
 

Abstract 

A Reconfigurable Consistency Algorithm (RCA) is an 
algorithm that guarantees the consistency in Distributed 
Shared Memory (DSM) Systems. In a RCA, there is a 
Configuration Control Layer (CCL) that is responsible for 
selecting the most suitable RCA configuration (behavior) for a 
specific workload and DSM system. In previous works, we 
defined an upper bound performance for RCA based on an 
ideal CCL, which knows apriori the best configuration for 
each situation. This ideal CCL is based on a set of workloads 
characteristics that, in most situations, are difficult to extract 
from the applications (percentage of shared write and read 
operations and sharing patterns). In this paper we propose, 
develop and present a heuristical configuration control 
mechanism for the CCL implementation. This mechanism is 
based on an easily obtained applications parameter, the 
concurrency level. Our results show that this configuration 
control mechanism improves the RCA performance in 15%, on 
average, compared to other traditional consistency 
algorithms. Furthermore, the CCL with this mechanism is 
independent from the workload and DSM system specific 
characteristics, like sharing patterns and percentage of writes 
and reads. 

I. INTRODUCTION

In a distributed system, when an application has parallel 
access on shared objects, the users may use a model that helps 
the management of these accesses and simplifies the 
programming. Distributed shared memory is one of these 
models that have received considerable attention in the last 
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years [1] [2]. DSM is an abstraction that provides an illusion 
of a shared memory in a parallel and distributed system. In 
object based DSMs, the operations semantics (Consistency) 
guarantee that objects will be consistent for the process during 
the workload execution [1] [2].  

A consistency algorithm can be defined as a contract 
between the application and the shared objects. This contract 
has the rules about how and when a process of an application 
can access the shared objects [1] [2].  

The Reconfigurable Consistency Algorithm (RCA) was 
proposed to improve flexibility and performance of the object-
based DSM systems. RCA is an algorithm that guarantees the 
consistency in an object-based DSM Systems. It can have its 
behavior modified considering the workloads and DSM 
Systems characteristics. So, it can adapt to the workloads and 
DSM Systems characteristics, becoming more flexible and 
increasing performance [1] [2] [3]. 

In a RCA, there is a Configuration Control Layer (CCL) that 
is responsible for selecting the most suitable RCA 
configuration (behavior) for a specific workload and DSM 
system. Thus, the functioning of the RCA and the 
configurations are decided within this layer. Its decisions are 
made upon input parameters, dynamic workload information, 
commands from the operating system, user’s choice etc. The 
CCL design is a complex key problem in the design of a 
reconfigurable algorithm [1] [2] [3] [4] [5] [6].  

Until now, we defined a theoretic upper bound performance 
for RCA based on an ideal CCL, which knows apriori the best 
configuration for each situation. This CCL is based on a set of 
workloads characteristics that are difficult to extract from the 
applications  [1] [2] [3]. 

In this paper we propose, develop and present a heuristical 
configuration control mechanism for the CCL implementation. 
This mechanism is based on the concurrency level of the DSM 
workloads. The concurrency level represents the amount of 
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concurrency that the application will have during its execution 
in the DSM system. It can be easily obtained from the number 
of shared objects and tasks of the applications. So, with this 
mechanism, the CCL can be implemented without apriori 
knowledge about all possible situations (ideal condition), 
which is infeasible in a real system.  

The main objectives of this paper are: to propose and 
present a configuration control mechanism, to implement and 
analyze the performance of it in a reconfigurable consistency 
algorithm using simulation. The main goals are: the 
development of the configuration control mechanism in a 
simulation tool and its use on a RCA.  

This paper is organized as follow: in section 2, we present 
some important related works; in section 3 we present some 
concepts about the reconfigurable consistency algorithm RCA; 
in section 4, we present our configuration control mechanism; 
sections 5 and 6 describes and present the experimental 
method and results and in section 7, we present our 
conclusions and describes some future works.  

II. RELATED WORK

In the last years, many consistency algorithms have been 
proposed [1] [2] [7] [8] [9] [10] [11] [12], but in this paper, 
we will discuss only some papers that are more relevant and 
close to our work [1] [2] [7] [8]. In papers [1] [2], we propose 
and present a reconfigurable object consistency. In [7] [8], 
adaptive consistency algorithms are presented. And, in [10] 
[11] traditional consistency algorithms are presented.  

