
Implementing the Advanced Switching Fabric Discovery Process*

Antonio Robles-Gómez1, Aurelio Bermúdez1, Rafael Casado1,
and Francisco J. Quiles1

1Universidad de Castilla-La Mancha
Instituto de Investigación en Informática (I3A)

02071 – Albacete, Spain
{arobles, abermu, rcasado, paco}@dsi.uclm.es

Abstract*

Advanced Switching is a new high-speed industrial
standard serial interconnect. It is defined as a switching
fabric architecture based on the PCI Express technology.
The Advanced Switching specification establishes a man-
agement infrastructure which maintains the fabric opera-
tion. The topology discovery process is triggered after
fabric initialization and every time a topological change
is detected. The information gathered by this process is
used to build a set of paths between fabric endpoints. This
work analyzes the performance of several possible im-
plementations for this management task.

1. Introduction

The Advanced Switching (ASI) technology has been
recently proposed as a standard for future interconnects
[4, 10]. The ASI specification [1] has been developed by
the Advanced Switching Interconnect Special Interest
Group (ASI-SIG). It is a chip-to-chip and backplane in-
terconnect switched fabric architecture.

In order to support high availability, ASI includes im-
portant features, such as device hot addition and removal,
redundant pathways, and fabric management failover. In
particular, the specification provides a fabric management
mechanism, which basically configures and monitors the
status of the network. Every time a topological change is
detected (for example, a failure in a network device), this

*
This work was partly supported by the following projects:

CSD2006-46 and TIN2006-15516-C04-02 (Ministerio de Educación y
Ciencia), and PBC05-007-1 (Junta de Comunidades de Castilla-La
Mancha). It was also supported by an FPI grant (TIC2003-08154-C06-

02 – Ministerio de Educación y Ciencia).

1-4244-0910-1/07/$20.00 ©2007 IEEE.

mechanism must discover the resulting topology. After
that, a new set of routes must be obtained and distributed
to the fabric endpoints. All these tasks are performed by
the fabric manager (FM), a software entity running on one
or more ASI endpoints.

The internal behavior of the management mechanism
is currently an open issue for vendors and researchers.
The ASI specification only considers a set of configura-
tion data structures into each device, and the management
packets used to access those structures.

Obviously, reducing the time required to completely
assimilate a change will minimize its negative impact on
application traffic. Some examples of this impact are
packet losses, network congestion, and increment of la-
tency. Alleviating these effects is the final goal of our
work.

In this paper the focus is on the first management task
after the detection of the change; the discovery process.
The ASI specification does not detail the way in which
the FM must obtain the fabric topology. It only states that
repetitive discovery packets must be sent in order to iden-
tify all active devices in the fabric. In this way, the FM
builds a graph of the fabric topology and learns the con-
figuration of each node.

Nevertheless, the ASI-SIG developers have recently
proposed a serialized discovery algorithm [11]. In this
work, we propose and comparatively analyze two alterna-
tive parallel implementations for this process. As we will
see, one of them significantly improves the serialized
proposal.

This paper is organized as follows. First, Section 2
briefly introduces the ASI architecture and the fabric
management support provided by the specification. Then,
Section 3 describes the three mentioned implementations
for the fabric discovery process. After that, Section 4
presents a detailed performance evaluation of each im-
plementation. Finally, Section 5 gives some conclusions
and describes our future work.

2. The Advanced Switching Architecture

ASI can be seen as the next step in the evolution of the
traditional PCI bus. In particular, it uses the PCI Express
[7] physical and link layers, differing at the transaction
layer. ASI provides enhanced support for features such as
flexible protocol encapsulation, peer-to-peer transfers,
multicast transfers, and QoS.

An ASI network connects multiple endpoints by means
of a switched serial fabric. Endpoints support up to 4
ports, and switches support up to 256 ports. The specified
base link bandwidth is 2.5 Gbps. However, effective
bandwidth is reduced to 2.0 Gbps by 8b/10b encoding.

The specification establishes three types of virtual
channels: unicast bypassable (BVC), unicast ordered
(OVC), and multicast (MVC). Each BVC implements an
ordered queue and a bypass queue. Packets marked as
“bypassable” are delivered to the bypass queue, and can
be “bypassed” by other packets at the ordered queue. On
the other hand, OVCs and MVCs only support ordered
queues.

