
Deterministic versus Adaptive Routing in Fat-Trees ∗

C. Gómez, F. Gilabert, M.E. Gómez, P. López and J. Duato

Dept. of Computer Engineering
Universidad Politécnica de Valencia

Camino de Vera, 14, 46071–Valencia, Spain
{crigore, fragivil}@gap.upv.es and {megomez, plopez, jduato}@disca.upv.es

Abstract

Clusters of PCs have become very popular to build
high performance computers. These machines use commo-
dity PCs linked by a high speed interconnect. Routing is
one of the most important design issues of interconnection
networks. Adaptive routing usually better balances net-
work traffic, thus allowing the network to obtain a higher
throughput. However, adaptive routing introduces out-of-
order packet delivery, which is unacceptable for some ap-
plications. Concerning topology, most of the commercially
available interconnects are based on fat-tree. Fat-trees offer
a rich connectivity among nodes, making possible to obtain
paths between all source-destination pairs that do not share
any link. We exploit this idea to propose a deterministic
routing algorithm for fat-trees, comparing it with adaptive
routing in several workloads. The results show that determi-
nistic routing can achieve a similar, and in some scenarios
higher, level of performance than adaptive routing, while
providing in-order packet delivery.

1 Introduction

In large parallel computers, high-performance inter-
connection networks are crucial to achieve the maximum
performance. Routing is a critical design issues of inter-
connection networks [4]. The routing strategy determi-
nes the path that each packet follows between a source–
destination pair. In deterministic routing schemes, an in-
jected packet traverses a fixed, predetermined path between
source and destination, while in adaptive routing schemes

∗This work was supported by the Spanish MCYT under Grant
TIN2006-15516-C04-01, by CONSOLIDER-INGENIO 2010 under Grant
CSD2006-00046 and by the European Commission in the context of the
SCALA integrated project #27648 (FP6).

1-4244-0910-1/07/$20.00 c©2007 IEEE.

the packet may traverse a number of alternative paths. De-
terministic routing algorithms usually do a very poor job ba-
lancing traffic among the network links, but they are usually
easier to implement and easier to be deadlock-free. Moreo-
ver, for networks in which the ordering of messages bet-
ween particular source–destination pairs is important, de-
terministic routing is often a simple way to guarantee in-
order delivery. This is the case, for example, for certain ca-
che coherence protocols and some communication libraries.
On the other hand, adaptive routing algorithms take into ac-
count the status of the network in order to make the rou-
ting decisions. This information may include the status of
links or the queue lengths. Adaptive routing better balances
network traffic, thus allowing the network to obtain a hig-
her throughput. A good adaptive routing algorithm should
outperform a deterministic one, since it uses network state
information that is not available for deterministic routing.

Cluster-based machines use any of the commercial high-
performance switch-based point-to-point interconnects.
Either regular direct networks (tori and meshes) or indirect
multistage networks (MINs) are the usual choice. In par-
ticular, fat-trees have raised in popularity in the past few
years (i.e., Myrinet [11], InfiniBand [8], Quadrics [12]).

The authors in [1] compare an oblivious routing algo-
rithm with an adaptive routing algorithm for multistage net-
works, and conclude that an adaptive algorithm achieves a
higher performance. The readers should take into account
that oblivious routing is not the same than deterministic rou-
ting [4, 3], since oblivious routing can provide several paths
for a source–destination pair and the routing decision is ta-
ken without considering (oblivious to) network status.

In this paper, we focus on routing in fat-trees. In par-
ticular, we propose a deterministic routing algorithm for
fat-trees. As stated above, deterministic routing has some
advantages over adaptive routing, for instance simplicity or
in–order packet delivery. We will show that the proposed
deterministic routing can be implemented in a compact-way
and that it is able to obtain similar or even better perfor-

mance than adaptive routing in fat-trees. The rest of the
paper is organized as follows. Section 2 revises the fat-tree
topology and presents the notation and assumptions used
in the following sections. Section 3 describes an adaptive
routing algorithm for fat-trees and a possible implementa-
tion using Interval Routing (IR) [2]. Section 4 present the
proposed deterministic routing algorithm for fat-trees and
shows how it can be implemented using Flexible Interval
Routing (FIR) [7]. Section 5 evaluates its performance. Fi-
nally, some conclusions are drawn.

2 Fat-Tree Topology

The k-ary n-trees are a parametric family of regular mul-
tistage topologies. The number of stages is n and k is the
arity or the number of links of a switch that connect to the
previous or to the next stage (i.e., the switch degree is 2k).
A k-ary n-tree is able to connect N = kn processing nodes
using nkn−1 switches.

