
RI2N/UDP: High bandwidth and fault-tolerant network
for a PC-cluster based on multi-link Ethernet

Takayuki Okamoto, Shin’ichi Miura, Taisuke Boku, Mitsuhisa Sato, and Daisuke Takahashi

University of Tsukuba
Graduate School of Systems and Information Engineering

1-1-1, Tennodai, Tsukuba, 305-8573 Japan.
{okamoto, miura, taisuke, msato, daisuke}@hpcs.cs.tsukuba.ac.jp

Abstract

PC-clusters with high performance/cost ratio have been
one of the typical platforms for high performance comput-
ing. To lower costs, Gigabit Ethernet is often used for inter-
communication networks. However, the reliability of Eth-
ernet is limited due to hardware failures and tentative er-
rors in the network switches. To solve this problem, we pro-
pose an interconnection network system based on multi-link
Ethernet named RI2N. In this paper, we developed a user
level implementation of RI2N using UDP/IP that is called
RI2N/UDP. When this new system was evaluated for perfor-
mance and fault tolerance, the bandwidth on a 2-link Gi-
gabit Ethernet was 246 MB/s, and the system could remain
active during network link failure to provide high system
reliability.

1 Introduction

Network performance is an important issue when consid-
ering the total performance of clusters used for high perfor-
mance parallel computing. System Area Networks (SAN),
represented by Myrinet[13] or InfiniBand[11], are often
used as the interconnect device for large scale clusters, since
these systems have low latency, high bandwidth, and large
scalability[17]. In fact, the low latency and high bandwidth
features of SAN provide great performance for high-end
cluster computing. However, despite the recent decrease in
the price of InfiniBand and Myrinet, the introduction costs
for both the network interface cards and switches are still
relatively high, especially for small-scale clusters located in
small laboratories or offices. Thus, SAN is not used, which
leads to a decrease in the cost/performance ratio which is

1-4244-0910-1/07/$20.00 c©2007 IEEE.

the most important reason of prosper of recent PC clusters.
Therefore, a large number of small-scale clusters use Giga-
bit Ethernet (GbE), which is the most popular commercial
technology with a high performance/cost ratio. Although
most PC motherboards come equipped with one Ethernet
connection, more expensive computers come with two con-
nections.

The dependability of clusters, especially those using Eth-
ernet switches, is heavily linked with the fault tolerance of
the network. Long-term HPC applications are very sensi-
tive to issues about the mean time between failures (MTBF)
of the computing environment. Even one failure in the last
phase of an application, for instance, when gathering all par-
tial results from all the nodes, may cause a failure in the
whole application. Using Ethernet, switches may suddenly
become very slow at transferring packets, when heavy con-
gestion occurs even if there is no hardware failure. Thus,
the switches often need to be restarted to recover from this
situation. Since the switch itself does not experience hard-
ware failure, this situation will be called a software failure1.

Thus, we propose a high bandwidth and fault-tolerant
network system called Redundant Interconnection with In-
expensive Network (RI2N)[12] based on software bind-
ing of multiple Ethernet links. RI2N uses participating
Ethernet-links to multiply the bandwidth of each commu-
nication channel when there is no failure. When there is a
failure on a portion of the Ethernet-links or switches, the
system detects which link has failed and keeps transferring
the packets in the RI2N channels through the remaining
links. This system works like a RAID system which has
high throughput and high reliability with inexpensive disk
drives. The RI2N creates high throughput and high avail-
ability communication using only commodity Ethernet and

1Actually, there are several different causes including firmware failure
for the error. In this paper, software failure is used to mean failure that
cannot be attributed to the hardware.

software. A prototype system to multiply bandwidth was
implemented on a TCP/IP multi-stream[12]. However, it is
difficult to detect failures and to recover links using TCP/IP.
Thus, the throughput significantly decreases when a link
fails.

Thus, we developed a better implementation of RI2N
called the RI2N/UDP, which allows for both high band-
width and fault tolerance. In this paper, we describe this
new system’s theoretical basis, design, implementation, and
performance evaluation. The rest of this paper is arranged
as follows. Section 2 describes the designed concept of
RI2N/UDP. Section 3 gives the design and technical issues
for the implementation of the RI2N/UDP, while Section 4
presents the data obtained from an evaluation of a dual-link
Ethernet system. Section 5 discusses related papers. Fi-
nally, Section 6 presents the conclusions and future work.