A traffic class (TC) mechanism allows to group flows
of traffic for similar treatment. The traffic class of a
packet is defined at the source endpoint, and included at
the packet routing header. When a packet reaches a port,
this value is used to obtain the corresponding VC, by
using a set of fixed TC/VC mapping tables.

In order to simplify the hardware, ASI states that uni-
cast packets use source routing. Endpoints include path
information into the packets, by filling up the Turn Pool,
Turn Pointer, and D (direction) fields in the routing
header (see Figure 1). These fields are used at each inter-
mediate switch to obtain the output port. On the other
hand, multicast packets require looking up into a specific
forwarding table.

ASI defines several mechanisms for congestion man-
agement. First, link layer uses the credit-based flow con-
trol defined by the PCI Express architecture. Additional
optional congestion mechanisms are status-based flow
control, minimum bandwidth scheduler, and endpoint
source injection rate limiting.

ASI also establishes a mechanism to encapsulate pack-
ets of any upper-layer protocol. In particular, the PI (Pro-
tocol Interface) field in the packet routing header identi-
fies the nature of the encapsulated information. This al-
lows an ASI fabric to concurrently carry an indeterminate
number of independent data protocols.

2.1. ASI Fabric Management

Fabric management [10] is a set of functions, activi-
ties, and tasks that may include any or all of the following
operations among many others: fabric discovery, path
determination between endpoints, local and distributed
connection management, multicast group management,
bandwidth management, dynamic device addition and
removal, fabric supervision, and APIs and data-structure
elements for upper level, operating-system support.

After the fabric is powered up, a distributed process is
triggered in order to select primary and secondary fabric
managers. Only these two endpoints can configure the
fabric. If the primary FM fails, the secondary one takes
over. The first task of the FM consists in discovering the
fabric topology. This information is necessary to obtain a
set of paths between endpoints. The fabric discovery
process is also triggered every time that the FM detects
the occurrence of a topological change in the network.

To perform its functions, the FM accesses the configu-
ration space in each fabric device (endpoint or switch). It
is a storage area that contains a set of fields to specify
device characteristics as well as fields used to control the
device. This information is presented in the form of struc-
tures called capabilities. Each capability structure defines
a specific characteristic of the device. In particular, the
baseline capability includes device control and status
information. The first six 32-bit blocks in this capability
contain general information for the device, such as its
type and serial number, the number of ports supported,
and the maximum packet size. Next, we can find up to
256 32-bit blocks that point to the information about each
particular port in the device. This information includes
link speed and width, and current port state.

A “node configuration and control” protocol, PI-4, de-
fines the exchange of information between the FM and
the devices. The PI-4 read request packets allow the FM
to obtain information from any capability into a device. A
PI-4 read completion with data packet is returned by the
device, containing the requested information (up to eight
32-bit blocks). The path –in the opposite direction– and
the traffic class used by the response are the same as the
ones used by the request. If the read operation was not
successful, a PI-4 read completion with error packet is
returned.

Another management protocol considered in the ASI
specification is PI-5. It is an event-reporting mechanism
which may be used to detect topological changes. In par-
ticular, when a fabric device detects a change in the state
of a local port, it can notify this event to the FM, by
means of a PI-5 packet. After receiving this packet, the
FM starts the change assimilation process.

1

PI

6

P

7

P

C

R

C

8910 2

Turn PoolD

Traffic

Class

O

O

T

S

Credits

Required

F

E

C

N

Turn PointerHeader CRC

0345111213141516171819202122232425262728293031 1

PI

6

P

7

P

C

R

C

8910 2

Turn PoolD

Traffic

Class

O

O

T

S

Credits

Required

F

E

C

N

Turn PointerHeader CRC

0345111213141516171819202122232425262728293031 1

PI

6

P

7

P

C

R

C

8910 2

Turn PoolD

Traffic

Class

O

O

T

S

Credits

Required

F

E

C

N

Turn PointerHeader CRC

0345111213141516171819202122232425262728293031 1

PI

6

P

7

P

C

R

C

8910 2

Turn PoolD

Traffic

Class

O

O

T

S

Credits

Required

F

E

C

N

Turn PointerHeader CRC

0345111213141516171819202122232425262728293031

Figure 1. ASI packet routing header.

