
Linking Compilation and Visualization for Massively Parallel Programs∗

Alex K. Jones1, Raymond R. Hoare2, Joseph St. Onge2, Joshua Lucas3, Shuyi Shao1, and Rami Melhem1

1University of Pittsburgh 2Concurrent EDA, LLC 3Lockheed Martin

Abstract

This paper presents a technique to visualize the commu-
nication pattern of a parallel application at different points
during its execution. Unlike many existing tools that show
the communication pattern for the entire application, our tool
breaks this communication pattern down into components to
allow the more detailed study of application execution. These
patterns are not merely snapshots or windows of the execu-
tion but rather are tied to specific code structures comprised
of loops in the application. Our technique leverages our com-
piler, which adds instructions into the code to record where
communications and code artifacts occur during execution.
This information is stored into a trace format, which is read
by our visualization tool. The visualization tool can graphi-
cally represent the communication pattern and message vol-
ume to allow a user to analyze and optimize the execution.
As an example, we show how this information can be used to
optimize the execution time and reduce the message delay of
applications executed on a system enhanced with optical cir-
cuit switch interconnections.

1 Introduction

Multiprocessor interconnection networks can benefit from
both temporal and spatial communication locality just as
memory systems exploit locality of references through caches
[8]. Temporal locality represents the effect of temporal aggre-
gation of the inter-processor communications [16]. High tem-
poral locality suggests that during any given time period inter-
processor communication occurs across a certain number of
connections, which can be called a communication working
set. This provides the opportunity to reduce communication
latency by dynamically grouping and scheduling messages
and pre-establishing statically known connections. Spatial lo-
cality is determined by the distribution of the connections in
the application and determines the size of the working set, also
called communication degree. It has been shown that each
node tends to have a small number of favored destinations for

∗This work is in the context of the PERCS project at IBM, which is sup-
ported in part by the Defense Advanced Research Projects Agency (DARPA)
under contract No. NBCH3039004.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

the messages it sends [2, 13]. For example, the NAS parallel
benchmark suite exhibits very high spatial locality and, there-
fore, contains small working sets [2]. A working set refers to
the set of communication pairs in use during a small window
of execution.

It has also been shown that the communication patterns for
many types of parallel applications are regular, i.e. they con-
tain small working sets that are either unchanged or change
infrequently [4]. However, the source of locality of reference
is generally considered to be a product of artifacts of the basic
code structures such as conditionals and loops. As a result, the
impact of loop structures in code has been extensively studied
and is the impetus for many related compiler optimizations
such as loop fusion and loop tiling [15].

This paper presents an analysis of several parallel appli-
cations with the particular emphasis on correlating different
working sets to code structures, loops in particular, within the
applications. The compilation flow presented takes as input a
parallel application written in C or Fortran 77+MPI and gen-
erates a C program that has been annotated to generate a trace
of the application as it executes. The annotated program in-
cludes information about the code structure for segments of
the application that contain communication.

The analysis is completed through the use of a communica-
tion visualization tool presented here. The analysis tool reads
the resulting trace from the application run and generates vi-
sual communication matrices of different loops within the ap-
plication. For nested loops, the communication matrix can be
the aggregate of one or more nested loops, or each subloop
can be analyzed individually. The communication volume is
represented by a color range in the matrix plots. The anal-
ysis is used to extract the working sets for two applications,
CG and MG, and efficiently map the communication onto an
optical circuit switch for improved performance and message
delay.

The remainder of this document is organized as follows:
Relevant previous work is discussed in Section 2. Section 3
presents the compilation flow for generation of traces con-
taining code source information. The visualization tool is de-
scribed in some detail in Section 4. Section 5 provides a case
study of using the visualization tool with the MG application.
Section 6 presents the results from analysis of parallel appli-
cations and benchmarks. Conclusions and future research di-
rections are presented in Section 7.

1

2 Related Work

There have been several attempts [3, 10, 18, 19] to under-
stand the communication characteristics of parallel applica-
tions. Shires, et. al. presented an algorithm for building a
program flow graph representation of an MPI program [18]. In
[19], Vetter and Mueller examined the explicit communication
characteristics of several sophisticated scientific applications,
while focusing on the Message Passing Interface (MPI) [14].
Faraj and Yuan [10] investigated the communication charac-
teristics of MPI implementations of the NAS parallel bench-
marks [3].