Each processing node is represented as a n-tuple
{0, 1, ..., k−1}n, and each switch is defined as a pair 〈s, o〉,
where s is the stage where the switch is located at, s∈ {0..n-
1}, and o is a (n−1)-tuple {0, 1, ..., k−1}n−1 which iden-
tifies the switch inside the stage. Figure 1 shows a 2-ary
4-tree, with 16 processing nodes and 32 switches.

In a fat-tree, two switches 〈s, on−2, ..., o1, o0〉 and
〈s′, o′n−2, ... , o′1, o

′
0〉 are connected by an edge if s′ = s+1

and oi = o′i for all i �= s. On the other hand, there is a edge
between the switch 〈0, on−2, ..., o1, o0〉 and the processing
node pn−1, ..., p1, p0 if oi = pi+1 for all i∈ {n−2, ..., 1, 0}.
This edge is labeled with p0 in the stage 0. In what follows,
we will assume that descending links are labeled from 0 to
k − 1, and ascending links from k to 2k − 1.

3 Adaptive Routing in Fat–trees

In k-ary n-trees, minimal routing from a source to a de-
stination can be accomplished by sending packets upwards
to one of the nearest common ancestors of the source and
destination nodes and then, from there, downwards to de-
stination. When crossing stages in the upwards direction,
several paths are possible, thus providing adaptive routing.
In fact, each switch can select any of its up output ports.
Once a nearest common ancestor has been reached, then
the packet is turned around and sent downwards to its desti-
nation and just a single path is available.

The stage up to which the packet must be forwarded
is obtained by comparing the source and destination com-
ponents beginning from the most significant one. The first
pair of components that differs indicates the last stage to
forward up the packet. For instance, in order to send a
packet from node pn−1, ..., p1, p0 to node p′n−1, ..., p

′
1, p

′
0,

the packet must be sent up to the stage i, if pj = p′j for

j ∈ {n − 1..i + 1} and pi �= p′i. Once in the stage i, the
descending path is deterministic. At each stage, the descen-
ding link to choose is indicated by the component corre-
sponding to that stage in the destination n-tuple. In the ex-
ample, from stage i, the packet must be forwarded through
the p′i link; from stage i − 1 through link p′i−1, and so on.

3.1 Adaptive Routing Implementation

This routing algorithm can be easily implemented using
Interval Routing (IR) [2]. In IR, each switch output port has
one associated interval. Each packet is forwarded through
the output port whose interval contains the destination of the
packet. The interval associated to each output port can be
cyclic and is implemented with two registers. We will refer
to these two registers as First Interval (FI) and Last Interval
(LI). Moreover, this scheme requires a simple hardware, at
most a pair of comparators for each output link, therefore it
is also very fast.

Figure 1 presents an example of configuration of the IR
registers for a 16-node 2-ary 4-tree. As it can be seen, the
interval associated to some output ports must be cyclic. As
an example, we describe how to route with IR a packet from
node 1 to node 4. Switch 0 can use both ascending links
(links 2 and 3) to route the packet, since destination 4 is in-
cluded in the intervals associated to both links. Assume that
the selection function selects link 3, so switch 9 is reached.
Switch 9 can route the packet through any of its ascending
links. Assume link 2 is selected, then the packet reaches
switch 17. At switch 17, only link 1 is allowed to route the
packet destined to node 4, so the packet arrives to switch 11.
At this switch, only link 0 is allowed to route the packet, and
switch 2 is reached. Finally switch 2 delivers the packet to
node 4 through link 0.

Next, we present a general algorithm to fill the FI and LI
registers to support adaptive routing in fat-trees. Figure 2
shows the prototyped FI and LI configuration for the links
of a generic switch of a k-ary n-tree. The switch is labeled
as 〈s, on−2, on−3, ..., o1, o0〉, so it is located at the stage s.
First, we identify the destinations reachable through the de-
scending links, and later the rest of destinations reachable
through all the ascending links.

The 〈pn−1, ..., p1, p0〉 nodes that are reachable by the de-
scending links can be easily computed from the switch com-
ponents. In particular, pi = oi−1 for i ∈ {n − 1, .., s + 1}.
This set of destinations is split in several subsets that can
be reached from each descending link depending on the ps

component, being s the switch stage. The subset of nodes
whose ps = 0 are reachable through link 0, the subset of de-
stinations whose ps = 1 are reachable through link 1, and
so on. As an example, link 0 of switch 〈s, on−2, ..o1, o0〉
forwards packets destined to nodes 〈on−2, ..., os, 0, X...X〉,
that is, FIdesc. = 〈on−2, ..., os, 0, 0...0〉 and LIdesc. =
〈on−2, ..., os, 0, k − 1...k − 1〉.

