

Abstract

A Reconfigurable Consistency Algorithm (RCA) is an
algorithm that guarantees the consistency in Distributed
Shared Memory (DSM) Systems. In a RCA, there is a
Configuration Control Layer (CCL) that is responsible for
selecting the most suitable RCA configuration (behavior) for a
specific workload and DSM system. In previous works, we
defined an upper bound performance for RCA based on an
ideal CCL, which knows apriori the best configuration for
each situation. This ideal CCL is based on a set of workloads
characteristics that, in most situations, are difficult to extract
from the applications (percentage of shared write and read
operations and sharing patterns). In this paper we propose,
develop and present a heuristical configuration control
mechanism for the CCL implementation. This mechanism is
based on an easily obtained applications parameter, the
concurrency level. Our results show that this configuration
control mechanism improves the RCA performance in 15%, on
average, compared to other traditional consistency
algorithms. Furthermore, the CCL with this mechanism is
independent from the workload and DSM system specific
characteristics, like sharing patterns and percentage of writes
and reads.

I. INTRODUCTION

In a distributed system, when an application has parallel
access on shared objects, the users may use a model that helps
the management of these accesses and simplifies the
programming. Distributed shared memory is one of these
models that have received considerable attention in the last

1-4244-0910-1/07/$20.00 c2007 IEEE

years [1] [2]. DSM is an abstraction that provides an illusion
of a shared memory in a parallel and distributed system. In
object based DSMs, the operations semantics (Consistency)
guarantee that objects will be consistent for the process during
the workload execution [1] [2].

A consistency algorithm can be defined as a contract
between the application and the shared objects. This contract
has the rules about how and when a process of an application
can access the shared objects [1] [2].

The Reconfigurable Consistency Algorithm (RCA) was
proposed to improve flexibility and performance of the object-
based DSM systems. RCA is an algorithm that guarantees the
consistency in an object-based DSM Systems. It can have its
behavior modified considering the workloads and DSM
Systems characteristics. So, it can adapt to the workloads and
DSM Systems characteristics, becoming more flexible and
increasing performance [1] [2] [3].

In a RCA, there is a Configuration Control Layer (CCL) that
is responsible for selecting the most suitable RCA
configuration (behavior) for a specific workload and DSM
system. Thus, the functioning of the RCA and the
configurations are decided within this layer. Its decisions are
made upon input parameters, dynamic workload information,
commands from the operating system, user’s choice etc. The
CCL design is a complex key problem in the design of a
reconfigurable algorithm [1] [2] [3] [4] [5] [6].

Until now, we defined a theoretic upper bound performance
for RCA based on an ideal CCL, which knows apriori the best
configuration for each situation. This CCL is based on a set of
workloads characteristics that are difficult to extract from the
applications [1] [2] [3].

In this paper we propose, develop and present a heuristical
configuration control mechanism for the CCL implementation.
This mechanism is based on the concurrency level of the DSM
workloads. The concurrency level represents the amount of

A Configuration Control Mechanism Based on Concurrency Level for a
Reconfigurable Consistency Algorithm

Christiane V. Pousa1

1Computational and Digital Systems
Group - Pontifical Catholic University of
Minas Gerais - Belo Horizonte – Brazil

pousa@ieee.org

Luís F. W. Góes2

2Computational and Digital Systems
Group - Pontifical Catholic University of
Minas Gerais - Belo Horizonte – Brazil

lfwgoes@yahoo.com.br

Carlos A. P. S. Martins3

3Computational and Digital Systems
Group - Pontifical Catholic University of

Minas Gerais - Belo – Brazil
capsm@ieee.org

concurrency that the application will have during its execution
in the DSM system. It can be easily obtained from the number
of shared objects and tasks of the applications. So, with this
mechanism, the CCL can be implemented without apriori
knowledge about all possible situations (ideal condition),
which is infeasible in a real system.

The main objectives of this paper are: to propose and
present a configuration control mechanism, to implement and
analyze the performance of it in a reconfigurable consistency
algorithm using simulation. The main goals are: the
development of the configuration control mechanism in a
simulation tool and its use on a RCA.