Many research projects require information about commu-
nication patterns. For example, Cappello and Germain pro-
posed an approach to associate compiled communications and
a circuit switched interconnection network [5]. Yuan, et. al.
explored using compiled communication as an alternative to
dynamic network control [22]. Dietz and Mattox studied the
Flat Neighborhood Network (FNN) which uses the communi-
cation patterns to determine the design of the network [7]. As
earlier described, our previous work introduces a switch de-
sign which can use our compilation technique to pre-program
a time-division multiplexing (TDM) network switch [8]. All
of the above efforts need the precise knowledge of communi-
cation patterns to reduce overhead in the network.

3 Trace Annotation with Code Artifacts

Much of the analysis of communication requirements and
patterns is currently completed by the analysis of the statis-
tics from a parallel application’s execution. These application
traces are generated through a variety of techniques. One pop-
ular example is to create an annotated set of communication
libraries that produce trace outputs during execution. Gener-
ally, these annotated libraries consist of a set of wrappers that
contain the trace file output followed by forwarding the actual
communication to the underlying communication libraries.

This sort of technique has been used by many researchers
to study different parallel applications of interest on a vari-
ety of parallel platforms. Unfortunately, these techniques of-
ten do not reveal the underlying regularity of the application
and make the application appear to have either a large com-
munication degree or a fairly random communication pattern.
For example, CTH developed at Sandia National Laboratories
(SNL) is an application that models the properties of materi-
als under strong shocking collisions using a multidimensional
representation of the items involved [6].

CTH can operate in a static partitioning mode or in a dy-
namic repartitioning mode. For the dynamic partitioning,
CTH fluctuates between a communication degree of approxi-
mately 8 and 110 nodes with a typical range in the 20s for a
128 run [4]. Figure 1 shows a graphical plot of the communi-
cation matrix from a run of reduced functionality CTH. Each
point in the matrix represents a connection between row and
column processor ids. The brighter a point the higher the vol-

Figure 1. CTH communication matrix for
128 processor run with dynamic partitioning.
Heavy traffic is in white and black represents
no traffic.

ume of traffic that occurred between that pair of nodes during
the run. In spite of the seemly chaotic communication from
Figure 1, the communication is actually predictable to a high
degree of accuracy [12]. This predictability is due in large part
to temporal locality in the code.

The temporal and spatial locality in serial applications
is widely studied, principally to improve application perfor-
mance from techniques such as caching data to improve per-
formance in processors. The locality generally comes from
loop structures in the code which repeat code segments over
and over and change data access patterns in a regular way so
as to be able to use optimizations such as data prefetching and
caching to reduce memory access bottlenecks. Several loop
transformations such as interchange, fusion, and tiling have
been proposed to improve locality in different situations [15].

The locality found in CTH implies that this technique can
be leveraged for even largely seemingly chaotic communica-
tion as discovered by a trace analysis. To discover the inherent
locality and predictability, it is necessary to retain information
about the structure of the code during the trace analysis.

3.1 Compiler-assisted Trace Generation

To study the communication patterns of parallel programs
a compiler was constructed for two main purposes: (1) discov-
ery of communication patterns at compile time and (2) anal-
ysis of parallel applications with annotated traces. A com-
piler prototype has been developed based on the SUIF com-
piler [21]. The SUIF compiler is an open source, source to
source compiler for both the C and Fortran 77 languages.

Figure 2 shows the paradigm of our compilation frame-
work. The front end of SUIF compiles parallel applications
into the SUIF intermediate format. We leverage many of the
built in compiler passes provided with SUIF to perform ba-

Application
C+MPI Code

Application
F77+MPI Code

SUIF Front End
scc

Code Generation
s2c, s2f

Trace Generation
Instruction Enhanced

Code

Communication Detection

Communication
Analysis

Control and
Data Flow
Analysis

Communication
Pattern

Trace Generation

Communication
Compiling

Compiler Framework

Communication
Instruction

Enhanced Code

Figure 2. The compilation framework.

sic transformations, such as copy propagation, constant prop-
agation, etc., to support the communication analysis. Much
of the infrastructure shown in Figure 2 supports the detection
of communication patterns in the application at compile time.
For example, once a program is compiled into the SUIF inter-
mediate representation (IR), the MPI function calls are discov-
ered in the Communication Detection phase. The Communi-
cation Analysis phase breaks the program up into communica-
tion phases for pattern detection. Finally, the Communication
Compiling phase discovers the communication pattern of each
phase and generates new instructions to help configure the net-
work to improve performance. This is the Communication In-
struction Enhanced Code output that is shown in Figure 2. A
detailed study of this technique is described in [17].