0000..0011

0000..0011

0000..0011

0000..0111

1000..1111

0000..0111

1000..1111

0000..0111

1000..1111

0000..0111

1000..1111

1000..1111

0000..0111

0000..0111

1000..1111

0000..0111

1000..1111

0000..0111

1000..1111

4

5

6

7

12

13

14

15

9

1001..1001

1101..1101

1111..1111

1010..1011

1010..1011

8

0000..1101

10

11

12

13

14

15

3

4

2

0

1

2

3

8

9

10

11

7

6

5

1

0001..0001

0011..0011

0101..0101

0111..0111

0010..1111

0010..1111

0010..0011

0100..1111

0100..1111

0110..0111

0

17

18

19

16

21

22

23

20

25

26

27

24

29

30

31

28

0000..0000

0010..0010

0100..0100

1010..1010

1011..1011

1100..1100

1110..1110

0100..0001

0100..0001

0110..0011

1100..1001

1100..1001

0000..0001

0000..0001

0100..0101

0010..0011

0100..0101

0110..0111

1000..1001

1100..1101

1000..1001

1110..1111

1100..1101

1110..1111

0100..1111

0100..1111

0000..1011

0000..1011

0000..1011

0000..1011

0100..0111

0100..0111

0000..0011

0100..0111

0100..0111

1000..1011

1100..1111

1000..1011

1100..1111

1000..1011

1100..1111

1000..1011

1100..1111

1000..1111

1000..1111

1000..1111

1000..1111

1000..1111

1000..1111

1000..1111

1000..1111

0000..0111

0000..0111

0000..0111

0000..0111

0000..0111

0000..0111

0000..0111

0000..0111

0110..0110

1000..1000

0110..0011

0000..1101

1100..0111

1100..0111

1100..0111

1100..0111

1000..0011

1000..0011

1000..0101

1000..0101

1010..0111

1010..0111

1110..1011

1110..1011

1000..0011

1000..0011

FI..LI

0000

0,000

0,001

0,010

1,000

1,001 2,001

2,000 3,000

3,001

3,0102,0101,010

0,011 1,011 2,011 3,011

3,1002,1001,1000,100

0,101 1,101 2,101 3,101

3,110

3,1112,111

2,1101,110

1,1110,111

0,110

1110

0100

0001

0010

0011

0110

0101

0111

1001

1000

1010

1011

1100

1101

1111

Figure 1. Adaptive routing with IR in a 2-ary 4-tree.

The destinations that are not reachable through the de-
scending links, but are reachable through the ascending
links, are the ones that do not meet pi = oi−1 for i ∈
{n − 1, .., s + 1}. Indeed, this set is reachable through all
the ascending links. The FI register of the ascending links
must store the next destination to the largest one reachable
through the descending links. That is, the next destination
to the one stored in the LI register of the k − 1 descending
link. Likewise, the LI register of the ascending links must
store the previous destination to the smallest one reachable
through the descending links. That is, FIasc. = (LIlinkk−1

+1) modkn and LIasc. = (FIlink0 − 1 + kn) mod kn,
being kn the number of nodes in the network1. This inter-
val is valid for all the ascending links of the switch and can
result in a cyclic interval.

1For LIasc. we add kn in order avoid setting a negative destination
value.

4 Deterministic Routing in Fat–trees

In this section, we propose a deterministic routing algo-
rithm for fat-trees. Our challenge is to propose an efficient
mechanism to reduce the multiple ascending paths in a fat-
tree into a single one for each source–destination pair. The
path reduction should be done trying to balance network
link utilization. All the links of a given stage should be
used by a similar number of paths. This is easy to achieve
in the ascending phase. A simple idea is to divide the adap-
tive up interval of a switch into k sub–intervals of the same
size, but by using this mechanism the descending links are
not balanced. We analyzed several approaches, trying to
balance both routing phases, and found that a good alter-
native is to shuffle, at each switch, consecutive destinations
in the ascending phase. In other words, consecutive desti-
nations are distributed among the different ascending links,
reaching different switches in the next stage.

n−2 n−3
S,O ,O ,...,O ,O

1 0

...

