3.2 Implementation of ABARIS compo-
nents

3.2.1 PFTP component

We have implemented a simple PFTP component that

adopts coordinated checkpointing algorithm[7]. This com-

ponent creates global consistent states at intervals specified

in a configuration file. The global consistent state is created

as follows (Figure 4).

1. One of mpdmans send ‘start-cp’ messages to all the

mpdmans.

Figure 4. Simple Coordinated Checkpointing

2. When an mpdman receives the message, the mpdman

forwards it to its local MPI process.

3. When an MPI process receives the message, it stops

application work and sends ‘drainage’ messages to all

other processes that have connections with it.

4. After receiving ‘drainage’ messages from all other

(connected) processes, the MPI process creates a lo-

cal checkpoint. This is conducted with Zandy’s ckpt

library [17].

5. After creating a local checkpoint, each MPI pro-

cess restarts application. While local computation is

restarted independently, message passing is suspended

until the counterpart process also finishes checkpoint-

ing.

A global state, which consists of local checkpoints of all

MPI processes, is consistent. This issue is discussed in[7].

3.2.2 RP component

As RP components, we have implemented prototypes of

RESTART and MIGRATE components. Currently, they do

not recover not recover the processes fully, since we are exe-

cuting in a fault simulator environment (by all means it does

not undermine their capabilities or performances); Instead,

they simulate effects of faults and recovery by suspending

application processes until they are (virtually) recovered.

The suspending time, denoted by Trecover, is calculated as

follows. Let Telapse be elapsed time from the last check-

point to fault occurrence time. And let Tload be the time to

load a checkpoint from disk and Ttransfer be the network

transfer time of checkpoint. Tload and Ttransfer are prede-

termined through a preliminary experiment. Then Trecover

is calculated as Trecover = Telapse + Tload + Ttransfer.

The difference between RESTART and MIGRATE com-

ponents appears in Ttransfer. In RESTART component,

which always restarts processes locally, Ttransfer is set to

zero.

3.2.3 FD component

We have implemented the following basic FD components,

which are based on fault models described in Section 2.2.3.

They are invoked when the system finds a process is (virtu-

ally) dead.

Process FD This component checks the state of node that

the failed process have resided in. If the node is alive,

this case is regarded as process fault and RESTART

protocol is selected.

Physical FD If this component finds the node dead (physi-

cal fault), it selects MIGRATE protocol.

Network FD This component checks the state of network

switch that the process is hanging on. If the switch is

found unstable, MIGRATE protocol is selected.

Repeated FD It checks the number of process faults for

each node. If the number is over a predefined thresh-

old, it selects MIGRATE protocol to avoid any more

faults.

In Section 4, we describe how we cascade these basic

components. Note that states of nodes and switches used

by the components are generated by our fault injector tool.

Currently, a process of rank 0 checks states of all processes.

Since it introduces bottleneck, we plan to implement a dis-

tributed monitoring method for our next production version.

3.2.4 Fault Injector

To provide node states to FD components, we have imple-

mented a fault injector tool that works as a monitoring tool.

This tool maintains a data record that consists of process

rank, physical fault rate and process fault rate for each node.

In the beginning, each node is assigned its record according

to a scenario. Then the tool creates faults randomly, by re-

ferring to the fault rates. With this tool, MIGRATE protocol

is simulated by exchanging the records between nodes, in-

stead of actual process migration.

4 Performance Evaluation

4.1 Experimental Condition

Experiments are run on 32 nodes of a 256-node clus-

ter and distribute one process for each node. Each node is

equipped with two AMD Opteron(tm) 242 Processors, run-

ning at 1.6GHz, 2GB main memory (DDR SDRAM), two

250GB IDE ATA100 hard drives, and two GbE Network In-

terface(we use only one GbE). Each 20-node is connected

to same switch which provide GbE (Dell Power connect

5224), and a switch are connected by 4Gbps link which

composed of 4 ports trunk link. All these nodes are op-

erating under Linux 2.6.12. The tests and benchmarks are

compiled with GCC 3.3.5 (with flag -O3).