There are several challenges with this approach, aside from
the difficulties of implementing some rather sophisticated
compiler analyses such as inter-procedural analysis. Deter-
mination of an appropriate communication phase requires a
way to determine temporal locality of communication. This
locality may not always be obvious at compile time, partic-
ularly if many of the communication operations are dynamic,
i.e. depend on input data into the application to be determined.

The Trace Generation component shown in Figure 2 pro-
vides a path to study what makes a proper phase by corre-
lating the code structure with the communication behavior of
the application during a run. Once MPI calls are detected in
the compiler, the trace generation phase inserts printing in-
structions for both the MPI calls and the entrance and exit
from important code structures such as loops and conditional
statements. Thus, the Trace Generation Instruction Enhanced
Code shown on the right output path provides an annotated
program, which when run on a parallel machine will produce
a trace of the communication and code profile of the execu-
tion. Different runs with different datasets can produce differ-
ent trace results without recompiling the program.

An example of the trace output of a segment of the MG

1 subroutine comm3(u,n1,n2,n3,kk)
:

2 do 151 axis = 1, 3
3 if(nprocs .ne. 1) then

:
4 call give3(axis, +1, u, n1, n2, n3, kk)
5 call give3(axis, -1, u, n1, n2, n3, kk)

:
6 endif
7 151 continue

:
:

8 subroutine give3(axis, dir, u, n1, n2, n3, k)
:

9 if(axis .eq. 1)then
10 if(dir .eq. -1)then
11 do 66 i3=2,n3-1
12 do 65 i2=2,n2-1
13 buff len = buff len + 1
14 buff(buff len,buff id) = u(2, i2,i3)
15 65 continue
16 66 continue
17 call mpi send(
18 > buff(1, buff id), buff len,dp type,
19 > nbr(axis, dir, k), msg type(axis,dir),
20 > mpi comm world, ierr)
21 else if(dir .eq. +1) then
22 do 68 i3=2,n3-1
23 do 67 i2=2,n2-1
24 buff len = buff len + 1
25 buff(buff len, buff id) = u(n1-1, i2,i3)
26 67 continue
27 68 continue
28 call mpi send(
29 > buff(1, buff id), buff len,dp type,
30 > nbr(axis, dir, k), msg type(axis,dir),
31 > mpi comm world, ierr)
32 endif
33 endif

:

Figure 3. Code segment from MG.

program shown in Figure 3 is shown in Figure 4. The first
line of this trace excerpt shows the entrance to loop 151 in the
code. Because this is Fortran 77 code, each loop has a label,
which is retained for the trace file. In C applications, the label
is replaced by an identifier generated by the compiler, such as
the line number. The remainder of the line shows that this line
is from the comm3 function of mg.f at line 1070. Similarly,
an IF statement is entered before we see our first MPI call on
line 3. This call is an mpi irecv, and the parameters sent to the
function are shown in parenthesis. Again the function name,
filename, and line number are displayed in brackets (this is
wrapped onto line 4). The next entry indicates timestamp in-
formation. The first entry is the ending time of the last MPI
call, the second is the starting time of the current MPI call.

The [D] preceding each of these calls indicates that the
compiler has determined that these MPI calls are dynamic (i.e.
cannot be determined at compile time). This makes sense, as
the calls are nested in conditionals, which may depend on in-
put data to determine the remote node that is involved in the

--- LOOP 151 starts --- [#1070@comm3 @"mg.f"]
--- IF 152 starts --- [#1072@comm3 @"mg.f"]
[D]mpi irecv (count=8712 datatype=27 src=-2
tag=1100 Communicator=91 request=133)
[#1167:ready :"mg.f"] [1793.078235000
1793.078257000] { typesize = 8 }
[D]mpi irecv (count=8712 datatype=27 src=-2
tag=1300 Communicator=91 request=134)
[#1167:ready :"mg.f"] [1793.245772000
1793.245788000] { typesize = 8 }
--- IF 163 starts --- [#1196@give3 @"mg.f"]
--- IF 164 starts --- [#1198@give3 @"mg.f"]
--- IF 167 starts --- [#1212@give3 @"mg.f"]
[D]mpi send (count=2048 datatype=27 dst=42
tag=1300 Communicator=91) [#1224:give3 :"mg.f"]
[1793.245956000 1794.798499000] { typesize = 8 }
+++ IF 167 ends +++ [#1224@give3 @"mg.f"]
+++ IF 164 ends +++ [#1224@give3 @"mg.f"]
+++ IF 163 ends +++ [#1224@give3 @"mg.f"]
:
:
+++ LOOP 151 ends +++ [#1083@comm3 @"mg.f"]