0 k

2k−1k−1

LI((O ,O ,...,O ,0,0,0...,0) + K − 1) MOD K
n n

FI((O ,O ,...,O ,k−1,k−1,k−1,...,k−1) + 1) MOD K
n

s

sn−3

n−3n−2

n−2

FI
LI

(

(

)O ,O ,...,O ,k−1,0,0,...,0

)

FI(

LI(
O ,O ,...,O ,0,0,0...,0)

)s

s

s

s

n−2
O ,O ,...,O ,0,k−1,k−1,...,k−1
n−2

n−3

n−3

n−3

n−3
O ,O ,...,O ,k−1,k−1,k−1,...,k−1
n−2

n−2

Figure 2. Prototyped register configuration.

We will explain the mechanism by using an example. Fi-
gure 3 shows the destination node distribution in the ascen-
ding and descending links of a 2-ary 3-tree using our pro-
posal. In the figure, each ascending link has been labeled
(in bold-italic) with the destinations whose packets will be
forwarded through it. In the first stage, consecutive desti-
nations are shuffled between the two up links. To do that,
the least significant component of the packet destination ad-
dress (the least significant bit) is used to select the ascending
output port. That is, packets that must be forwarded up-
wards select the ascending output port indicated by the least
significant component of the packet destination (p0). There-
fore, consecutive destinations are sent to different switches
in the next stage. At the second stage, all the destinations
that reach a switch have the same least significant compo-
nent. Hence the component to consider in the selection of
the up output port in this stage is the following one in the
destination address. For instance, at switch 4, only packets
destined to nodes 0, 2, 4 and 6 reach that switch and only
packets destined to nodes 4 and 6 must be forwarded up-
wards. Packets destined to node 4 select the first up link,
and packets destined to node 6 the other one.

Considering all the switches of stage 1, packets destined
to nodes 0, 1, 4 and 5 use the first up output port of the swit-
ches and those packets destined to nodes 2, 3, 6 and 7 use
the second output port. That is, the second least significant
component of the packet destination is used. This mecha-
nism distributes the traffic destined to different nodes, as
shown in Figure 3. As it can be seen, packets destined to
the same node reach the same switch at the last stage in-
dependently of their source node. Each switch of the last
stage receives packets addressed only to two destinations,
and packets destined to each one are forwarded through a
different descending link.

The bottom of Figure 3 shows the number of paths
(source–destination pairs) that use of each link at each
stage. Both, the ascending and descending links of a gi-
ven stage are used by the same number of paths. So, traffic
in the network is completely balanced.

023 1

RRR

RRR=0011 (ascending links)
RRR=0000 (descending links)

MR

001..001
001

001..001
001

111

67 4

FI..LI

000..000

000..000
001

001
000..000

001

000..000
001

000..000
010

010..010
010

000..000
010

010..010
010

010..010
010

010
000..000

000..000
010

010..010
010

000..000
111

001..001
111

010..010

011..011
111

100..100
111

101..101
111

110..110
111

111..111
111

111
110..111

111
100..101

110..111
111

111

010..011
111

111
000..001

010..011

111
000..001 000..011

111

100..111
111

000..011
111

100..111
111

000..011
111

100..111
111

000..011
111

100..111
111

001
001..001

001
001..001

100..101

0

1

2

3

4

5

6

7

3

2

1

0 4

5

6

7 11

10

9

8

0,11

0,10

0,01

0,00 1,00

1,01

1,10

1,11 2,11

2,10

2,01

2,00

000

001

010

011

100

101

110

111

stage 0 stage 1 stage 22,4,6 4

3,5,7

0
6

0

4

0,4,6

1,5,7 1

3

5

7
1

5

2

6

2

0

6

4

0,2,6

1,3,7

0,2,4

1,3,5 5

7

3

5

3

1

2

Number of paths:

Figure 3. Deterministic routing in a 2-ary 3-
tree with FIR registers.

4.1 Deterministic Routing Implementa-
tion

In this section, we show how the proposed determini-
stic routing strategy for fat-trees can be easily implemented
using the Flexible Interval Routing (FIR) [7]. To make this
paper self-contained, we first summarize FIR.

FIR can implement the most commonly-used routing al-
gorithms in meshes and tori. In FIR, as in IR, each output
port has also an associated cyclic interval, which is imple-
mented with the FI and LI registers. But, in order to add
flexibility, additional registers are associated to the output
ports. In particular, each output port has a Mask Register
(MR). This register indicates which bits of the packet de-
stination address are compared with the output port bounds
(provided by the FI and LI registers).