In the works [1] [2], we propose and present a 
reconfigurable object consistency that was represented by a 
reconfigurable algorithm. In this reconfigurable consistency, 
the CCL is based on the percentage of writes instructions and 
on the number of objects of the workload. The objects number 
is easy to be obtained from the workloads, but the percentage 
of writes instructions is difficult. To obtain the percentage of 
write instructions in a workload, it has to be analyzed by a 
program that identifies this percentage. Furthermore, the 
number of objects and percentage of write instructions change 
from application to application. So, this is expensive and 
difficult to obtain.  

In [7], a flexible consistency algorithm is proposed and 
implemented. It uses a different algorithm depending on the 
selected parameter. The consistency algorithm implements 
three-consistency models, but it just uses the traditional 
implementation of each one. Moreover, just one parameter (the 
consistency model) is used to change the consistency. So, the 
consistency used has to be chosen by the users and not based 
on the workloads and DSM Systems characteristics like in [1] 
[2].  

In [8], a hybrid software DSM protocol is presented. This 
DSM can adapt to sharing patterns. The adaptation is made 
considering just the access policy and the synchronization 
primitives. Furthermore, their consistency model can only be 
adapted for some release consistency model variations. The 

adaptation is done based on the access patters that are difficult 
to be obtained from the workloads in most of the cases. 

In [10], a traditional sequential consistency algorithm is 
proposed and presented. In [11], an atomic consistency 
algorithm is proposed and its implementation is presented. In 
both works, some qualitative and quantitative results are 
presented. 

In the works [1] [2], they present a reconfigurable object 
consistency implemented with an ideal CCL that knows apriori 
the best configuration for each situation. In papers [7] [8] [10] 
[11], the authors present adaptable and fixed consistency 
algorithms. So, regarding to consistency details, the works that 
are closest to our work are [7] [8] [9] [10] [11] [12] and 
regarding to CCL the closest works to our approach are [1] 
[2]. 

III. RECONFIGURABLE CONSISTENCY ALGORITHM

RCA is a reconfigurable consistency algorithm for 
asynchronous architectures that execute an object-based 
software DSM [1] [2]. It manages the state of a set of shared 
objects. RCA can have its behavior reconfigured considering 
the workloads and DSM systems characteristics. So, it can 
adapt to the workload and architecture characteristics, 
becoming more flexible and increasing performance. 

RCA is composed of three layers: Basic Layer (BL), 
Reconfigurable Layer (RL) and Configuration Control Layer 
(CCL). The BL consists of a frame set and data structures. A 
frame represents a part or phase of an algorithm. A data 
structure may be a list, a queue, an array or some structure that 
stores data. For example, a wait queue (data structure) stores 
operations (data). The Reconfigurable Layer represents a 
configuration or an instance of the BL, in which every frame is 
filled out with one compatible constructive block at a certain 
moment. A constructive block is a possible implementation 
that can fill out with a specific frame. The Configuration 
Control Layer chooses the constructive blocks that will fill out 
each frame at a given moment, thus it controls the 
configuration swapping. The choice is made based on entry 
parameters [2]. 

RCA has five parts (an event ordering policy frame, a 
constraint policy frame, a coherence protocol frame, a 
replication protocol frame and an access policy frame) and 
some implementations (blocks) that are combined to 
reconfigurable it. So, it can have its behavior assuming any 
type of consistency. The actual version of RCA can be 
reconfigurable to assume atomic or sequential consistency 
algorithms variations [1] [2]. 

IV. CONFIGURATION CONTROL MECHANISM

As we said before, RCA provides flexibility and 
performance improvement for the consistency algorithms. An 



important RCA layer is CCL, because it is responsible for the 
RCA reconfiguration process, and for the flexibility and 
performance improvements. 

The Configuration Control Layer (CCL) is responsible for 
selecting and swapping the constructive blocks that fill in the 
RCA frames at a given moment. So, it is responsible for 
generating the Reconfigurable Layer (instance) from the Basic 
Layer. The decisions about the selection and swap might be 
made based on: input parameters, dynamic workload 
information, commands from the operating system, user’s 
choice etc.  