Table 2. The performance comparisons of the
original MPICH-P4MPD and the prototype im-

plementation

CG

Original prototype impl. d-ratio(%)

AVE 1569.379 1561.933 0.474455

STDEV 138.4851 124.31552

MG

Original prototype impl. d-ratio(%)

AVE 6620.598 6616.103 0.067894

STDEV 232.2076 142.39843

EP

Original prototype impl. d-ratio(%)

AVE 175.438 174.952 0.277021

STDEV 0.161109 0.4793078

For all the experiments, we assume a single checkpoint

server connected by high bandwidth link. In addition we as-

sume, first, checkpoint images are saved on local hard drive

on each node. Then, the checkpoint images are collected by

checkpoint server when the all MPI processes finish check-

pointing.

4.2 The overhead of ABARIS Framework

We evaluate the overhead of ABARIS framework. In or-

der to conduct this measurement, we compare the perfor-

mance of NAS Parallel Benchmark (NPB 2.4) CG/MG/EP

CLASS-C [2] on original MPICH-P4MPD to one on the

prototype implementation without any ABARIS component

(This mean is we only measure the overhead of modify of

AFI calling.). Table 2 presents the performance (Mop/s)

and the standard deviation of the performance about NPB

2.4 CG/MG/EP. Besides, it also presents degradation ratio

(%) of MPICH-P4MPD to the prototype implementation.

Regarding CG and MG, the difference between the perfor-

mance of MPICH-P4MPD and the prototype implementa-

tion is much smaller than each standard deviation. So, the

overhead of ABARIS framework can be considered to be

statistically negligible. While the performance difference

of EP is larger than standard deviations, but the degradation

ratio of MPICH-P4MPD and the prototype implementation

is only 0.2 %. So the overhead of ABARIS framework can

also be considered to be statistically negligible about EP.

4.3 ABARIS Framework performance val-
idation

We evaluate our ABARIS framework when faults occur.

In order to measure this point, we simulate the fault occur-

Figure 5. Frequent process fault model

rence and the recovery by FD components, RP components,

and the fault injector as mentioned in section 3.2. In this

evaluation we use NPB 2.4 CG CLASS-C on 8 nodes. First,

we measure the size and the load time of checkpoint to fix

parameters, Ttransfer and Tload, for RP components. As a

result, we get the size of checkpoint is 158MB and the load

time of checkpoint is 0.38 sec. So, we fix that Ttransfer is

1.325 sec. (the theoretical time to send 158MB by 1Gbps

link without a congestion), and Tload is 0.38 sec. Regarding

the other parameters, we fix the intervals of checkpointing

at 30 sec. and the interval of fault detection at 10 sec. More-

over we assume faults don’t happen during the recovery due

to the limitation of current implementation. We use two

models. Both models, the nodes are connected the switch

by a 1Gbps link, and all processes are allocated on group

(A) when the evaluation starts. We present that it is impor-

tant to use an appropriate pair of fault model and recovery

method for each characteristics of environment in terms of

the performance comparison of two set of FD components

while changing failure rate.

4.3.1 Frequent Process Fault

In this model (figure 5), we assume the group (A) has

high probability of process fault because an OS or a job

scheduler kills a process. Moreover we assume there are

high bandwidth link between the checkpoint server and

the switch. We compare the set of Process Fault FD

and Physical Fault FD (PROC’nPHY), and the set of Pro-

cess Fault FD, Physical Fault FD and Repeated Fault FD

(REPEATED). Figure 6 clearly demonstrates REPEATED

model is suitable for the this environment. The difference

of performance is from 3% to 30%. In addition, the number

of migration node is suppressed when the number of nodes

is smaller than 8 nodes, except when the failure is injected

every 30 sec. This means it would be desirable for a fault

tolerant MPI system to change their fault model and recov-

ery method. Figure 6 also presents the performance with

30 sec. fault intervals is higher than the one with 60 sec.

fault intervals. The reason for this is the number of the fatal

Figure 6. Performance comparion of
PROC’nPHY with REPEATED

Figure 7. Frequent physical fault model

errors is suppressed owing to the fault occurring simultane-

ously on each node in between each fault detection inter-

val the fault detection intervals. In practice, there were 9

occurrences of fatal errors detections when the failure was

injected every 60 sec. On the other hand, there were 7.8

occurrences of fatal errors detections when the failure was

injected every 30 sec.