Figure 4. Example trace output from MG.

communication. However, while the nodes may appear dy-
namic to the compiler, they may in fact end up being regular
during execution. For the trace information to be useful, it is
necessary to create a technique to visualize the trace informa-
tion, including relationships to the code, so that the informa-
tion can be analyzed.

4 Visualization Tool Flow

In order to help graphically display the communication pat-
terns that occur during the application execution, a visual-
ization tool was created and is shown in Figure 5. The tool
is written in Java and two versions exist: (1) a Java stan-
dalone version and (2) an Eclipse based version designed to
integrate into the IBM Parallel Tools Platform [11, 20]. The
tool takes both the trace and the original program source code
as input. It produces three major views, in the top left seg-
ment labeled Code Structure, the structure of the application
is shown. This view shows the different loops that comprise
the program and their nesting order and code segments that
reside between loops. Loops can be expanded or contracted
to show nested structures. By selecting one or more loop or
block structures, a graphical representation of their communi-
cation pattern is shown in the upper right view labeled Com-
munication Pattern. Additionally, the corresponding source
code to the first loop/block selected is shown in the bottom
view labeled Linked Source Code.

The communication pattern representation utilizes a color
scheme to represent the volume of traffic. This scale is shown
in Figure 6 modeled after the colors given off by increasingly
hot items starting with black moving into reds, yellows, and
finally reaching white.

The visualization tool flow shown in Figure 7 contains a
summary of the four major steps to go from a parallel program

Code
Structure

Linked
Source
Code

Communication
Pattern

Figure 5. Visualization tool overview.

0 MaxCommunication

Figure 6. Traffic scale based on the hotness of
the color.

into the final visual representation. The first component uses
a SUIF pass to add trace generation instructions into the pro-
gram as described in Section 3.1. Once the trace is generated
it is parsed and processed with a script to extract information
about the communication patterns, code structures, and appli-
cation contexts for visualization. This information is stored in
an XML file and fed into the visualization tool.

During trace processing, two major code structures of inter-
est are currently extracted from the traces: loops and blocks.
Loops describe segments of code from a for, while, or
do-while loop in C and do loops in Fortran. Blocks are
defined as segments of code between or within loops that con-
tain MPI communication function calls.

After all trace files have been processed, matrices to rep-
resent the communication pattern are generated. These matri-
ces are n ∗ n, where n is the number of processing nodes in
the system. Each element of the matrix stores the communi-
cation volume of the point-to-point communications between
each pair of nodes in that specific contextual block throughout
the execution of the application. Collective communications
can be decomposed into point-to-point communications and
added to the communication matrices if desired.

SUIF

Add Trace
Instructions

MPI Program Execute
Program

Modified
MPI Program Trace parsing

script (perl)
Trace Data Visualization Tool

Java + Eclipse
XML

Create block and
loop contexts

Figure 7. Visualization flow.

5 Case Study of the MG Application

The multigrid algorithm (MG) is one of the applications
included in the NAS Benchmarks. Multigrid methods are fast
linear iterative solves typically used for generating numeri-
cal solutions to elliptic partial differential equations in two or
more dimensions [1, 9]. In this section we will use the visu-
alization tool to study the behavior of the MG application and
show how this information can be used to optimize the appli-
cation for execution on an example system that uses an optical
circuit switched interconnect.

5.1 Performance with Optical Circuit
Switching

Optical circuit switching (OCS) has recently been pro-
posed as a high-performance and low cost alternative to di-
rect networks, fat-tree networks, and packet switched net-
works currently popular for high-performance computing sys-
tems [4]. Optical switches typically use mirrors controlled
with Micro-Electro-Mechanical Systems (MEMS) to config-
ure light paths that allow the establishment of the optical
circuits within the system. Optical switches provide very
high bandwidth and low-latency at a much lower cost than
their electronic counterparts. The main drawback of optical
switches is their switching latency, which can be on the order
of milliseconds. Thus, for relatively long lived connections,
optical switching is very efficient. However, for shorter or less
predictable connections, such as synchronization and some
types of collective communication, optical switching does not
work well.