The input parameters used in the previous version [1] [2] of 
CCL were a set of metrics (response time, number of messages 
and communication time) that represents the DSM system 
characteristics and a set of some DSM workload 
characteristics (number of objects, percentage of write 
instructions, number of tasks and sharing patterns). Most of 
these DSM system and workload characteristics are difficult to 
obtain in practice. Because, these characteristics are related to 
different computer system levels, like the programming model, 
language, algorithm, architecture, etc. However, there are 
some DSM system and workload characteristics that can be 
extract from the applications through the use of profiling tools 
or by the user specification [13]. Among these characteristics 
we can cite the number of tasks and number of shared objects. 

Based on the number of tasks and number of shared objects, 
we propose a new configuration control mechanism for the 
CCL that we called concurrency level heuristic. The 
concurrency level heuristic is based on the amount of shared 
objects for the set of tasks of an application. It represents the 
amount of concurrency that the application will have during its 
execution in the DSM system. So, the concurrency level can 
influence the performance and the parallelism level of the 
applications. Furthermore, a same concurrency level can 
represent a set of applications, because different applications 
can have the same concurrency level.  

To create the concurrency level heuristic, we defined the 
application concurrency level (cl) parameter. The cl of an 
application is defined as the number of objects divided for the 
number of tasks (Equation 1).    

sksNumberofTa

jectsNumberofOb
LevelConcurency =    (Equation 1) 

The concurrency level of an application can be minimum, 
medium and maximum. In minimum cl applications, the 
number of tasks is always the same that the number of objects. 
In medium cl applications, we have at least one object for each 
two tasks. And, in the maximum cl, the number of objects for 
all applications at the same time is one. So, for a minimum cl 
any consistency algorithms are good enough. On the other 
hand, for medium and maximum cl weaker consistency 
algorithms are better than the strong ones. 

The heuristic uses the cl parameter of each application in the 
getConfigurationForclk () function to define the best 

configuration for that application. With the cl, the new CCL 
became more generic and smaller than the previous CCL, 
because different types of application can have the same cl. In 
figure 1 we present the new CCL that use cl (just one value) 
instead of W (a set of values), as the CCL presented in [1] [2].  

Fig. 1.  The configuration control layer with the Configuration 
Control Mechanism 

V. EXPERIMENTAL METHOD

In this section, we describe the metrics, DSM system 
architecture and workload used for the configuration control 
mechanism performance evaluation. Afterwards, we describe 
the experimental design in which we highlight consistency 
algorithms that will be used in the performance analysis of the 
configuration control mechanism. 

In order to analyze the configuration control mechanism, we 
can use different metrics. The most common is the response 
time metric [1] [2] [3] [4] [5]. The mean job response time, 
defined in Eq.2, is the mean time interval between the 
submission and end of a job. 

bsNumberofJo
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(Equation 2) 

The DSM system architecture is a cluster composed of 8 
nodes interconnected by a Fast Ethernet switch. Each node has 
an object software DSM. In Table 1, we see the main values of 
the cluster’s characteristics, obtained from benchmarks and 
performance libraries (Sandra 2003, PAPI 2.3 etc.). We 
modeled our environment in ClusterSim, a simulation tool [14]  
[15]. In  [14], the DSM and the traditional (proposed) 
consistency models (TCM) implementations were verified, in 
ClusterSim. 

Table 1. Cluster characteristics and respective values 
Characteristic Value Characteristic Value 

Number of nodes 8 Network Fast 
Ethernet 

Processor Frequency 0.938 
GHz 

Network Latency 0.000179 s

Cycles per Instructions 0.999710
5 

Max. Segment 
Size 

1460 



Primary Memory Transfer 
Rate 

1114.6 
MB/s 

Network 
Bandwidth 

11.0516 
MB/s 

Secondary Memory 
Transfer Rate 

23.0 
MB/s 

Protocol 
overhead 

58 bytes 

Invalidate Message Size 96 bytes Update Message 
Size 

1K – 4K 

DSM applications can be categorized into three broad 
categories, namely fork-join, run-to-complete and iterative 
[16]. Each one of these categories has different characteristics. 
The interactive applications exhibit a regular program 
behavior and for this reason we will simulate different types of 
them.  

In order to simulate different applications, we choose some 
values and characteristics (number of shared objects, number 
of tasks, access patters and number of writes and reads) that 
are important in an object-based software DSM. So, we create 
our synthetic workload. Our workload is a set of six sub-
workloads. Each one of these sub-workloads is composed of 
ten applications. The applications have shared objects to 
represent some common structures (Matrix or Vector), used in 
some common parallel problems, like Matrix Multiplication, 
Image Convolution, Quick Short etc. To cover the maximum 
number of workloads, we used different access patterns, 
different number of objects and tasks and different number of 
interactions and instructions.  