This paper is organized as follow: in section 2, we present
some important related works; in section 3 we present some
concepts about the reconfigurable consistency algorithm RCA;
in section 4, we present our configuration control mechanism;
sections 5 and 6 describes and present the experimental
method and results and in section 7, we present our
conclusions and describes some future works.

II. RELATED WORK

In the last years, many consistency algorithms have been
proposed [1] [2] [7] [8] [9] [10] [11] [12], but in this paper,
we will discuss only some papers that are more relevant and
close to our work [1] [2] [7] [8]. In papers [1] [2], we propose
and present a reconfigurable object consistency. In [7] [8],
adaptive consistency algorithms are presented. And, in [10]
[11] traditional consistency algorithms are presented.

In the works [1] [2], we propose and present a
reconfigurable object consistency that was represented by a
reconfigurable algorithm. In this reconfigurable consistency,
the CCL is based on the percentage of writes instructions and
on the number of objects of the workload. The objects number
is easy to be obtained from the workloads, but the percentage
of writes instructions is difficult. To obtain the percentage of
write instructions in a workload, it has to be analyzed by a
program that identifies this percentage. Furthermore, the
number of objects and percentage of write instructions change
from application to application. So, this is expensive and
difficult to obtain.

In [7], a flexible consistency algorithm is proposed and
implemented. It uses a different algorithm depending on the
selected parameter. The consistency algorithm implements
three-consistency models, but it just uses the traditional
implementation of each one. Moreover, just one parameter (the
consistency model) is used to change the consistency. So, the
consistency used has to be chosen by the users and not based
on the workloads and DSM Systems characteristics like in [1]
[2].

In [8], a hybrid software DSM protocol is presented. This
DSM can adapt to sharing patterns. The adaptation is made
considering just the access policy and the synchronization
primitives. Furthermore, their consistency model can only be
adapted for some release consistency model variations. The

adaptation is done based on the access patters that are difficult
to be obtained from the workloads in most of the cases.

In [10], a traditional sequential consistency algorithm is
proposed and presented. In [11], an atomic consistency
algorithm is proposed and its implementation is presented. In
both works, some qualitative and quantitative results are
presented.

In the works [1] [2], they present a reconfigurable object
consistency implemented with an ideal CCL that knows apriori
the best configuration for each situation. In papers [7] [8] [10]
[11], the authors present adaptable and fixed consistency
algorithms. So, regarding to consistency details, the works that
are closest to our work are [7] [8] [9] [10] [11] [12] and
regarding to CCL the closest works to our approach are [1]
[2].

III. RECONFIGURABLE CONSISTENCY ALGORITHM

RCA is a reconfigurable consistency algorithm for
asynchronous architectures that execute an object-based
software DSM [1] [2]. It manages the state of a set of shared
objects. RCA can have its behavior reconfigured considering
the workloads and DSM systems characteristics. So, it can
adapt to the workload and architecture characteristics,
becoming more flexible and increasing performance.

RCA is composed of three layers: Basic Layer (BL),
Reconfigurable Layer (RL) and Configuration Control Layer
(CCL). The BL consists of a frame set and data structures. A
frame represents a part or phase of an algorithm. A data
structure may be a list, a queue, an array or some structure that
stores data. For example, a wait queue (data structure) stores
operations (data). The Reconfigurable Layer represents a
configuration or an instance of the BL, in which every frame is
filled out with one compatible constructive block at a certain
moment. A constructive block is a possible implementation
that can fill out with a specific frame. The Configuration
Control Layer chooses the constructive blocks that will fill out
each frame at a given moment, thus it controls the
configuration swapping. The choice is made based on entry
parameters [2].

RCA has five parts (an event ordering policy frame, a
constraint policy frame, a coherence protocol frame, a
replication protocol frame and an access policy frame) and
some implementations (blocks) that are combined to
reconfigurable it. So, it can have its behavior assuming any
type of consistency. The actual version of RCA can be
reconfigurable to assume atomic or sequential consistency
algorithms variations [1] [2].

IV. CONFIGURATION CONTROL MECHANISM

As we said before, RCA provides flexibility and
performance improvement for the consistency algorithms. An

important RCA layer is CCL, because it is responsible for the
RCA reconfiguration process, and for the flexibility and
performance improvements.