3. Implementing the Discovery Process

In this work, we have assumed that the discovery proc-
ess is centralized in the primary FM. In [10], alternative
organizations are discussed. We also suppose that the FM
obtains the complete fabric topology, discarding all the
previously collected information.

In this section three possible ways to implement the
discovery process are described. In all the cases, the FM
begins the process discovering the endpoint which hosts
it. After that, it uses a sequence of PI-4 read request pack-
ets to determine the nature (switch or endpoint) of each
discovered device, and to obtain information about the
activity of each port in those devices. The paths that these
packets need to reach fabric devices are computed as the
topology information grows.

3.1. Serial Discovery

A simple approach proposed by the ASI-SIG to im-
plement the discovery process consists in performing a
serialized discovery [11]. In this case, once the algorithm
starts discovering a device in the fabric, it reads all the
necessary information from its device configuration
space, using a sequential and synchronized way, before it
proceeds to discover additional devices. In other words, in

this algorithm there is only a request packet in the fabric
in every moment in time. In this paper, this algorithm will
be called Serial Packet.

This implementation follows a breadth-first strategy to
explore fabric devices. Figure 2 shows the flow chart
describing the algorithm. An active port indicates that
there is a live device attached to the other end of the port.
The FM extracts the following device to explore from an
exploration queue. Once it receives the device general
information, it checks if the device has already been dis-
covered through a different path. In that case, the FM
updates its topology database and proceeds to discover the
next device in the queue. In other case, the FM obtains
additional attributes for each port and updates its topo-
logical information. The FM inserts a new element in the
queue for each active port discovered. The discovery
process concludes when the exploration queue is empty.

3.2. Improving the Serialized Algorithm

Our first proposal consists in improving the Serial
Packet algorithm. In particular, we propose to add an
internal parallel behavior to the algorithm when it obtains
additional information about a specific device. Devices
are discovered serially, but internal ports are checked in
parallel. In this work, this algorithm will be called Serial

Discovery starts on

the host endpoint

Read host endpoint Configuration

Space. Update topology and

device information

Host endpoint has

active port(s)?

ASI fabric

discovery is done

no

Inject device(s) attached

to the active port(s) into

the Device Queue

yes

Is Device Queue

empty?

Start discovering the device

at the head of Device Queue.

Remove it from the Queue

no

Read device’s DSN from

Its Configuration Space

Has device already been

discovered (i.e. through alternate

paths)?

Update the topology and connectivity

information for the device. Stop

discovering the device

Read the additional

attributes from device’s

Configuration Space and

update topology and

device information

Device has

active port(s)?

no

yes

For active port(s) of the

device do

no

yes

yes

Discovery starts on

the host endpoint

Read host endpoint Configuration

Space. Update topology and

device information

Host endpoint has

active port(s)?

ASI fabric

discovery is done

no

Inject device(s) attached

to the active port(s) into

the Device Queue

yes

Is Device Queue

empty?

Start discovering the device

at the head of Device Queue.

Remove it from the Queue

no

Read device’s DSN from

Its Configuration Space

Has device already been

discovered (i.e. through alternate

paths)?

Update the topology and connectivity

information for the device. Stop

discovering the device

Read the additional

attributes from device’s

Configuration Space and

update topology and

device information

Device has

active port(s)?

no

yes

For active port(s) of the

device do

no

yes

yes

Figure 2. Serial discovery algorithm proposed in [11].

Device.
The flow chart in Figure 2 is also valid for the Serial

Device algorithm. The difference is that the information
about the ports in a device is obtained in a parallel way,
by sending concurrently all the necessary PI-4 read re-
quest packets.

3.3. Parallel Discovery

In a completely parallel solution, multiple devices are
discovered simultaneously. In our implementation, the
FM performs the well-known propagation-order explora-
tion algorithm [9] over the fabric. This means that discov-
ery packets (PI-4) spread throughout the fabric in an “un-
controlled” way. The FM sends new PI-4 packets as soon
as it receives responses to previous requests from devices.
In this way, the order in which devices are discovered is
not deterministic. In this paper, this algorithm will be
called Parallel Device.

Figure 3 shows the behavior of the parallel discovery
algorithm. In this case, the exploration queue has been
replaced by a table of pending packets. Every time the
FM receives a response packet, it updates its topology
database. When the response packet includes general
information about a device, the FM must inject new pack-
ets to obtain information about the ports in the discovered
device. If a new active port has just been discovered, the
FM sends a request packet, in order to discover the device
at the other end of the link. The fabric topology has been

completely discovered when the table of pending packets
is empty.