2 RI2N/UDP

2.1 Background

The concept of multi-link binding of network links for
increasing bandwidth or fault tolerance is not new. For ex-
ample, it has already been standardized and implemented as
the IEEE802.3ad[10] and, thus, many Ethernet switches are
equipped with this feature as a network aggregation func-
tion at the hardware level.

However, these switches only allow link binding be-
tween two switches directly connected by the multiple links,
which implies that the network can recover from a general
link failure, but not from a failure in the switch itself. If this
concept is extended to multiple channels that consist of dif-
ferent switches, the entire communication can be salvaged
even if several switches fail.

A study was performed on the implementation of
IEEE802.3ad function using software on a PC node side[4],
where multiple network links on a PC server were con-
nected to a switch equipped with IEEE802.3ad. However,
the performance of this implementation was poor as we
could not exploit the potential bandwidth provided by multi-
ple Ethernet links. PM/Ethernet[16] also binds several Eth-
ernet links by software, but it does not provide a fault toler-
ance feature.

Based on the above results, we developed a new network
system that realizes the same concept with a more flexi-
ble network configuration, a higher bandwidth, and a higher
portability.

2.2 Overview

RI2N/UDP is an implementation of RI2N on UDP/IP to
provide high bandwidth and fault tolerant communication

channels for user-applications based on multi-link Ether-
net. Dividing the transferred data into small packets on the
source node, the RI2N/UDP transfers them through indi-
vidual multiple Ethernet links (or networks) and then com-
bines the received packets to rebuild the original data of the
source node. If the multiple links are used efficiently, the
increase in bandwidth can be used to increase network per-
formance. While some failures can occur, RI2N/UDP re-
stricts the links for transfer and resends dropped packets to
keep the communication channels available. A way to pro-
vide fault tolerance is to use a fault tolerant feature similar
to that used in RAID, that is, to send a data chunk always
with a parity link for redundancy[12]. However, in our case,
the number of links to be bound is not all that large, 2 or at
most 4, so that this implementation would not be efficient
for the total bandwidth.

2.3 Implementation level

There are 2 implementation levels that need to be con-
sidered: the system level with an implementation using de-
vice drivers, and the user level with an implementation us-
ing libraries with socket programming. System level imple-
mentation can provide greater portability for applications
through a virtual network device with lower overhead than
user level implementation. However, low level implemen-
tation may depend on the hardware, lower level drivers, and
the operating system kernel, as well as a possible increase
in development and porting costs. On the other hand, a user
level implementation can be ported to various environments
with slight modification such as changing of several system-
calls to which the operating system supports, changing of
thread library, and tuning several parameters; it can be de-
veloped at a lower cost. Therefore, we selected a user level
implementation for the RI2N/UDP prototype with an effort
to minimize the overhead.

2.4 Utilization of UDP/IP

On most user-programmable communication layers in
parallel computing on clusters, a stream communication
that guarantees reliability at the lower layer is required.
Generally, TCP/IP is used to provide stream communica-
tion on Ethernet and is also used for HPC applications ex-
ecuted on a PC-cluster. However, TCP/IP is a connection-
oriented protocol that creates static channels so several sys-
tem calls such as select() may take a long time to return
back from them when failure occurs on the communication
link.2 In this situation, the system calls take approximately
a few minute, then, they return an error value.

2It may depend on the operating system, especially the version of ker-
nel, but we observed a case where this problem occurs.

This problem was shown in the prototype implementa-
tion of RI2N based on the TCP/IP multi-stream. It increases
the difficulty of implementing the desired fault tolerant fea-
tures as an extension of the prototype. Therefore, we devel-
oped another implementation of the RI2N on UDP/IP from
the scratch. UDP/IP is a connectionless oriented protocol
that does not provide the function of retransmission so that
the socket APIs are independent from hardware failures.
If the packet-transmit functions for the UDP/IP socket are
called when a link fails, the failure cannot be detected based
on the return value of the system call. The only difference
is that all the packets transmitted through the faulty link
cannot be received at the remote side. The most important
condition to create a fault-tolerant system is that the lower
layer must be free from the possibility of hang-ups when
hardware failure occurs. UDP/IP avoids this condition if
the failure occurs out of the Network Interface Card (NIC),
such as a failure at the switches or in the cables. To support
the recovery from the failure of the NIC itself, the dynamic
hardware plug-on/off feature must be supported both by the
motherboard and the operating system. Therefore, this sys-
tem does not support NIC or hardware failures at the node.
This implies that the system is sensitive to the failure of ca-
bles or any of the intermediate switches between the source
and destination nodes.