 After the choice of the characteristics, we modeled the 
workload applications based on these characteristics and on 
the concurrency level (cl) in ClusterSim. Table 2 presents the 
sub-workloads number of applications considering the three 
different concurrency levels. The complete description of the 
workload can be found in [3]. 

Table 2. Workload characteristics 
Workload Number of 

Appl.  
minimum cl

Number of Appl. 
 medium cl

Number of 
Appl. 
Maximum cl

Sub-Workload 1 2 4 4 

Sub-Workload 2 4 2 4 

Sub-Workload 3 4 4 2 

Sub-Workload 4 0 2 8 

Sub-Workload 5 8 0 2 

Sub-Workload 6 2 8 0 

In order to analyze the performance of our configuration 
control mechanism, we compare the RCA with CCL 
implemented with the proposed mechanism with four 
consistency algorithms. These algorithms are: the two 
algorithms presented in [10] and [11], the reconfigurable 
consistency algorithm implemented with a theoretic upper 
bound CCL presented in [1] [2] and an algorithm (the best on 
average) generate from the configurations of the RCA. 

We will call the works presented in [10] and [11] as 
Algorithm 1 and 2. The RCA implemented in [1] and [2] will 
be called as RCA_Ideal, because it is a theoretic upper bound 
for the maximum speedup that RCA can generate. And, the 
RCA implemented with the proposed configuration control 

mechanism will be called RCA_cl. Finally, the best (on 
average) algorithm generate from the RCA configurations will 
be called Algorithm 3.  

To compare the algorithms 1, 2, 3 and RCA_ideal with our 
RCA_cl, we model them in ClusterSim and simulate the same 
workload for the five algorithms. So, considering the workload 
and the five consistency algorithms (Algorithm 1, 2, 3, 
RCA_Ideal and RCA_cl) we made 300 simulations (5 
algorithms x 60 applications simulations). 

VI. SIMULATION RESULTS

In this section we present the response time results obtained 
from the simulations. For the performance analysis of the 
proposed mechanism, we compare the RCA implemented with 
this mechanism with other two traditional consistency 
algorithms, proposed in [10] and [11]. Furthermore, we show 
the RCA_cl thresholds, comparing it with what we call 
RCA_Ideal and with the best configuration generate from 
RCA frames combination. In the end of the section, we present 
the cumulative response time for the simulated algorithms and 
workload. 

A. Traditional Consistency Algorithms 

In figure 2, we present the response time for each sub-
workload from the simulated workload for the algorithms 1, 2 
and RCA_cl. As we can observe in fig. 2, the algorithm 1 
presents the worst results. This algorithm is an atomic 
consistency and is very strong. So, it not allows the tasks to 
access the shared objects in parallel, which decreases the 
performance of the applications and DSM systems.   

We can also observe in this figure that in sub-workloads 2, 3 
and 6 (W2, W3 and W6) the RCA_cl and Alg. 2 have the same 
response time. In the W2 and W3 the applications distributions 
are very uniform (table 2).  So, the sub-workloads became 
homogeneous, and the consistency algorithm use in their 
execution does not change their performance. Considering the 
sub-workload 6 (W6), these two algorithms have the same 
results because there are not applications with maximum cl. 
W6 is composed of 8 applications with minimum cl. The 
consistency algorithm does not influence the performance of 
these applications, because the concurrency level is very small. 

Fig. 2.  Response Time for the Algorithms 1, 2 and CCL 

For the sub-workload 1 (W1), the Alg.2 has the best results. 
The RCA_cl have a large response time in one of the 



applications. In the others applications of W1, RCA_cl and 
Alg. 2 have the same results. So, because of a wrong RCA_cl
configuration choice for one of the applications the Alg. 2 
became better. 

With sub-workloads 4 and 5 (W4 and W5) the RCA_cl have 
the best results. In these sub-workloads the presence of the 
applications with maximum cl gives to Alg. 2 the worst results. 
The applications with maximum cl are responsible for the 
RCA_cl speedup, because there is a lot of concurrency and the 
RCA_cl have to find the best performance for each 
concurrency level. Furthermore, Alg.2 is not good for 
applications with maximum cl because it do not allow multiple 
writes or reads, which decrease the system performance.  