4. Performance Evaluation

In this section, we present the simulation results that
allow us to comparatively analyze the discovery alterna-
tives described above. All the results presented in this
work have been obtained using simulation techniques.
Before showing and analyzing them, we describe the
simulation methodology.

4.1. Simulation Methodology

Our simulation model [8] has been developed using the
OPNET Modeler software [6]. The model embodies

Topology Switches Endpoints Total

3×3 mesh, 3×3 torus 9 8 17

4×4 mesh, 4×4 torus 16 12 28

6×6 mesh, 6×6 torus 36 20 56

8×8 mesh, 8×8 torus 64 28 92

9×9 torus 81 32 113

4-port 2-tree 6 8 14

4-port 3-tree 20 16 36

4-port 4-tree 56 32 88

8-port 2-tree 12 32 44

Table 1. Topologies evaluated.

Discovery starts on

the host endpoint

Read host endpoint Configuration

Space. Update topology and

device information

Host endpoint has

active port(s)?

ASI fabric

discovery is done

noyes

Is the manager

waiting packets?

yes

Update topology and

device information

New active

port discovered?

no

For the new

port do

no

Inject discovery packet(s)

into the fabric

Packet received?

no

yes

yes

Discovery starts on

the host endpoint

Read host endpoint Configuration

Space. Update topology and

device information

Host endpoint has

active port(s)?

ASI fabric

discovery is done

noyes

Is the manager

waiting packets?

yes

Update topology and

device information

New active

port discovered?

no

For the new

port do

no

Inject discovery packet(s)

into the fabric

Packet received?

no

yes

yes

Figure 3. The proposed parallel discovery algorithm.

physical and link layers of ASI, allowing the simulation
of several network designs. It is made up of ASI x1 links,
16-port multiplexed virtual cut-through switches [3], and
1-port fabric endpoints.

Additionally, the model provides the necessary support
–management entities, device capabilities, and PI-4 and
PI-5 packets– to develop fabric management mechanisms.
It also allows accurate measuring of control overhead and
the time spent by each task in the management process.

In order to obtain more realistic results, the model con-
siders the time consumed by the FM and the device to
process each PI-4 packet. In particular, we have measured
this time by using profiling techniques, assuming a soft-
ware implementation for the management entities, and
using an Intel Pentium 4 (3.00 GHz) microprocessor.

We have checked that the packet processing time at the
FM is slightly smaller for the Parallel Device discovery

implementation (see Figure 4). The reason is that the
implementation of the serial algorithms is more complex
–they have to handle an exploration queue. The Serial
Device algorithm is also faster than the Serial Packet one.
The reason is that the former has to maintain less tempo-
rary information than the latter.

Additionally, the packet processing time at the fabric
devices is low, and it does not depend on the discovery
algorithm applied or the network size. The reason is that
this processing always consists in returning a response
packet including the requested information.

We have evaluated several regular topologies, includ-
ing 2-D meshes and tori, and fixed-arity fat-trees built by
using the methodology proposed in [5]. In meshes and
tori, each external switch has an endpoint attached. Table
1 includes the complete list, and Figure 5 shows one of
them.

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Active Nodes

D
is

co
ve

ry
 T

im
e

(s
ec

)

Serial Packet
Serial Device
Parallel Device

(a) Versus the amount of active nodes

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Physical Nodes

D
is

co
ve

ry
 T

im
e

(s
ec

)

Serial Packet
Serial Device
Parallel Device

(b) Versus the network size (average results)

Figure 6. Time required by each algorithm
to obtain the fabric topology.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

Nettwork Size (switches)

P
I−

4
P

ro
ce

ss
in

g
T

im
e

(m
ic

ro
se

c)

Serial Packet
Serial Device
Parallel Device

Figure 4. Average time to process a PI-4
packet at the FM for each discovery algo-
rithm, as a function of the network size.

Figure 5. Example of an ASI fabric topology
in OPNET (6×6 mesh).

The results presented here have been obtained without
considering application traffic into the network. We have
checked that this traffic scarcely influences the discovery
time. The reason is that, in ASI, the management and
notification packets have the highest priority when they
are transmitted through the fabric.