In order to guarantee deadlock freedom, some routing
restrictions must be usually applied. These routing restric-
tions are taken into account in FIR by means of the Routing
Restrictions Register (RRR), which defines, for each output
port, which other output ports of the switch should be se-
lected prior to this one. This register has one bit per output
port. For a given output port i, the j bit in the RRR indicates
whether the output port j has more preference (bit set to 1)
or not (0) than output port i. Thus, the final routing deci-
sion for an output port i is obtained not only by comparing
the masked destination with the interval bounds, but also by
checking the bits in its RRR.

Now, we show how these registers can be configured to
route packets in fat-trees following the proposed determi-

s*r{0}

being
k = arity of the switch
n = number of stages

n*r = bits in destination identifiers
r = log(k); (* bits used by each stage in the destination addresses *)

s*rn*r−(s+1)*r

stage s
KK

link L

{0}..s*rFI..LI={0}

{1}r {0}

L−kn*r−(s+1)*r

MR={0}

n*r−(s+1)*r L−k{0}

(* selection of the bits corresponding to the current stage *)

RRR={0} {1}

(* the bits corresponding to the current stage are given by the link identifier *)
(* they must be equal to L−k, being represented by r bits *)

Figure 4. Register configuration in the ascen-
ding.

nistic routing algorithm. Notice that the adaptive routing
algorithm described in section 3 can be also implemented
with FIR, since IR is a subset of FIR.

We begin explaining how to configure the ascending
links. They are configured in a very different way than in the
adaptive case, since the number of ascending paths is redu-
ced to one for each source–destination pair. At each switch,
the ascending link to use is obtained from the packet desti-
nation component corresponding to the stage at which the
switch is located. A given packet is only forwarded upwards
through that up link. That is, at stage 0, the least significant
component is used, at stage 1 the following one and so on.
To obtain the proper component from the destination iden-
tifier corresponding to the switch stage, we use the Mask
Register (MR). The MR of each ascending link sets to 1
the bits corresponding to the component associated to the
switch stage. Figure 3 shows the FIR register configuration
for a 2-ary 3-tree. In the first stage, MR is set to 001, as
only the least significant bit is selected and compared with
FI and LI. Packets are forwarded through the ascending out-
put port depending on the least significant component of its
destination. At stage 1, the next bit or component is consi-
dered (MR is set to 010) and so on. In k-ary n-trees with
k > 2 the components have more than one bit and, thus, in
the MR more than one bit is set to 1 to select the component
given by the switch stage.

Descending links have the same values stored in FI and
LI as the ones with adaptive routing, since the path reduc-
tion is only done in the upwards phase. As the MR is not
used in the downwards phase, it is set to all 1s to select all
the bits in the destination address. Notice that, the same
downwards paths valid in the adaptive case are also valid in
the deterministic case, but only one is actually used.

Notice that in Figure 3 the destinations reachable
through the descending links of a switch (for instance, de-
stinations 0 and 1 at switch 0) are also included in the ascen-
ding intervals, so packets destined to that nodes could be in-
correctly forwarded through those upwards links. To avoid
this problem, the RRR register is used to give preference to
the descending links over the ascending ones and guaran-

tee a minimal path. In the RRR, the half lowest significant
bits correspond to the descending links and the half most si-
gnificant to the ascending ones. Therefore, in the ascending
links (links 2 and 3) the RRR stores 0011, to give preference
to links 0 and 1. In this way, as an example, when routing a
packet to destination 0 at switch 0, both output ports, 0 and
2, may be allowed, since this destination, after being mas-
ked, is included in the intervals associated to both output
ports, but as output port 2 gives preference to output port 0,
output port 2 is not finally returned.

Figure 4 shows an algorithm for configuring the FIR re-
gisters of the ascending links. The RRRs have the half least
significant bits set to 1 and the half most significant bits set
to 0, to give preference to the descending links. Notice that
with k �= 2, the MRs will have as many bits set to 1 as the
bits needed to represent a component in the destination ad-
dress, that is log(k). These 1s will be located in the position
corresponding to the switch stage and will select these bits
in the destination identifiers. The rest of the MR will be set
to 0. On the other hand, the FI and LI registers of an ascen-
ding link will select the destinations that have the identifier
of the ascending link in the position of the component gi-
ven by the switch stage (s in Figure 4). Since ascending
links are labeled from k to 2k − 1, the value in the desti-
nation identifier component will be L − k, L being the link
identifier. The configuration for the descending links is not
shown because it is very simple. The FI and LI registers
are the same as the adaptive case, and the MR is set all to
1s to select all the bits in the destination address for being
compared with FI and LI. The RRR is set to all 0s, since no
preference is given to the other output ports.