The OCS system leverages the benefits and cost advan-
tages of optical switches and combines it with a relatively
low-speed (and thus low cost) electronic network to handle the
less predictable and low-volume communications. The goal
is to provide the performance of a high-performance packet
switch network without the cost of building a fully-buffered
electronic solution.

An overview of the OCS network is shown in Figure 8.
Processing nodes are directly connected to a number of high
bandwidth optical switches or switch planes, represented by
the thick lines. These switches can be upwards of 10’s of
gigabits/s while remaining cost-effective. Each node is also
connected to a relatively low-speed electronic packet switch
represented by the thin lines. This network would be simpler
to save cost and might be on the order of Gb/s.

...
OCS

Processing
Node

Processing
Node ... Processing

Node
Processing

Node

Electronic Packet Switch

Figure 8. Combining optical circuit switching
with electronic packet switching.

Figure 9. Communication matrix for MG bench-
mark.

The communication matrix for the entire execution of MG
is shown in Figure 9. Based on the study of this application,
the communication degree reaches 11 different destinations.
It might be possible to conclude that to most efficiently im-
plement this algorithm requires 11 independent switch planes.
However, by studying the algorithm more closely, it is possi-
ble to implement the algorithm with six planes without loss of
efficiency. By adding just one more switch plane to 12, it may
also be possible to get twice the performance from a naive 11
plane implementation.

Figure 10 shows the communication pattern of the do loop
labeled 36 by the Fortran application MG. In many ways this
loop is representative of loops found in many of the NAS

Figure 10. Loop 36 of MG.

benchmarks insomuch as its communication pattern is very
regular, as reflected by its symmetry and patterns. However,
this loop provides some interesting insights into the MG ap-
plication. First, this loop has a variety of volumes associated
with messages as shown by the traffic scale shown in Fig-
ure 6. For example, messages range from a medium volume
orange, to a fairly high volume yellow, up to the maximum
traffic white. Second, the communication degree per node is
not fixed. There are clusters of 16 nodes that have a commu-
nication degree of six and others with degree of eight. How-
ever, by analyzing the communication in this manner, it might
be possible to get away with a high bandwidth circuit switch
network of six planes because the other two communication
directions have lower traffic requirements. These lower band-
width communications could be satisfied with a lower band-
width packet switch network.

In this case, the top level loop, loop 36, may not be the
best choice for creating a communication phase. The loop
is somewhat poorly behaved, requiring different numbers of
communication partners on a node by node basis, and re-
quiring non-uniform traffic volume. Figure 11 shows nested
subloops for loop 36. By investigating these subloops and
blocks individually, it is possible to realize these communi-
cation requirements more efficiently. While implementing all
of loop 36 from Figure 10 requires a minimum of 8 switch
planes, each of the subloops and blocks require a maximum
of 6 switch planes. Loop 151 and block 9 require all six con-
nections for each node. Loop 159b can be implemented with
only 2 planes, and the other four planes can be used to triple
the bandwidth between these nodes. Loop 159a requires six
planes even though the connectivity varies between zero and
six depending on the node.

6 Results

The OCS network is a natural target for applications pro-
filed with the visualization tool flow, as it allows the identifi-
cation of long lived connections within loops in the applica-
tion. Through analysis of the communication pattern of the

application assisted by the visualization flow, important com-
munication links were identified. These links were provided
to our OCS network simulator to pre-establish the optical cir-
cuits and this was compared to a runtime strategy for estab-
lishing optical links.

The runtime strategy for circuit establishment required
messages to be larger than a particular threshold to be con-
sidered for optical switching. For the runtime strategy, least
frequently used circuits were selected for replacement by new
circuits that exceeded the threshold. While more complicated
replacement policies were possible, policies that considered
connection lifetimes, rolling threshold windows, etc. were not
found to provide a significant benefit over the simpler scheme
shown here.

Figure 6 shows the execution time (Figure 12(a)) and av-
erage message delay (Figure 12(b)) for executing the MG ap-
plication on 128 processors using the OCS interconnect. The
simulations were run varying the number of available opti-
cal planes from 1 to 11 planes. 11 planes was selected as the
maximum because this allows all possible point-to-point com-
munications to be allocated its own optical circuit.