The Configuration Control Layer (CCL) is responsible for
selecting and swapping the constructive blocks that fill in the
RCA frames at a given moment. So, it is responsible for
generating the Reconfigurable Layer (instance) from the Basic
Layer. The decisions about the selection and swap might be
made based on: input parameters, dynamic workload
information, commands from the operating system, user’s
choice etc.

The input parameters used in the previous version [1] [2] of
CCL were a set of metrics (response time, number of messages
and communication time) that represents the DSM system
characteristics and a set of some DSM workload
characteristics (number of objects, percentage of write
instructions, number of tasks and sharing patterns). Most of
these DSM system and workload characteristics are difficult to
obtain in practice. Because, these characteristics are related to
different computer system levels, like the programming model,
language, algorithm, architecture, etc. However, there are
some DSM system and workload characteristics that can be
extract from the applications through the use of profiling tools
or by the user specification [13]. Among these characteristics
we can cite the number of tasks and number of shared objects.

Based on the number of tasks and number of shared objects,
we propose a new configuration control mechanism for the
CCL that we called concurrency level heuristic. The
concurrency level heuristic is based on the amount of shared
objects for the set of tasks of an application. It represents the
amount of concurrency that the application will have during its
execution in the DSM system. So, the concurrency level can
influence the performance and the parallelism level of the
applications. Furthermore, a same concurrency level can
represent a set of applications, because different applications
can have the same concurrency level.

To create the concurrency level heuristic, we defined the
application concurrency level (cl) parameter. The cl of an
application is defined as the number of objects divided for the
number of tasks (Equation 1).

sksNumberofTa

jectsNumberofOb
LevelConcurency = (Equation 1)

The concurrency level of an application can be minimum,
medium and maximum. In minimum cl applications, the
number of tasks is always the same that the number of objects.
In medium cl applications, we have at least one object for each
two tasks. And, in the maximum cl, the number of objects for
all applications at the same time is one. So, for a minimum cl
any consistency algorithms are good enough. On the other
hand, for medium and maximum cl weaker consistency
algorithms are better than the strong ones.

The heuristic uses the cl parameter of each application in the
getConfigurationForclk () function to define the best

configuration for that application. With the cl, the new CCL
became more generic and smaller than the previous CCL,
because different types of application can have the same cl. In
figure 1 we present the new CCL that use cl (just one value)
instead of W (a set of values), as the CCL presented in [1] [2].

Fig. 1. The configuration control layer with the Configuration
Control Mechanism

V. EXPERIMENTAL METHOD

In this section, we describe the metrics, DSM system
architecture and workload used for the configuration control
mechanism performance evaluation. Afterwards, we describe
the experimental design in which we highlight consistency
algorithms that will be used in the performance analysis of the
configuration control mechanism.

In order to analyze the configuration control mechanism, we
can use different metrics. The most common is the response
time metric [1] [2] [3] [4] [5]. The mean job response time,
defined in Eq.2, is the mean time interval between the
submission and end of a job.

bsNumberofJo

ionTimeJobSubmissJobEndTime
meMeanRespTi

∑ −

=

(Equation 2)

The DSM system architecture is a cluster composed of 8
nodes interconnected by a Fast Ethernet switch. Each node has
an object software DSM. In Table 1, we see the main values of
the cluster’s characteristics, obtained from benchmarks and
performance libraries (Sandra 2003, PAPI 2.3 etc.). We
modeled our environment in ClusterSim, a simulation tool [14]
[15]. In [14], the DSM and the traditional (proposed)
consistency models (TCM) implementations were verified, in
ClusterSim.

Table 1. Cluster characteristics and respective values
Characteristic Value Characteristic Value

Number of nodes 8 Network Fast
Ethernet

Processor Frequency 0.938
GHz

Network Latency 0.000179 s

Cycles per Instructions 0.999710
5

Max. Segment
Size

1460

Primary Memory Transfer
Rate

1114.6
MB/s

Network
Bandwidth

11.0516
MB/s

Secondary Memory
Transfer Rate

23.0
MB/s

Protocol
overhead

58 bytes

Invalidate Message Size 96 bytes Update Message
Size

1K – 4K

DSM applications can be categorized into three broad
categories, namely fork-join, run-to-complete and iterative
[16]. Each one of these categories has different characteristics.
The interactive applications exhibit a regular program
behavior and for this reason we will simulate different types of
them.