RI2N/UDP provides reliable stream communication
channels to applications on UDP/IP that does not guaran-
tee communication reliability. To realize this system, we
implemented the receipt-acknowledgement and the retrans-
mission for lost packets functions. In an ordinary single
channel communication system, a time-out watcher is used
to detect a channel failure because there is no way to re-
ply to the acknowledgment. However, in RI2N/UDP, the
acknowledgment packet can be broadcasted to all commu-
nication links, even on a link failure. This greatly helps
to reduce the implementation overhead, as well as the time
wasted while waiting for time out. In the RI2N/UDP, we
combined the implementation of the functions for reliabil-
ity and fault tolerance so as to reduce the overhead.

3 Design and Implementation

In this paper, the following terms are defined:

1. Channel refers to the application level of the commu-
nication entity, regardless of how many links are used
to support it. A channel consists of one or more links.

2. Link refers to the communication network from a net-
work interface of the source node to the destination
node, including the NICs on both sides, cables and
switches that provide IP-level reachability. A link con-
sists of two NICs with the intermediate cables and one
or more switches.

shared buffer

RI2N thread

user thread

API library

UDP socket

network

multi-link Ethernet

NIC NIC NIC

socketpair

select()

Figure 1. Construction of RI2N/UDP

3. Cable refers to the physical cable used to connect NICs
and switches.

3.1 System construction

RI2N/UDP provides the function for retransmission and
management of connections similar to TCP/IP. These func-
tions must be processed asynchronously and concurrently
with the user application. Therefore, a new thread for com-
munication management is created to provide these func-
tions for all RI2N connections. Figure 1 shows the con-
struction of the RI2N/UDP. We call the thread processing
the application as the user thread, and the new thread pro-
cessing the communication as the RI2N thread. Only the
RI2N thread can directly accesses the UDP socket. Section
3.4 will consider the inter-thread communication details.

3.2 Network construction

Figure 2 shows the network construction that we as-
sumed as the environment to apply RI2N/UDP. Each node
has multiple NICs connected with switches separated by IP
network addresses. One of the IP addresses is bound to the
NIC as the primary address that is used as the IP address
visible to the user’s application. Redundant switches pro-
vide a wider bandwidth and fault tolerance than a single
switch, since in this case a single switch is not the cause of
a single point-of-failure.

RI2N/UDP does not rely on MAC addresses and other
hardware information to select the link to send a packet, be-
cause RI2N/UDP has access to the NIC through the UDP
socket. RI2N/UDP uses IP routing in the operating system,
which is available through the socket APIs. RI2N/UDP se-
lects a remote side IP address to send the packet, and then
the packet is transmitted through the NIC associated with
that network address.

node A node B node C

switch 1 switch 2 switch 3

NIC

Figure 2. Target network construction

This method requires redundant IP addresses to manage
multiple NICs. On an ordinary IP network system, this
causes a problem, as the address space needs to be increased
in order to allow network reachability between the source
and destination nodes. Since it is assumed that RI2N/UDP
is used as an internal network to construct a cluster system,
this is not considered to be a serious limitation. Further-
more, we also assume that RI2N/UDP is used on a high end
cluster where each node is dedicated to a single job. Thus,
RI2N/UDP uses a light-weight flow control algorithm dis-
cussed in Section 3.3.2.

3.3 RI2N protocol

The RI2N protocol is a unique protocol on UDP/IP de-
signed for communication between nodes. It is similar
to TCP over UDP/IP[5, 9] although it includes the fault-
tolerant function and is tuned for using multi-link Ethernet.