4.3.2 Frequent Physical Fault

In this model(Figure 7), we assume the group (A) has

high probability of physical faults because the switch (a)

is faulty, in some bad condition with intermittent faults

in its transfer. Moreover we assume there are high band-

width link between the checkpoint server, the switch (a)

and the switch (b). We compare the set of Process Fault

FD and Physical Fault FD (PROC’nPHY), and the set of

Process Fault FD, Physical Fault FD and Network Fault FD

(SWITCH). Figure 8 clearly demonstrates SWITCH model

is suitable for this environment. While PROC’nPHY checks

the node state on the basis of the local information of the

node, SWITCH checks the node state on the basis of the

Figure 8. Performance comparion of
PROC’nPHY with SWITCH

information including switch state. SWITCH hypothesizes

that the health nodes which are connected faulty switch will

cause the faults soon. Thus SWITCH moves the processes

from the nodes which are connected faulty switch earlier

than PROC’nPHY. The difference of performance is from

9% to 25%. This result indicates that it might be neces-

sary to give up the use of a perfectly healthy node. In other

words, this result indicates the prediction of fault is quite

effective.

5 Related work

LAM/MPI[16] has been extended to support fault tol-

erance and process migration with coordinated check-

point using the Chandy-Lamport algorithm [6]. However,

LAM/MPI does not support other fault tolerance algo-

rithms, such as message logging. In addition, it does not

provide automatic recovery mechanism because it does not

embody a fault detector.

Egida[15] focuses on designing, implementing and com-

paring several automatic fault tolerance protocols for MPI

applications. With this framework, pessimistic and causal

logging algorithms have been compared. However, its cov-

erage is limited to logging based protocols.

More recently, MPICH-V[3] system support a wide

range of fault tolerance protocols. Its generic frame-

work covers coordinated, uncoordinated, pessimistic log-

ging and causal logging, etc. By comparing multiple pro-

tocols, MPICH-V team has shown that coordinated check-

point achieves much better performance than message log-

ging both in fault-free environment and fragile environment.

The differnce between our research and MPICH-V is that

ABARIS is designed to be an extensive fault tolerant com-

ponent framework to support not only multiple fault toler-

ance protocols, but also multiple recovery protocols based

on fault models.

FT-MPI[8] handles failures at the MPI communicator

level. It provides programming interfaces to exploit errors

returned by MPI instructions when faults occur. Although

FT-MPI can deal with faults in a flexible manner, its main

drawback is lack of orthogonality, transparency, and porta-

bility; users need to add special fault tolerance code to the

application.

OpenMPI[9] is a project to combine technologies and

resources of several existing projects (FT-MPI, LA-MPI[1],

LAM/MPI, PACX-MPI[11] and so on). According to their

web site, they plan to provide multiple fault tolerance pro-

tocols, while current release does not have such support.

6 Conclusion and Future work

We proposed ABARIS framework, which has a

fault/recovery model aware component framework for MPI.

We have implemented a prototype of our ABARIS frame-

work on MPICH. Then we measure the overhead of

ABARIS frame work, and this result shows the overhead

is statistically negligible. Next, to demonstrate the valid-

ity of ABARIS framework, we evaluate the performance of

our prototype implementation by means of two environment

models and simulator of fault/recovery occurrence. As a re-

sult, it is found that using appropriate fault/recovery model

on individual execution environment achives low overhead.