The required point-to-point connections were ranked into
three orders using information from the visualization tool, the
best ranking uses a ranking by message volume, the worst
ranking uses a ranking by the reversed message volume, and
the indexed order ranking uses a ranking in order of desti-
nation index, which represents an arbitrary ordering between
the other two. In the simulator, these point to point con-
nections are applied to optical switch planes in these orders.
When a connection causes a conflict, the next connection in
the list is established. If all optical switch planes are con-
sumed, the communication from this connection is satisfied
using the slower electronic network.

In all cases, as optical switch planes were added to the
OCS interconnect, the runtime and average message delay de-
creased. However, the order of priority for adding the con-
nections into the OCS was particularly important toward the
effectiveness of adding more switch planes. Both the best con-
figuration and indexed configuration showed significant im-
provement over the runtime configuration. The worst case,
as expected, does not perform well in this case, particularly
compared with the other preloaded configurations. This tech-
nique does not make sense for actual implementation but does
provide a lower bound for comparison purposes.

Figure 6 shows the results of running the CG application
using the OCS network. In this case, the communication is
more balanced between the highest and lowest volume point-
to-point communication pairs. It also turns out that the in-
dexed ordering is the best ordering. Thus, the difference be-
tween best and worst is far less pronounced than for MG and
the best and indexed trends are identical. In fact, for a sin-
gle switch plane the worst configuration is actually the best
performance overall. In all cases the preloaded configura-
tions beat the runtime configuration (excepting for five switch
planes where the worst configuration has the poorest perfor-

(a) MG loop 159a. (b) MG loop 151 and block 9. (c) MG loop 159b.

Figure 11. Loop 36 decomposed.

mance and delay). For all cases of two switch planes or more,
the indexed/best configuration either performs comparably to
or better than the worst case or the runtime scheduler.

7 Conclusions

This paper presented a visualization tool designed to cor-
relate the communication pattern at different segments during
the execution with the code that causes its execution. Rather
than just looking at the communication during a time window,
loops that contribute to communication are identified using a
compiler. The program is then annotated with trace genera-
tion instructions. During each execution, the program creates
traces which can be read by the visualization tool flow and
present a graphical depiction of the communication related
back to the code in the application.

Through analysis of several applications, we showed how
looking at the entire application communication pattern can
lead to inappropriate analysis of interconnection needs. By
appropriate analysis using the visualization flow, we showed
how the program execution can be improved and message
delay reduced, particularly compared to runtime scheduling
techniques.

Some planned future directions are to examine the impact
of collective communications in the communication patterns.
Additionally, through the use of techniques in [17], we plan to
automatically generate the communication patterns statically
in the compiler. The pattern can be viewed in the visualiza-
tion tool without needing to actually run the application and
generate a trace. Additionally, since the visualization tool is
integrated within the Eclipse framework, it may be possible
to also integrate the compiler within the flow and generate the
patterns when possible at compile time and allow the trace
based flow to fill in the missing patterns when they become
available.

References

[1] A. M. Abdalass, J. F. Maitre, and F. Musy. A multigrid solver
for a stabilized finite element discretization of the Stokes prob-
lem. In W. Hackbusch and U. Trottenberg, editors, Multigrid
Methods II, pages 1–6, Berlin, 1986. Springer–Verlag.

[2] A. Afsahi and N. J. Dimopoulos. Efficient communica-
tion using message prediction for clusters of multiproces-
sors. Concurrency and Computation: Practice and Experi-
ence, 12(1):41–50, 2002.

[3] D. Bailey, T. Harris, W. Sahpir, and R. van der Wijingaart. The
NAS parallel benchmarks 2.0. Technical Report NAS-95-020,
Numerical Aerodynamic Simulation Facility, NASA Ames Re-
search Center, December 1995.

[4] K. J. Barker, A. Benner, R. Hoare, A. Hoisie, A. K. Jones,
D. J. Kerbyson, D. Li, R. Melhem, R. Rajamony, E. Schenfeld,
S. Shao, C. Stunkel, and P. A. Walker. On the feasibility of
optical circuit switching for high performance computing sys-
tems. In Proc. of SuperComputing (SC), 2005.

[5] F. Cappello and C. Germain. Toward high communication
performance through compiled communications on a circuit
switched interconnection network. In Proc. of HPCA, pages
44–53, 1995.