5 Performance Evaluation

5.1 Network Model

To evaluate the routing algorithm proposed above, a de-
tailed event-driven simulator has been implemented. The
simulator models a k-ary n-tree with FIR routing and vir-
tual cut-through switching. Each router has a full crossbar
with queues both at the input and output ports. We assumed
that it takes 20 clock cycles to apply the routing algorithm;
switch and link bandwidth has been assumed to be one flit
per clock cycle; and fly time has been assumed to be 8 clock
cycles. These values were used to model Myrinet networks
in [5]. Credits are used to implement the flow control me-
chanism. Also, each port link has a two-packet buffer.

When adaptive routing is used, a selection function must
be applied after applying the routing function. Remember
that FIR implements the routing function. In [1], the aut-
hors compare several selection functions for adaptive rou-
ting, but they only consider the peak throughput in the eva-
luation, so they conclude that selection function is not criti-
cal. However, in [6], several selection functions for fat-trees

were proposed and the authors notice that selection func-
tion has a high impact over average latency. For this, we
only consider the two most representative selection functi-
ons proposed in [6]. The best one was Static And Desti-
nation Priority (SADP). This selection function gives pre-
ference, among all the ascending links of a switch, to the
same one obtained by applying the deterministic routing al-
gorithm proposed in this paper. If this output port does not
have free space, then another one is selected. The other se-
lection function we show in this paper is First Free (FF),
which is the simplest, but also the worst one. It selects the
first physical link which has free space.

We have evaluated the uniform traffic pattern, with and
without hot-spot nodes, and I/O traces. In the first case,
message destination is randomly chosen among all the pro-
cessors. Packet size is 8 KB. The I/O traces used in our
evaluations were provided by Hewlett-Packard Labs. They
include I/O activity generated in the early 1999 at the disk
interface of the cello system. The cello system is a timesha-
ring system with a storage subsystem of twenty-three disks.
They provide information both for the requests generated by
the hosts and the answers generated by the disks. A detailed
description of similar traces of 1992, collected in the same
system, can be found in [13]. We will use packets with a
payload equal to the size specified in the trace for the I/O
accesses, but if the access is larger than 1 KB, we will split
it into packets with, at most, a payload of 1 KB.

We have implemented a basic approach to ensure in-
order delivery with the adaptive routing algorithm. It is
similar to the one proposed in [10]. This approach uses a
reorder-buffer (different buffer sizes have been used) at the
destination node NIC to store out-of-order packets. Every
time a packet is sent, its sequence number is included in
its header. When a packet arrives out of order at the de-
stination, it is stored in the reorder-buffer to wait for all
packets with smaller sequence number. On the other hand,
to prevent unnecessary packet retransmission, the source
node does not inject packets if the destination buffer does
not have enough free space to store all the packets that have
been sent previously. This complicates the adaptive rou-
ting implementation, as a reorder-buffer is required at the
destination and an end-to-end flow control is needed. Our
reorder mechanism for adaptive algorithms is ideal, it has
not any reordering cost (i.e., the acknowledge control mes-
sages do not consume network bandwidth). The difference
in the results is produced only by the delay introduced by
out-of-order arrived packets.

5.2 Evaluation Results

5.2.1 Synthetic Traffic

We have evaluated a wide range of k-ary n-tree topologies,
k being 2, 4, 8, 16 and 32 and n being up to 8. with uniform

 1000

 2000

 3000

 4000

 5000

 6000

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/node)

DET
FF-NO-ORDER

FF-4.8MB
SADP-NO-ORDER

SADP-4.8MB

Figure 5. Average message latency versus
accepted traffic for a 4-ary 4-tree with uniform
traffic.

pattern traffic, with and without hot-spot traffic. In the hot–
spot traffic a percentage of traffic is sent to a single node,
the rest of the traffic is uniformly distributed.