In order to simulate different applications, we choose some
values and characteristics (number of shared objects, number
of tasks, access patters and number of writes and reads) that
are important in an object-based software DSM. So, we create
our synthetic workload. Our workload is a set of six sub-
workloads. Each one of these sub-workloads is composed of
ten applications. The applications have shared objects to
represent some common structures (Matrix or Vector), used in
some common parallel problems, like Matrix Multiplication,
Image Convolution, Quick Short etc. To cover the maximum
number of workloads, we used different access patterns,
different number of objects and tasks and different number of
interactions and instructions.

 After the choice of the characteristics, we modeled the
workload applications based on these characteristics and on
the concurrency level (cl) in ClusterSim. Table 2 presents the
sub-workloads number of applications considering the three
different concurrency levels. The complete description of the
workload can be found in [3].

Table 2. Workload characteristics
Workload Number of

Appl.
minimum cl

Number of Appl.
 medium cl

Number of
Appl.
Maximum cl

Sub-Workload 1 2 4 4

Sub-Workload 2 4 2 4

Sub-Workload 3 4 4 2

Sub-Workload 4 0 2 8

Sub-Workload 5 8 0 2

Sub-Workload 6 2 8 0

In order to analyze the performance of our configuration
control mechanism, we compare the RCA with CCL
implemented with the proposed mechanism with four
consistency algorithms. These algorithms are: the two
algorithms presented in [10] and [11], the reconfigurable
consistency algorithm implemented with a theoretic upper
bound CCL presented in [1] [2] and an algorithm (the best on
average) generate from the configurations of the RCA.

We will call the works presented in [10] and [11] as
Algorithm 1 and 2. The RCA implemented in [1] and [2] will
be called as RCA_Ideal, because it is a theoretic upper bound
for the maximum speedup that RCA can generate. And, the
RCA implemented with the proposed configuration control

mechanism will be called RCA_cl. Finally, the best (on
average) algorithm generate from the RCA configurations will
be called Algorithm 3.

To compare the algorithms 1, 2, 3 and RCA_ideal with our
RCA_cl, we model them in ClusterSim and simulate the same
workload for the five algorithms. So, considering the workload
and the five consistency algorithms (Algorithm 1, 2, 3,
RCA_Ideal and RCA_cl) we made 300 simulations (5
algorithms x 60 applications simulations).

VI. SIMULATION RESULTS

In this section we present the response time results obtained
from the simulations. For the performance analysis of the
proposed mechanism, we compare the RCA implemented with
this mechanism with other two traditional consistency
algorithms, proposed in [10] and [11]. Furthermore, we show
the RCA_cl thresholds, comparing it with what we call
RCA_Ideal and with the best configuration generate from
RCA frames combination. In the end of the section, we present
the cumulative response time for the simulated algorithms and
workload.

A. Traditional Consistency Algorithms

In figure 2, we present the response time for each sub-
workload from the simulated workload for the algorithms 1, 2
and RCA_cl. As we can observe in fig. 2, the algorithm 1
presents the worst results. This algorithm is an atomic
consistency and is very strong. So, it not allows the tasks to
access the shared objects in parallel, which decreases the
performance of the applications and DSM systems.

We can also observe in this figure that in sub-workloads 2, 3
and 6 (W2, W3 and W6) the RCA_cl and Alg. 2 have the same
response time. In the W2 and W3 the applications distributions
are very uniform (table 2). So, the sub-workloads became
homogeneous, and the consistency algorithm use in their
execution does not change their performance. Considering the
sub-workload 6 (W6), these two algorithms have the same
results because there are not applications with maximum cl.
W6 is composed of 8 applications with minimum cl. The
consistency algorithm does not influence the performance of
these applications, because the concurrency level is very small.

Fig. 2. Response Time for the Algorithms 1, 2 and CCL

For the sub-workload 1 (W1), the Alg.2 has the best results.
The RCA_cl have a large response time in one of the

applications. In the others applications of W1, RCA_cl and
Alg. 2 have the same results. So, because of a wrong RCA_cl
configuration choice for one of the applications the Alg. 2
became better.