3.3.1 Receipt acknowledgement and retransmission

The RI2N thread selects the destination IP address not by
the user specified address but in a round-robin fashion from
the addresses associated with the available NICs so as to in-
crease the bandwidth for each channel. In this manner, the
packets may arrive more frequently than using only a single
link Ethernet, and there is a high possibility of miss-ordered
packet arrival. In the standard TCP protocol, a packet re-
transmission is invoked after the first lost packet is found.
However, if we apply the same strategy on a RI2N/UDP, the
number of packets that is retransmitted may greatly increase
since there is the possibility that a given packet may be as-
sumed to be mistransmitted, when in fact the given packet is
being sent on a different link. This causes too much wasted
retransmission, followed by performance degradation. To
improve the throughput on a multi-link Ethernet, we imple-
mented a selective acknowledgement method as the receipt
acknowledgement function by allowing a greater time de-
lay.

In order to handle the acknowledgment and retransmis-
sion efficiently, two kinds of receive buffers are provided.
One is a ring buffer of pointers that re-arranges the order

type w-size

source port destination port

(padding)

sequence number

ack bitmap

0 8 16 32

Figure 3. Structure of the packet for selective
acknowledgement

of the packets, and the other is a ring buffer that passes the
received data to the user thread.

Figure 3 shows the construction of a packet for selec-
tive acknowledgement[1]. The packet in the RI2N proto-
col does not have a dedicated field for the acknowledge-
ment number to indicate the sequence number from which
the system should retransmit the packet. Instead of this,
the field for the sequence number is also used for the ac-
knowledgement number. The ack-bitmap field indicates the
packets that have already been successfully received at the
remote node beyond that acknowledgement number. In this
case, the size of the ack-bitmap field is 32 bits; thus, this
field can indicate at most 32 consequent packets after the
acknowledgement number. Since we assume that the num-
ber of links to be used is less than 10, this size for the field
is reasonable.

3.3.2 Flow control

On a Wide Area Network (WAN), there are many unex-
pected congestions caused by anonymous users and tasks.
This leads to low throughput. TCP utilizes a sophisticated
flow-control algorithm[3] that predicts how congestions oc-
cur and adjusts the window size to improve the throughput
on a WAN. On the other hand, if all the traffic is caused
by the application itself, then we can use the whole net-
work bandwidth just for the application in the LAN envi-
ronment of a closed cluster network. Under such a condi-
tion, the commonly used TCP-like flow-control algorithm
is too complicated and heavy. In fact, it may lead to per-
formance degradation known as slow starter problem of
TCP[2]. Based on these reasons, we decided to introduce a
simple window control on the RI2N/UDP with a w-size field
as shown in Figure 3. The W-size field indicates the win-
dow size, that is, the remaining size of the receive buffer.
The sender node of the RI2N/UDP restricts the amount of
data sent to the remote node by changing the window size.

Current RI2N/UDP uses a simple and light weight flow
control algorithm. However, when we port RI2N/UDP to
support multiple applications in time-sharing manner, it is
required to implement more sophisticated algorithm which
restricts the transmission pace to reduce the packet loss ra-
tio.

3.3.3 Failure and recovery detection

RI2N/UDP provides fault tolerance for network failure by
retransmitting lost packets. However, the packet loss may
occur on Ethernet even if there is no failure in any of the
links. We have already discussed the retransmission func-
tion under normal conditions in Section 3.3.1. Using the
round-robin method for packet transmission, the lost packet
can be retransmitted successfully on any of the remaining
active links. However, the success rate of retransmission is
reduced because the library may try to send the packet us-
ing the failed link again. This causes another packet loss.
Therefore, we need the function to explicitly omit the failed
link from the target links to be used for round-robin packet
transmission.

In the RI2N protocol, the packets received at each link
on the receiver node are counted. Since the sender nodes
distribute the packets to all links in a round-robin manner,
there should be no difference between traffic on the individ-
ual links. Therefore, the receiver node can detect the link
malfunction when the count of received packets for a par-
ticular link decreases rapidly compared with the others. By
sending back this information to the sender node, the sender
node, it can subsequently recognize the link as failed and
stops transmitting packets through it. It is important to use
the packet reaching rate as the indicator of link failure in-
stead of the heartbeat packet, since then the soft error in a
link or switch where the packet transmission function can be
determined. Sometimes, the Ethernet switch may drop into
a condition where the packet transmit throughput is largely
degraded but the switch itself is still active. We consider
this situation as a switch failure that can be detected using
the above algorithm.