Each simulation begins with a transient period in
which fabric devices are activated and the FM gathers the
initial topology. After that, we have programmed the
occurrence of a topological change, consisting in the
addition or removal of a randomly chosen fabric switch.
We have chosen a subset of possible causes for change,
without lack of generality. For the detection of changes,
we have implemented the event-reporting mechanism (PI-
5) proposed in the ASI specification. This experiment has
been repeated several times for each topology.

4.2. Simulation Results

Figure 6a shows the discovery time for each simulation
run. Horizontal axis represents the number of active and
reachable devices in the fabric after the topological

change. Results show that the discovery time is always
smaller for the Parallel Device algorithm. Note that this
improvement is scalable. The Serial Device algorithm is
also a bit better than the Serial Packet one. Another im-
portant observation is that this behavior does not depend
on the type of topology. Figure 6b shows the same results
using average values for each topology in Table 1.

In order to analyze these results, Figure 7a details the
time in which each discovery packet is processed at the
FM, for the 3×3 mesh topology in Table 1, and assuming
that all fabric devices are active.

First, we can observe that the slope of the Serial
Packet series is constant. The reason is that this algorithm
always has a serialized behavior. That means that the FM
is idle while it is waiting for a packet response. On the
other hand, the slope in the Serial Device series varies
depending on the operation being performed by the FM.
When it is obtaining general information about a new
device, the algorithm has a serialized behavior. However,
when the FM is obtaining information about the device
ports, the serial process has a parallel behavior. That
means that there is always a new packet pending to be

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
x 10

−3

Packet Number

S
im

ul
at

io
n

T
im

e
(s

ec
)

Serial Packet
Serial Device
Parallel Device

(a) Time in which each discovery packet is processed
(3×3 mesh)

Time
Parallel behavior

Serial behavior

TFM TFM

TFM

TDevice

TProp TProp

TDevice
TProp TProp

TFM

TDevice
TProp TProp

Time
Parallel behavior

Serial behavior

TFM TFM

TFM

TDevice

TProp TProp

TDevice
TProp TProp

TFM

TDevice
TProp TProp

(b) Serial and parallel behaviors

Figure 7. Processing packets at the FM.

processed when the FM finishes processing the current
one. The time to transmit a request packet, to process it at
the destination device, and to transmit the corresponding
response to the FM is overlapped with the processing of a
previous packet. Finally, the slope in the Parallel Device
series is again constant, because this algorithm has a
completely parallel behavior.

Figure 7b represents the serial and parallel ideal behav-
iors graphically. In the figure, TFM and TDevice refer to the
time to process a packet in the FM and a fabric device,
respectively, and TProp refers to the time to transmit a
request/response packet trough the fabric.

4.3. Modifying the Performance of the Manage-

ment Entities

Next, we analyze the effect of varying the perform-
ance of the management entities on the time required by
the discovery algorithms. To do that, we have conducted
new simulations by using a factor to increase or decrease
the performance of the FM and the fabric devices. A fac-

(a)

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Active Nodes

D
is

co
ve

ry
 T

im
e

(s
ec

)

Serial Packet
Serial Device
Parallel Device

(b)

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Active Nodes

D
is

co
ve

ry
 T

im
e

(s
ec

)

Serial Packet
Serial Device
Parallel Device

(c)

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Active Nodes

D
is

co
ve

ry
 T

im
e

(s
ec

)

Serial Packet
Serial Device
Parallel Device

Figure 9. Discovery time for three particular
combinations of the processing factors: (a)
FM factor=1, Device factor=1; (b) FM fac-
tor=1, Device factor=0.2; (c) FM factor=4,
Device factor=0.2.

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

FM Processing Factor

D
is

co
ve

ry
 T

im
e

(s
ec

)

Serial Packet
Serial Device
Parallel Device

(a) Varying the FM factor (device factor=1)

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

DM Processing Factor

D
is

co
ve

ry
 T

im
e

(s
ec

)

Serial Packet
Serial Device
Parallel Device

(b) Varying the device factor (FM factor=1)

Figure 8. Discovery time for different proc-
essing factors (8×8 mesh).

tor of one represents the performance of an Intel Pentium
IV (3.00 GHz) microprocessor. Previous results have
been obtained by using this value. A processing factor of
two indicates that packet processing is two times faster.