[6] D. A. Crawford, P. A. Taylor, and E. Hertel. Adaptive mesh re-
finement in the cth shock physics hydrocode. In Proc. of New
Models and Hydrocodes for Shock Wave Processes in Con-
densed Matter.

[7] H. G. Dietz and T. Mattox. Compiler techniques for flat neigh-
borhood networks. In Proc. of 13th Int. Workshop on Lan-
guages and Compilers for Parallel Computing, 2000.

[8] Z. Ding, R. Hoare, A. Jones, D. Li, S. Shao, S. Tung, J. Zheng,
and R. Melhem. Switch design to enable predictive mul-
tiplexed switching in multiprocessor networks. In Proc. of
IPDPS, 2005.

[9] C. C. Douglas and M. B. Douglas. MGNet Bibliography. De-
partment of Computer Science and the Center for Computa-
tional Sciences, University of Kentucky, Lexington, KY, USA
and Department of Computer Science, Yale University, New
Haven, CT, USA, 1991–2002 (last modified on September 28,
2002); see http://www.mgnet.org/mgnet-bib.html.

[10] A. Faraj and X. Yuan. Communication characteristics in the
NAS parallel benchmarks. In Proc. of PDCS, 2002.

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

0 2 4 6 8 10 12

Optical Switch Planes

Runtime Scheduler Preload Best Preload Indexed Preload Worst

(a) MG completion time.

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12

Optical Switch Planes

NoPreload PP.best PP.mid PP.worst

(b) MG delay.

Figure 12. MG with high-speed optical switch
planes and a slower electronic network.

[11] Eclipse platform technical overview. Technical report, IBM
Corporation and The Eclipse Foundation, December 2005.
www.eclipse.org.

[12] A. K. Jones, J. Zhang, and A. Amer. Entropy based evaluation
of communication predictability in parallel applications. Trans.
on Information and Systems, E89-D(2), Feb. 2006.

[13] J. Kim and D. J. Lilja. Characterization of communication
patterns in message-passing parallel scientific application pro-
grams. In G. Goos, J. Hartmanis, and J. Leeuwen, editors,
Proc. of the Second International Workshop on Network-Based
Parallel Computing: Communication, Architecture, and Appli-
cations, pages 202–216, 1998.

[14] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, June 1995.

[15] S. Muchnick. Advanced Compiler Design and Implemenata-
tion. Morgan Kaufmann, 1997.

[16] C. Salisbury and R. Melhem. A high speed sched-
uler/controller for unbuffered banyan networks. Computer
Communications Journal, 24(9):1158–1169, 2001.

1

1.1

1.2

1.3

1.4

1.5

1.6

0 1 2 3 4 5 6 7

Optical Switch Planes

Runtime Scheduler Preload Best Preload Indexed Preload Worst

(a) CG completion time.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7

Optical Switch Planes

Runtime Scheduler Preload Best Preload Indexed Preload Worst

(b) CG delay.

Figure 13. CG with high-speed optical switch
planes and a slower electronic network.

[17] S. Shao, A. K. Jones, and R. Melhem. A compiler-based com-
munication analysis approach for multiprocessor systems. In
Proc. IPDPS, 2006.

[18] D. Shires, L. Pollock, and S. Sprenkle. Program flow graph
construction for static analysis of mpi programs. In Proc. of
PDPTA, June 1999.

[19] J. Vetter and F. Mueller. Communication characteristics of
large-scale scientific applications for contemporary cluster ar-
chitectures. JPDC, 63(9):853–865, September 2003.

[20] G. R. Watson and C. E. Rasmussen. A strategy for addressing
the needs of advanced scientific computing using eclipse as
a parallel tools platform. Technical Report LA-UR-05-9114,
Los Alamos National Laboratory, P.O. Box 1663, MS B287,
Los Alamos, NM 87545, December 2005.

[21] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarsinghe,
J. M. Anderson, S. W. K. Tjiang, S. W. Liao, C. W. Tseng,
M. W. Hall, M. s. Lam, and J. L. Hennessy. Suif: An infras-
tructure for research on parallelizing and optimizing compilers.
In SIGPLAN Notices, 1994.

[22] X. Yuan, R. Melhem, and R. Gupta. Compiled communication
for all-optical TDM networks. In Proc. of SC, 1996.