The detection of system recovery is also important, as
well as the detection of system failure. We assume that most
of the failure is due to the Ethernet cables and switches,
which can only be fixed manually by reconnecting the link,
by restarting the switch, or by replacing the given switch.
Therefore, a concrete and not a time-consuming method
should be used to detect system recovery. The simplest and
most efficient way is to use a heartbeat packet with a low
frequency, since we aim to detect a recovery from a long-
term failure as described above. As a result, the RI2N/UDP
library keeps sending heartbeat packets to all links at an in-
terval of several seconds. If any packet is received at the link
marked as failed, then it is recognized as recovered from the
failure. It is then marked as a healthy link. This information
is shared between the pair of sender and receiver nodes in a
manner similar to that used for failure detection.

3.4 Communication between threads

RI2N/UDP is a user level library using the pthread li-
brary. RI2N/UDP uses two different methods for commu-

Table 1. Environment
item specification
CPU Intel Xeon 3.0 GHz 1-way (Hyper-Threading)
memory DDR2 1024 MB
kernel linux 2.6.17
NIC Intel PRO1000MT dual port 1000base-T

(PCI-X 64bit/100 MHz)
NIC driver Intel PRO/1000 Network Driver 7.0.33
switch Dell Power Connect 5224

(24 ports GbE switch)

nication between the user thread and the RI2N thread (as
shown in Figure 1), where socket pair is used for event no-
tification and as the shared buffer for data transfer. One
of the common synchronization methods between threads
is to use the condition flag and the mutex functions. How-
ever, the RI2N thread has to constantly monitor the network
condition of any packet that it has sent or received, as well
as to process any requests from the user thread. To per-
form everything in an efficient way, the RI2N thread han-
dles all events through the select() system call. The con-
ditional signal and mutex are not suitable to be combined
with the select() system call. Thus, the request from the
user thread must also be notified through a file descriptor
to allow the RI2N thread to just watch all the sockets on a
single select() system call. However, this causes too much
overhead; all the communication data must pass through
the socket pair since several data copies are required for
both the user and kernel spaces. So, the theoretical band-
width of socketpair is limited to only a half of the memory
bandwidth. Therefore, the actual data to be transmitted or
received is copied through the shared buffer between the
RI2N and user threads to provide high bandwidth, while
the notification of data ready to be processed is sent using
the socketpair. To provide a higher throughput with lower
CPU load, this combined-method is better for data transfer
between threads.

4 Evaluation and Discussion

In this section, we evaluate the performance of
RI2N/UDP on a dual-link Gigabit Ethernet. We measured
the throughput on a single-sided burst data transfer and the
latency on the ping-pong communication. Table 1 shows
the environment for this evaluation. In all measurements,
the network MTU was set to 6,000 bytes, and the packet
size of RI2N/UDP was set to 5,950 bytes.

4.1 Throughput

To evaluate the bandwidth and the correctness of the fault
tolerance function, we measured the throughput when all
links were available and when some links had failed. At

first, we made a single-side burst transfer on RI2N/UDP
from one node to another, and measured the average
throughput every 100 milliseconds. As we continued to
measure the throughput, we unplugged and then recon-
nected the Ethernet cables to simulate failure and recovery.
The threshold to detect link failure was set to 1:50, which
implies that a link is recognized as failed if the packet re-
ceiving frequency of the link becomes less than 2% of the
others. The heartbeat interval to detect link recovery was set
to 3 seconds. We observed the communication throughput
for a single-sided burst data transfer between two nodes as
the number of available links is reduced from 2 to 0.

Figure 4 shows the result. The horizontal axis represents
the time after starting the measurement, while the vertical
axis represents the throughput at that time. Two bars un-
der the graph represent the condition of each link, plugged
or unplugged, to imitate link failure. Since the unplugging
and reconnecting of the cables was performed manually, the
graph does not show the precise timing of the change, as its
resolution was 10 milliseconds. Nevertheless, we can ob-
serve the approximate behavior of the system and how the
throughput varies.