B. RCA_cl Thresholds  

In Fig. 3 we present the response time for RCA_cl 
compared with Alg. 3 and RCA_Ideal. From all algorithms, 
Alg. 3 present the best response time for the simulated 
workload. Because of this, we compare its performance to the 
RCA_Ideal and RCA_cl. 

The bottom line represents the response time for the 
RCA_Ideal. As we can see, this algorithm has the best results 
for all sub-workloads. However, the simulation of RCA_Ideal 
is important to show that RCA_cl have results very closer to it. 
As we can observe in fig. 3, RCA_cl have better results than 
the best algorithm (Alg. 3). Here, it is also important to note 
that RCA_cl is much better in W4. This sub-workload has 
eight maximum cl applications, what means that our 
concurrency level heuristic is better for workloads with much 
concurrency. Considering that this kind of applications 
(maximum cl) is presented in almost all DSM workloads and 
benchmarks   [17]   [18], RCA_cl can be used to improve the 
performance of DSM applications.  

Fig. 3.  Response Time for Alg.3, RCA_cl and RCA_Ideal 

C. Cumulative Response Time  

In fig.4 we present the cumulative response time for the 
analyzed algorithms (Alg.1, Alg. 2, Alg. 3, RCA_cl and 
RCA_Ideal). The cumulative response time is presented for the 

sub-workloads in which RCA_cl do not have the same results 
of the others algorithms (W1, W4 and W5).  

As we can see in the figure, RCA_cl have results very closer 
to the RCA_Ideal. This means that, considering the compared 
algorithms RCA_cl is the closest to the maximum possible 
speedup (RCA_Ideal).  

Another important thing to observe in this figure is that Alg. 
1 and 2 are far way from the RCA_Ideal. They are closer to 
the Alg. 3 and RCA_cl, but they have worse results than Alg. 3 
and RCA_cl. It is important to say that Alg.3 is one of the 
possible RCA_cl configurations and it wasn’t proposed in 
literature. So, for W1, W4 and W5 the algorithms 1 and 2 do 
not present a good performance as Alg. 3 and RCA_cl. 

Fig. 4.  Cumulative Response Time for Alg.1, Alg.2, Alg.3, 
RCA_cl and RCA_Ideal 

In table 3 we present the response time for each sub-
workload and algorithm. We also present the response time for 
the complete workload execution for each algorithm.  

Analyzing this table, we can conclude that considering the 
best algorithm (algorithm that present the smallest response 
time – Alg. 3), RCA_cl presents a speedup of 6%. And 
considering all the algorithms, the RCA_cl presents a speedup 
of 15%, on average. The RCA_Ideal present 17% of speedup 
in relation of the best algorithm (Alg. 3). And, a speedup of 
25% considering all algorithms. So, considering that 
RCA_Ideal is a theoretic upper bound, RCA_cl presents a 
good speedup. All the simulations and results analysis can be 
found in [3]. 

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a configuration control 
mechanism based on concurrency level. Moreover, we 
analyzed a workload, in which the use of mechanism achieved 
very good results (more than 15% speedup). One of the most 
important results, in all simulations, was to show that 
depending on the workload, the RCA implemented with the 
proposed configuration control mechanism have results very 
closer to the RCA_Ideal (Theoretic Upper Bound performance 
of RCA) and better than the best algorithm generate from RCA 



configurations (Alg. 3).  
Our mechanism is more independent, because depends just 

of the concurrency level and not of a set of workload 
characteristics like the CCL in RCA_Ideal presented in [1] [2]. 
Thus, RCA_Ideal cannot be generic for all situations, because 
the percentage of write instructions changes from application 
to application. Due to the high heterogeneity and stochastic 
behavior of the workloads, the configuration control 
mechanism based on concurrency level appears as an 
alternative solution, providing more independence from 
specific workload characteristics.  

The main contributions of this paper are: the presentation, 
implementation and performance analysis of a configuration 
control mechanism based on concurrency level, comparing it 
with other consistency algorithms for different workloads. 

As future works and open researches we can highlight: give 
more independence for the configuration control mechanism; 
compare RCA implemented with the proposed configuration 
control mechanism with other consistency algorithms, 
simulation of different workloads and real tests. 
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