Figure 8a shows the discovery time obtained as a
function of the FM processing factor applied, for the 8×8
mesh topology in Table 1, and assuming that all fabric
devices are active. Results for different topologies are
similar. We can observe that as the processing factor
grows up, the discovery time decreases, and the difference
between the serial and parallel implementations increases.
Moreover, the difference between the Serial Packet and
Serial Device algorithms slightly decreases.

As we can notice in Figure 8b, increasing the device
processing speed only improves the serial discovery algo-
rithms. The Parallel Device algorithm is not affected by
the time consumed by the devices, because this process is
overlapped with the processing of packets at the FM.
Only when devices are too slow (factors < 1/3) the dis-
covery time is affected.

According to these results, we have repeated the initial
comparative study. Figure 9a shows the same results than
Figure 6a, but adapting the scale in the vertical axis. On
the other hand, in Figure 9b and Figure 9c we have fixed
the device processing factor to 0.2. The difference be-
tween both plots is that Figure 9c shows the results using
a FM processing factor equal to 4.

We can conclude that for faster FM and slower fabric
devices, the difference between the Parallel Device dis-
covery algorithm and the serial ones increases, independ-
ently of the fabric size.

5. Conclusions and Future Work

In this paper, several mechanisms to discover the to-
pology of an Advanced Switching fabric are compared.
Two of them have a serial behavior, discovering only one
device at a time. The other one propagates the exploration
through several paths in parallel. We have seen that the
Parallel Device algorithm obtains the initially expected
improvement compared with the serial ones. Additionally,
differences between both implementations are more no-
ticeable as the performance of the fabric manager in-
creases and fabric devices are slower.

As future work, we plan to explore other approaches to
perform the fabric discovery. One of them is to distribute
the entire process through several collaborative fabric
managers, in order to increase parallelization. A decen-
tralized mode is more complex to design, because of the
fact that several managers –in different locations and
manipulating different data structures– must be coordi-
nated.

Another possibility is to explore only the portion of the
network affected by the change, instead of the entire fab-

ric. However, as we have checked in previous works [2],
the implementation of a discovery technique which reuses
previous information is relatively complex.

We also plan to propose and analyze particular imple-
mentations for the rest of management tasks involved in
the process of assimilating topological changes. In par-
ticular, we are interested in tackling the problem of dy-
namically distributing new paths to fabric endpoints after
the occurrence of a change.

References

 [1] Advanced Switching Interconnect Special Interest Group,
Advanced Switching Core Architecture Specification (Re-
vision 1.0), http://www.asi-sig.org, December 2003.

[2] A. Bermúdez, R. Casado, F. J. Quiles, T. M. Pinkston, and
J. Duato, On the InfiniBand Subnet Discovery Process, In
Proc. IEEE International Conference on Cluster Comput-
ing, Hong Kong (ROC), December 2003.

[3] J. Duato, S. Yalamanchili, and L. Ni, Interconnection
Networks: An Engineering Approach, Morgan Kaufmann
Publishers, 2003.

[4] D. Mayhew and V. Krishnan, PCI Express and Advanced
Switching: evolutionary path to building next generation
interconnects, In Proc. 11th Symposium on High Perform-
ance Interconnects (HOTI’03), 2003.

[5] X. Lin, Y. Chung, and T. Huang, A multiple LID routing
scheme for fat-tree-based InfiniBand networks, In Proc. In-
ternational Parallel and Distributed Processing Sympo-
sium, April 2004.

[6] OPNET Technologies, Inc., http://www.opnet.com/.
[7] PCI-SIG, PCI Express Base Specification (Revision 1.0.a),

http://www.pci-sig.org, April 2003.
[8] A. Robles-Gómez, E. M. García, A. Bermúdez, R. Casado,

and F. J. Quiles, A Model for the Development of ASI Fab-
ric Management Protocols, In Proc. Euro-Par 2006 Con-

ference, September 2006.
[9] T. L. Rodeheffer and M. D. Schroeder, Automatic recon-

figuration in Autonet, In Proc. 13th ACM Symposium on
Operating Systems Principles, October 1991.

[10] M. Rooholamini, Advanced Switching: a new take on PCI
Express, http://www.asi-sig.org/press/Articles/, October
2004.

[11] M. Rooholamini and R. Kaapor, Fabric discovery in ASI,
http://www.asi-sig.org/press/Articles/, October 2005.