Without any link failure, the RI2N/UDP throughput is
246 MB/s where 98% of the theoretical peak with a dual
Gigabit Ethernet link (250 MB/s) is achieved. At time t1,
we unplugged link #1 to cause a single link failure, which
degraded the throughput by half (123 MB/s), but the system
still kept 98% of the theoretical peak with a single Gigabit
Ethernet link. Thus, it can be concluded that the RI2N/UDP
provides higher bandwidth. Furthermore, the throughput
did not decrease below 100 MB/s from time t1 to time t2.
As described in Section 3.3.3, we implemented the failure
detection algorithm based on the arrival packet ratio. We
also confirmed that the throughput with a single link failure
drops to approximately 10 MB/s without a failure detection
algorithm. Since UDP access does not return any error con-
dition even with a link failure, it is possible to send a packet
on a dead link. However, in this implementation, the fault
is correctly detected, and we can achieve the same perfor-
mance as the standard TCP/IP that only uses the healthy
link.

At time t2, link #2 was also unplugged, and no packets
were transferred until time t3, but the system itself was still
active. This means that there was no fatal fault on the com-
munication system from the viewpoint of the user thread; it
was waiting for system recovery. At time t3, link #1 was re-
connected. Since the heartbeat interval was set to 3 seconds,
it takes a few seconds before the system recovers from the
full link failure mode. As expected, throughput rose again
with a single link after several additional overhead. It was
assumed that this overhead was caused by the delay in the
Ethernet hardware link and the auto-negotiation that takes
a few seconds after reconnecting the cable. We can reduce

0

50

100

150

200

250

time [sec]

th
ro

u
g

h
p
u

t
[M

B
/s

]

link1

link2

plugged unplugged

0 10 20 30 40 50

t1 t2 t3 t4

Figure 4. Throughput with varying link condi-
tions

 0

 100

 200

 300

0 10 20 30

la
te

n
c
y
 [
m

ic
ro

s
e
c
o
n
d
]

message size [Kbyte]

RI2N/UDP
TCP/IP

Figure 5. Result of the latency measurement

the time for recovery detection by shortening the heartbeat
interval. However, since the time from failure to recovery is
basically much longer than the time for recovery detection,
we think that the current implementation is reasonable.

Finally at time t4, link #2 was reconnected, and the
system throughput recovered to the original 246 MB/s.
As a result, we can conclude that the implementation of
RI2N/UDP provides enough throughput in both the dual
and single link cases, as well as correct behavior during link
failure to avoid a fatal error in the user application.

4.2 Latency

Next, we evaluated the latency of the RI2N/UDP com-
munication layer. To measure the latency, we performed
ping-pong communication between 2 nodes 10 times and
then determined the average time for one-way ping-pong.

Figure 5 shows the comparison between RI2N/UDP and
standard TCP. Each point shows the latency calculated from

the ping-pong communication. The horizontal axis repre-
sents the message size for each ping-pong communication,
and the vertical axis represents the latency for the given
message size. The shortest latency for RI2N/UDP is 72 µs,
while that of TCP/IP is 28 µs.

RI2N/UDP uses socket pairs to communicate with the
user thread for the request handling, which takes approx-
imately 35 µs in our environment. A single side transfer
through a socket pair takes about 12 µs including the costs
of the write() and read() system calls. However, RI2N/UDP
must reply to the user thread request, so the RI2N thread
calls the write() system call to determine the data size to be
passed through the shared buffer with both threads. This
system call takes approximately 5 µs on only the sender
side. Furthermore, the RI2N thread uses the select() system
call to detect the requests, which takes approximately 1 µs,
and the processing after calling write() and before switching
the context takes approximately 2 µs.

Three of these four overhead reasons, 12 µs, 1µs and 2
µs, respectively, appear on both the sender side and receiver
side; therefore, the total cost for communication between
threads is (12+2+1)× 2+5 = 35 µs. On the other hand,
the cost in the lower layer of RI2N/UDP or the latency of
UDP/IP is about 30 µs including the overhead of the select()
system calls. Furthermore, the analysis and reordering of
the received packets takes approximately 4 µs. Therefore,
the total latency of the RI2N/UDP should be approximately
35 + 30 + 4 = 69 µs. It is almost same as the observed
latency (72 us); there are still a small fraction of unknown 3
us.