Figure 5 plots the average packet network latency versus
the average accepted traffic for a 4-ary 4-tree with the uni-
form traffic pattern, without guaranteeing in-order packet
delivery and guaranteeing in-order packet delivery. In de-
terministic routing in-order delivery is ensured by design.
As it can be observed, the deterministic routing proposed in
this paper strongly outperforms adaptive routing with the FF
selection function and obtains roughly the same throughput
than the adaptive routing algorithm when using the SADP
selection function, which was the one that provided the
best results. For the uniform traffic pattern, almost all the
packets are delivered with the correct order, because traffic
rate is distributed among all destinations. This is why si-
milar performance results are obtained for all the different
reorder-buffer sizes in the adaptive case. However, determi-
nistic routing obtains a slightly higher latency than the ad-
aptive one, because deterministic routing only can use one
ascending link for a given packet, so it forces the packet to
wait until it is available. On the other hand, near the sa-
turation point, the network latency is smaller for the deter-
ministic routing, because it classifies network traffic, thus
reducing contention.

Figure 6 show the performance results for hot–spot traf-
fic patterns for a 4-ary 4-tree. In Figure 6.(a), one random
destination receives 5% of the traffic, while, in Figure 6.(b)
one random destination receives 20% of the traffic. In the
former case, deterministic routing obtains a slightly hig-
her throughput than the adaptive ones when guaranteeing
in-order delivery. In adaptive routing, when the preferred
ascending link of a packet is not available, that packet is

 400

 500

 600

 700

 800

 900

 1000

 0.01 0.02 0.03 0.04 0.05

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

DET
FF-NO-ORDER

FF-4.8MB
SADP-NO-ORDER

SADP-4.8MB

(a)

 400

 500

 600

 700

 800

 900

 1000

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

DET
FF-NO-ORDER

FF-4.8MB
SADP-NO-ORDER

SADP-4.8MB

(b)
Figure 6. Average message latency versus accepted traffic for a 4-ary 4-tree with in-order delivery (a)
hot–spot 5% (b) hot–spot 20%.

(a) (b)
Figure 7. Total execution time for traces in a 2-ary 7-tree with different compression factors (1, 5 and
10) (a) without in-order delivery (b) with in-order delivery using a 8MB buffer size.

routed using another one, spreading the congestion to all
the different alternative paths. However, with deterministic
routing, when this ascending link has not buffer space left
or is not available, that packet is stopped until it becomes
available. So, in the deterministic routing algorithm, that
congestion is not spread. The congestion only affects to
the different paths that share links, and in the deterministic
algorithm, the number of paths that share the same link is
minimized. Figure 6 also shows the performance for a hot–
spot traffic pattern when in-order delivery is not required.
As it can be seen, the performance results obtained are simi-
lar to the ones obtained when in-order delivery is required,
because the key issue here is not the number of out-of-order
packets received, but the fast congestion of the network. But
for SADP when a low buffer size is used the performance
achieved by the network is fairly smaller. When the hot-spot
destination node receives 20% of the traffic (Figure 6.(b)),
all the routing algorithms obtain a very low performance.

Anyway, deterministic is not worst than the adaptive ones.

Other traffic patterns have been also analyzed (like per-
fect shuffle and complement) and the overall results are qua-
litatively similar to the ones presented in this paper. The re-
sults for other networks sizes are also similar to the ones
shown. Additionally, we have analyzed the worst traffic
pattern that we can conceive for our proposed routing al-
gorithm. In that traffic pattern, messages are only sent to
processing nodes whose id has the same last component.
For instance, in a 2-ary 2-tree, if all destinations have the
last component equal to 0, the possible destinations should
be 0 and 2. For this traffic pattern, the effective bandwidth
is half the total bandwidth with deterministic routing (in the
generic case, it would be 1/k), because only the links labe-
led as 2 will be used in the ascending phase. For instance,
this is the case of the bit reversal traffic pattern. In a 4-ary
3-tree, the nodes attached to the switch 0, nodes 〈0, 0, 0〉,
〈0, 0, 1〉,〈0, 0, 2〉 and 〈0, 0, 3〉), send all their messages to

〈0, 0, 0〉, 〈2, 0, 0〉,〈1, 0, 0〉,〈3, 0, 0〉, respectively. As it can
be observed, all destinations share the two last components,
so packets will share the same link in the first two stages of
their ascending path. As it was expected, the performance
of the deterministic routing algorithm was poorer than the
adaptive one.

5.2.2 I/O Traces

In this section, we analyze the performance of deterministic
routing using a more realistic traffic pattern. In particular,
we have used the aforementioned I/O traces. We have si-
mulated a 2-ary 7-tree. As the cello system, it has a storage
subsystem with 23 disks that we attached to 23 leaves of the
2-ary 7-tree. The remaining 105 leaves have been used to
attach processing nodes.