As future work, we also plan to select ABARIS compo-

nent and its parameter automatically and dynamically be-

cause it may still be difficult for end-programmers to se-

lect appropriate ABARIS components for their execution

environments. For that purpose, we need to design perfor-

mance model based on existing research such as [14] that

manages the checkpoint intervals. In addition, we started

to implement ABARIS on MPICH-2. In this version, we

are implementing ABARIS framework on the layer which

virtualizes communication channel. Thus users can obtain

device-independent fault tolerant MPI based on ABARIS.

References

[1] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D.

Risinger, M. A. Taylor, and T. S. Woodall. Architecture of

LA-MPI, a network-fault-tolerant MPI. In IPDPS, 2004.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.

Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.

Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrish-

nan, and S. K. Weeratunga. The NAS Parallel Benchmarks.

The International Journal of Supercomputer Applications,

5(3):63–73, Fall 1991.

[3] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and

F. Cappello. MPICH-V: a multiprotocol fault tolerant mpi.

In International Journal of High Performance Computing

and Applications., 2005.
[4] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster

Environment for MPI. In Proceedings of Supercomputing

Symposium, pages 379–386, 1994.
[5] R. M. Butler and E. L. Lusk. Monitors, messages, and clus-

ters: the p4 parallel programming system.
[6] K. M. Chandy and L.Lamport. Distributed snapshots : De-

termining global states of distributed systems,. In Transac-

tions on Computer Systems, vol. 3(1). ACM,, pages 63–75,

February 1985.
[7] E. Elnozahy, D. Johnson, and Y. Wang. A survey of rollback-

recovery protocols in message-passing systems. ACM Com-

puting Surveys, 34(3):375–408, 2002.
[8] G. Fagg and a Dongarra. FT-MPI: Faulttolerant

mpi,supporting dynamic applications in a dynamic world.

In Euro PVM/MPI User’s Group Meeting 2000 ,Springer-

Verilag, Berlin, Germany, pages 346–353, 2000.
[9] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-

garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,

A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,

and T. S. Woodall. Open MPI: Goals, concept, and design

of a next generation MPI implementation. In Proceedings,

11th European PVM/MPI Users’ Group Meeting, pages 97–

104, Budapest, Hungary, September 2004.
[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-

performance, portable implementation of the MPI Message

Passing Interface Standard. Parallel Computing, 22(6):789–

828, 1996.
[11] R. Keller, B. Krammer, M. S. Mueller, M. M. Resch, and

E. Gabriel. MPI development tools and applications for the

grid,. In Workshop on Grid Applications and Programming

Tools, held in conjunction with the GGF8 meetings, Seattle,

WA, USA,, June 2003.
[12] B. Lowekamp, D. O’Hallaron, and T. Gross. Topol-

ogy discovery for large ethernet networks. In Proceed-

ings of the 2001 conference on Applications, technolo-

gies, architectures, and protocols for computer communica-

tions(SIGCOMM ’01), pages 237–248, 2001.
[13] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia

distributed monitoring system: Design, implementation and

experience. In Parallel Computing, 30,, July 2004.
[14] D. Nurmi, R. Wolski, and J. Brevik. Model-based check-

point scheduling for volatile resource environments. Tech-

nical Report 2004-25, University of California Santa Bar-

bara, Department of Computer Science, Santa Barbara, CA,

93106, 2004.
[15] S. Rao, L. Alvisi, and H. M. Vin. Egida: An extensible

toolkit for low overhead fault tolerance. In Proceedings of

the 29th Fault-tolerant Computing Symposium (FTCS-29),

Madison, Wisconsin,, pages 48–55, June 1999.
[16] J. M. Squyres and A. Lumsdaine. A Component Archi-

tecture for LAM/MPI. In Proceedings, 10th European

PVM/MPI Users’ Group Meeting, number 2840 in Lecture

Notes in Computer Science, pages 379–387, Venice, Italy,

September / October 2003. Springer-Verlag.
[17] V. C. Zandy. ckpt: A process checkpoint library, 2002.

http://www.cs.wisc.edu/˜zandy/ckpt.