In addition, Figure 5 shows the crossover point of the
communication cost on the RI2N/UDP and TCP/IP. Based
on our measurements, the cost of TCP/IP equals that of
RI2N/UDP at a message size of approximately 20 Kb. Thus,
it can be concluded that the performance of the RI2N/UDP
layer is better than the TCP/IP for messages larger than 20
Kb. This seems to be a large message for some applica-
tions. However, for scientific applications, a message size
of 20 Kb represents less than 2500 double precision values.
Thus, for many scientific applications that require HPC PC
cluster systems, this message size is not so large, and the
RI2N/UDP communication layer would be appropriate.

4.3 Implementation improvement

RI2N/UDP uses socket pairs and a shared buffer to
communicate between threads as described in Section 3.4,
which was assumed to increase the communication through-
put on the application. Thus, the RI2N/UDP realizes a dou-
bling throughput with a dual link Gigabit Ethernet. Fur-
thermore, we are interested in how the communication
throughput is degraded if we use the socketpairs not only
for the synchronization but also for the data transfer be-

tween threads. If we only use the socketpairs, the time re-
quired for memory copying may increase, and the through-
put may be decreased. However, it is also expected that
this would reduce the communication latency for short mes-
sages, because a single system call of read() or write()
would perform both the synchronization and data transfer
at once without any additional data copying on the shared
buffer. There is yet another reason to only use socket pairs,
since, for that user thread, the socketpair becomes the sin-
gle contact point with the RI2N thread. Thus, we can ap-
ply many of the native socket operations, such as select(),
poll(), write(), and read(), that can be applied to ordinary
communication sockets. In the current implementation of
RI2N/UDP, there are several requirements for the modifi-
cation of the user application. Even though they are sim-
ple and easy, we can greatly reduce the effort to develop
or port a user application to the environment of RI2N/UDP
from standard TCP. For example, it may be easy to apply
RI2N/UDP to a commonly used socket-ready MPI imple-
mentation, such as the ch p4 device of MPICH[8]. To re-
duce the latency and to simplify the interface between the
user thread and the RI2N thread, we should apply the above
implementation and compare the performance.

5 Related work

There are many works related to a multi-link intercon-
nection for a cluster network. PM/Ethernet[16] uses a
multi-link Ethernet to improve the throughput under the
special environment of a SCore[15] cluster middleware.
PM/Ethernet also provides a lower latency than UDP/IP or
TCP/IP with specific APIs and driver level optimization that
bypasses the deep TCP stacks. However, the fault tolerant
feature has not been provided for this layer. PM/Ethernet
cannot be utilized without Score cluster middleware, while
RI2N/UDP requires only UDP/IP socket and pthread so it
can be utilized on most Linux clusters without any addi-
tional modules or kernel modifications.

VMI[14] is a communication layer supporting heteroge-
neous interfaces, such as using both GbE and Myrinet. This
can be used not only in a cluster but also in a grid envi-
ronment. The APIs are provided by VMI 2.0 on the socket
layer as like as by RI2N/UDP. VMI 2.0 provide fault toler-
ance feature, but it cannot stripe a data transfer to increase
the bandwidth, while RI2N/UDP provides both fault toler-
ance and high bandwidth.

Link Aggregation[10] is a technology that provides load
distribution and fault tolerant features using multiple Eth-
ernet links with IEEE 802.3ad compliant switches. How-
ever, in Link Aggregation, all links must be connected to the
same switch. Therefore, Link Aggregation supports only
NIC or cable failure but not switch failure, and the number
of supporting nodes is limited by the number of ports on the

switch connected with all nodes. RI2N/UDP can be applied
to multiple links connected with different switches where
the communication system is fully duplicated in the NIC,
cables, and switches. In such a network system, RI2N/UDP
can survive even with the failure of one of the switches. We
tested such a situation with a cluster of 64 nodes. We con-
firmed that the RI2N/UDP system works after a complete
loss of power to one of the switches. As well as, there is a
complete, correct recovery after the switch is rebooted.

LA-MPI[7] and new OpenMPI[6] are MPI implemen-
tation which can utilize a multi-link interconnection for
both fault tolerance and high bandwidth. They are imple-
mented in one layer for whole features including MPI op-
eration, fault tolerance and high bandwidth. Thus, they
may cause lower overhead than a MPI implementation on
RI2N/UDP. However, they provide only the MPI interface
but RI2N/UDP provides more versatile socket API.