With sub-workloads 4 and 5 (W4 and W5) the RCA_cl have
the best results. In these sub-workloads the presence of the
applications with maximum cl gives to Alg. 2 the worst results.
The applications with maximum cl are responsible for the
RCA_cl speedup, because there is a lot of concurrency and the
RCA_cl have to find the best performance for each
concurrency level. Furthermore, Alg.2 is not good for
applications with maximum cl because it do not allow multiple
writes or reads, which decrease the system performance.

B. RCA_cl Thresholds

In Fig. 3 we present the response time for RCA_cl
compared with Alg. 3 and RCA_Ideal. From all algorithms,
Alg. 3 present the best response time for the simulated
workload. Because of this, we compare its performance to the
RCA_Ideal and RCA_cl.

The bottom line represents the response time for the
RCA_Ideal. As we can see, this algorithm has the best results
for all sub-workloads. However, the simulation of RCA_Ideal
is important to show that RCA_cl have results very closer to it.
As we can observe in fig. 3, RCA_cl have better results than
the best algorithm (Alg. 3). Here, it is also important to note
that RCA_cl is much better in W4. This sub-workload has
eight maximum cl applications, what means that our
concurrency level heuristic is better for workloads with much
concurrency. Considering that this kind of applications
(maximum cl) is presented in almost all DSM workloads and
benchmarks [17] [18], RCA_cl can be used to improve the
performance of DSM applications.

Fig. 3. Response Time for Alg.3, RCA_cl and RCA_Ideal

C. Cumulative Response Time

In fig.4 we present the cumulative response time for the
analyzed algorithms (Alg.1, Alg. 2, Alg. 3, RCA_cl and
RCA_Ideal). The cumulative response time is presented for the

sub-workloads in which RCA_cl do not have the same results
of the others algorithms (W1, W4 and W5).

As we can see in the figure, RCA_cl have results very closer
to the RCA_Ideal. This means that, considering the compared
algorithms RCA_cl is the closest to the maximum possible
speedup (RCA_Ideal).

Another important thing to observe in this figure is that Alg.
1 and 2 are far way from the RCA_Ideal. They are closer to
the Alg. 3 and RCA_cl, but they have worse results than Alg. 3
and RCA_cl. It is important to say that Alg.3 is one of the
possible RCA_cl configurations and it wasn’t proposed in
literature. So, for W1, W4 and W5 the algorithms 1 and 2 do
not present a good performance as Alg. 3 and RCA_cl.

Fig. 4. Cumulative Response Time for Alg.1, Alg.2, Alg.3,
RCA_cl and RCA_Ideal

In table 3 we present the response time for each sub-
workload and algorithm. We also present the response time for
the complete workload execution for each algorithm.

Analyzing this table, we can conclude that considering the
best algorithm (algorithm that present the smallest response
time – Alg. 3), RCA_cl presents a speedup of 6%. And
considering all the algorithms, the RCA_cl presents a speedup
of 15%, on average. The RCA_Ideal present 17% of speedup
in relation of the best algorithm (Alg. 3). And, a speedup of
25% considering all algorithms. So, considering that
RCA_Ideal is a theoretic upper bound, RCA_cl presents a
good speedup. All the simulations and results analysis can be
found in [3].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a configuration control
mechanism based on concurrency level. Moreover, we
analyzed a workload, in which the use of mechanism achieved
very good results (more than 15% speedup). One of the most
important results, in all simulations, was to show that
depending on the workload, the RCA implemented with the
proposed configuration control mechanism have results very
closer to the RCA_Ideal (Theoretic Upper Bound performance
of RCA) and better than the best algorithm generate from RCA

configurations (Alg. 3).
Our mechanism is more independent, because depends just

of the concurrency level and not of a set of workload
characteristics like the CCL in RCA_Ideal presented in [1] [2].
Thus, RCA_Ideal cannot be generic for all situations, because
the percentage of write instructions changes from application
to application. Due to the high heterogeneity and stochastic
behavior of the workloads, the configuration control
mechanism based on concurrency level appears as an
alternative solution, providing more independence from
specific workload characteristics.