The used traces are quite old. Nowadays, I/O traffic has
changed. The technology allows faster devices (hosts and
storage devices) to be used, and thus heavier traffic could
be expected. For this reason, we have applied different time
compression factors to the traces.

Figure 7.(a) shows the time required to deliver all the
packets included in the trace when there is no need to en-
sure in-order delivery at different compression factors. As
it can be observed, there are no differences between the rou-
ting algorithms, and it does not matter the selection function
used, because the network is able to deal with the injected
traffic. Figure 7.(b) shows the total execution time when
in-order delivery is guaranteed using a reorder-buffer size
of 8MB. As it can be observed, the differences among the
routing algorithms are considerable. When no compression
factor is applied, the deterministic routing algorithm redu-
ces execution time by 4.4 over the adaptive one using FF
as selection function. If SADP selection function is used,
execution time is reduced by a factor of 2.9. If we incre-
ase the injection rate by applying a compression factor of
10, we can observe how the improvements obtained by the
deterministic routing algorithm over the adaptive one are in-
creased even more. Execution time is decreased by a factor
of 30 over FF, and 4 over SADP. In this case, the overhead
of in-order delivery does not compensate the flexibility of
adaptive routing.

6 Conclusions

Adaptive routing in fat-trees is commonly accomplished
by an upwards adaptive phase and a downwards determini-
stic phase. The deterministic path to follow in the down-
wards phase depends on the adaptive path followed in the
upwards phase. This adaptive routing algorithm, does not
guarantee in-order delivery of packets.

In order to guarantee in-order delivery, we have proposed
a deterministic routing algorithm for fat-trees that balances
traffic very well, both in the upwards and in the downwards

phase. It can be easily implemented using the FIR strat-
egy proposed in [7]. When synthetic traffic patterns are
used, the deterministic routing algorithm is able to obtain
similar performance results to the ones obtained by the ad-
aptive routing algorithm, with the exception of some par-
ticular traffic pattern, such as bit reversal. But, when we
analyze the performance by using the traffic generated from
real applications (I/O traces), we can observe that, when in-
order delivery is enforced, the deterministic routing algo-
rithm strongly outperforms the adaptive ones. In particular,
the proposed deterministic routing algorithm improves the
time to deliver all the messages of the I/O traces over the
SADP adaptive proposal by a factor near 3.

Moreover, the deterministic routing algorithm allows a
simpler implementation, since neither selection function,
nor additional hardware resources to ensure in-order deli-
very are needed.

References

[1] B. Abali et al. Adaptive routing on the new switch chip for
IBM SP systems, Journal of Parallel and Distributed Com-
puting, vol. 61, no. 9, pp. 1148-1179, September 2001.

[2] E. Bakker, J. van Leeuwer and R.B. Tan. Linear Interval
Routing Algoritms review,2. pp. 45-61, 1991.

[3] W.J. Dally and B. Towles. Principles and Practices of Inter-
connection Networks. Morgan Kaufmann, 2004.

[4] J. Duato, S. Yalamanchili and L. Ni. Interconnection Net-
works. An Engineering Approach. Morgan Kaufmann, 2004.

[5] J. Flich, M.P. Malumbres, P. López, J. Duato. Improving
Routing Performance in Myrinet Networks. Proc. 14th Inter-
national Parallel and Distributed Processing Symp., 2000.

[6] F. Gilabert, M.E. Gómez, P. López, J. Duato. On the Influence
of the Selection Function on the Performance of Fat-trees. Eu-
ropean Conf. on Parallel Computing, Aug. 2006.

[7] M.E. Gómez, P. López, and J. Duato. A Memory-Effective
Routing Strategy for Regular Interconnection Networks.
IEEE International Parallel and Distributed Processing Sym-
posium, April 2005. Best Paper Award in the Architecture
Track.

[8] Infiniband Trade Association. www.infinibandta.org

[9] J.C. Martinez, J. Flich, A. Robles, P. Lopez, and J. Duato.
Supporting Adaptive Routing in IBA Switches. Journal of
Systems Architecture, 49:441–449, 2004.

[10] J.C. Martinez, J. Flich, A. Robles, P. Lopez, J. Duato and M.
Koibuchi. In-Order Packet Delivery in Interconnection Net-
works using Adaptive Routing. IEEE International Parallel
and Distributed Processing Symp., April 2005.

[11] Myricom. www.myri.com

[12] Quadrics homepage. http://www.quadrics.com.

[13] C. Ruemmler, J. Wilkes. Unix Disk Access Patterns. Winter
Usenix Conference, Jan 1993.