Comparing with these works the novelties of RI2N/UDP
are shown as follows;

• It is implemented in a user level library.
• It is independent from hardware devices and allows

some redundant switches.
• It may provide both high bandwidth and fault toler-

ance.
• It requires only UDP/IP and pthread library but not any

special middleware or kernel.

6 Conclusions

This paper describes the design, implementation, and
performance evaluation of a RI2N/UDP that is a user level
implementation of RI2N, a high-bandwidth, fault-tolerant
network for PC clusters. For the throughput, the RI2N/UDP
provided 246 MB/s with dual-link Gigabit Ethernet. This
implies that we can use the doubled communication band-
width with only a 2% increase in overhead. For the fault-
tolerant feature, RI2N/UDP keeps the communication chan-
nel open, and the user application does not stop even if the
link fails. The latency of RI2N/UDP is measured at 72 µs

in our PC cluster, while that of TCP/IP is 28 µs. Based
on an analysis of this overhead, it was determined that it
would be difficult to shorten it. However, this latency is ac-
ceptable for large scale HPC applications. Furthermore, the
performance of RI2N/UDP overtakes that of TCP/IP when
the average message size is larger than 20 Kb.

Future work includes: improving the communication
method between the user thread and RI2N thread so as to in-
crease latency performance and application portability; im-
proving the flow control algorithm to increase the through-
put in a congested situation; developing an MPI implemen-
tation on our system; comparing the performance of this
system with those previously reported; and evaluating the
system using actual HPC applications.

Acknowledgment

This research work is partly supported by Core Research
for Evolutional Science and Technology program of Japan
Science and Technology Agency (JST-CREST), “Compu-
tational platform for embedded system with low-power and
dependability” in the category of “Dependable Embedded
Operating Systems for Practical Use” and the Grant in
Aid of Ministry of Education, Culture, Sports, Science and
Technology in Japan (C-17500031).

References

[1] TCP Selective Acknowledgement Options. RFC 2018 (Pro-
posed Standard), Oct. 1996.

[2] TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms. RFC200I, 1997.

[3] TCP Congestion Control . RFC 2581 (Proposed Standard),
Apr. 1999. Updated by RFC 3390.

[4] T. Davis. Linux Ethernet Bonding Driver.
[5] T. Dunigan and F. Fowler. A tcp-over-udp test harness,

2002. Technical report, Oak Ridge National Laboratory,
Oak Ridge, ORNL/TM-2002/76.

[6] E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra,
J. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lums-
daine, et al. Open MPI: Goals, concept, and design of a next
generation MPI implementation. Proceedings, 11th Euro-
pean PVM/MPI Users’ Group Meeting, pages 97–104, 2004.

[7] R. Graham, S. Choi, D. Daniel, N. Desai, R. Minnich,
C. Rasmussen, L. Risinger, and M. Sukalski. A Network-
Failure-Tolerant Message-Passing System for Terascale
Clusters. International Journal of Parallel Programming,
31(4):285–303, 2003.

[8] W. Gropp, E. Lusk, N. Doss, , and A. Skjellum. A high-
performance, portable implementation of the mpi message-
passing interface standard. Parallel Computing, 22(6):789–
828, 1996.

[9] S. Horman. iproxy: Running tcp services over udp.
[10] IEEE. IEEE 802.3ad “Link Aggregation”, 2000.
[11] InfiniBand Trade Association. Infiniband.

http://www.infinibandta.org/.
[12] S. Miura, T. Boku, M. Sato, and D. Takahashi. RI2N -

Interconnection Network System for Clusters with Wide-
Bandwidth and Fault-Tolerancy Based on Multiple Links.
In ISHPC, pages 342–351, 2003.

[13] Myricom. Myrinet. http://www.myri.com/.
[14] S. Pakin and A. Pant. VMI 2.0: A dynamically reconfig-

urable messaging layer for availability, usability, and man-
agement. SAN-1 Workshop (in conjunction with HPCA).

[15] PC Cluster Consortium. SCore Cluster System Software.
http://www.pccluster.org/.

[16] S. Sumimoto and K. Kumon. PM/Ehernet-kRMA: A High
Performance Remote Memory Access Facility Using Mul-
tiple Gigabit Ethernet Cards. In CCGrid 2003, pages 326–
333, 2003.

[17] A. J. van der Steen and J. J. Dongarra. Overview of recent
supercomputers. http://www.top500.org/orsc/.