The main contributions of this paper are: the presentation,
implementation and performance analysis of a configuration
control mechanism based on concurrency level, comparing it
with other consistency algorithms for different workloads.

As future works and open researches we can highlight: give
more independence for the configuration control mechanism;
compare RCA implemented with the proposed configuration
control mechanism with other consistency algorithms,
simulation of different workloads and real tests.

REFERENCES

[1] Pousa C. V., Góes L. F. W., Martins C. A. P. S., Reconfigurable Object
Consistency Model, 7th Advances in Parallel and Distributed
Computational Models, IPDPS, 2005.

[2] Pousa C. V., Góes L. F. W., Penha D. O., Martins C. A. P. S.,
Reconfigurable Sequential Consistency Algorithm, in 12th
Reconfigurable Architecture Workshop, IPDPS, 2005.

[3] [3] Reconfigurable Object Consistency Model Project – (ROCoM´s
Project). URL:
http://planeta.terra.com.br/negocios/christianepousa/rocom/index.htm

[4] Ramos L. E. S., Martins C. A. P. S., Reconfigurable Collective
Communication MPI Functions. In V Workshop on High Performance
Computational Systems, 2004, pp.176-183 . (in Portuguese)

[5] Góes L. F., Proposal and Development of a Reconfigurable Parallel Job
Scheduling, M.Sc. Thesis Graduation Program in Electrical
Engineering, Pontifical Catholic University of Minas Gerais, 2004. (in
Portuguese)

[6] Góes L. F.W. and Martins C.A.P.S., Reconfigurable Gang Scheduling
Algorithm, 10th Workshop on Job Scheduling Strategies for Parallel
Processing, LNCS, 2004.

[7] Jiménez E., Fernández A., and Cholvi V., A Parametrized Algorithm
that Implements Sequential, Causal, and Cache Memory Consistency.
Workshop on Parallel, Distributed and Network-based Processing, 2002,
pp.437-444.

[8] Monnerat L. R. and Bianchini R., Efficiently Adapting to Sharing
Patterns in Software DSMs. Proceedings of the 4th IEEE International
Symposium on High-Performance Computer Architecture, 1998.

[9] Lamport L., How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEETrans. Comput.1979, pp. 28:690-
691.

[10] Zhou J.Z., Mizuno M., and Singh G., A Sequentially Consistent
Distributed Shared Memory, In 5th Int'l Conference on Computing and
Information, 1993, pp.165-169.

[11] Torres-Rojas F. J., Ahamad M., Raynal M., Timed consistency for
shared distributed objects. Proceedings of the eighteenth annual ACM
symposium on Principles of distributed computing, 1999, pp. 163-172.

[12] Adve S.V. and Hill M.D., Weak Ordering - A New Definition.
Proceedings of the 17th Annual International Symposium on Computer
Architecture, 1990, 2-14.

[13] Brorsson M. and Kral M, Performance Tuning Software DSM
Applications using Visualisation. The Journal of Supercomputing -
Kluwer Academic Publishers, 1999, vol. 13, no. 3, pp. 249-265(17).

[14] Pousa C. V., Ramos L. E. S., Goes L. F. W., Martins C. A. P. S.,
Extending ClusterSim with MP and DSM Modules, In International

Symposium on High Performance Computational Science and
Engineering, 2004.

[15] Góes L. F. W., Ramos L. E. S., Martins C. A. P. S., ClusterSim: A Java
Parallel Discrete Event Simulation Tool for Cluster Computing. IEEE
International Conference on Cluster Computing, 2004.

[16] Liu Y., Liang T., Kuo Z. and Shich C., Involving Memory Resource
Consideration into Workload Distribution for Software DSM Systems,
in DSM Workshop, 2004.

[17] R. Pozo and B. R. Miller, The SciMark 2 Website. Web Site accessed
on 18 April 2005 http://math.nist.gov/scimark2/

[18] Woo S. C., Ohara M., Torrie E., Singh J. P., and Gupta A., The
SPLASH-2 Programs: Characterization and Methodological
Considerations. 22nd Annual International Symposium on Computer
Architecture 24-36, 1995.

