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Abstract

Screening is an important task to convert a continuous-
tone image into a binary image with pure black and white
pixels. The main contribution of this paper is to show a
new algorithm for cluster-dot screening using the local ex-
haustive search. Our new algorithm generates 2-cluster, 3-
cluster, and 4-cluster binary images, in which all dots have
at least 2, 3, and 4 pixels, respectively. The experimental
results show that it produces high quality and sharp cluster-
dot binary images. We also implemented it on an FPGA to
accelerate the computation and achieved a speedup factor
of more than 200 over the software implementations.

1 Introduction

Screening is an important task to convert a continuous-
tone image into a binary image with pure black and white
pixels [2, 8, 1]. This task is necessary when printing a
monochrome or color image by a printer with limited num-
ber of ink colors. AM (Amplitude Modulated) screening,
a commonly used screening method, arranges black dots
in a regular grid and reproduces the intensity of an origi-
nal continuous-tone image by the number of black pixels
in a dot. A black dot involves fewer black pixels to repro-
duce highlight color, and has more black pixels to create
a shadow image. FM (Frequency Modulated) screening,
on the other hand, keeps dots of a unit size when convert-
ing an original continuous-tone image into the binary image
for printing. The intensity level of an original continuous-
tone image is reproduced by the density of black unit dots
(or pixels). FM screening pays great attention to generate
moiré-free binary images reproducing continuous-tone and
fine details of original photographic images. We refer the
reader to Figure 1 for illustrations of a dot of AM screen-
ing and dots of FM screening. The most well-known FM
screening algorithm is Error Diffusion [5] that propagates
rounding errors to unprocessed neighboring pixels accord-

AM screening FM screening cluster-dot
FM screening

Figure 1. AM screening, FM screening, and
cluster-dot FM screening

ing to some fixed ratios. Error Diffusion preserves the av-
erage intensity level between the original input image and
the binary output image. It is also quite fast and often pro-
duces good results. However, Error Diffusion may generate
worm artifacts, which is a sequence of dots like a worm,
especially in the areas of uniform intensity. Several tech-
niques have been developed to prevent artifacts in output
binary images [14]. Besides, in Error Diffusion based tech-
niques, the pixel values are propagated to neighbors and the
resulting images are defocused.

In applications requiring high fidelity of the printed ma-
terial (such as printing fine art books, pictorial books, and
replicas of paintings), an FM screening method that pro-
duces artifact-free higher quality binary images reproducing
original work is expected even if the computation takes a lot
of time. In our previous paper [7], we have present a new
approach for FM screening that we call Local Exhaustive
Search (LES for short). Our idea for FM screening is to use
the local search technique investigated in the area of com-
binatorial optimization, which usually takes a lot of com-
puting time. More specifically, the LES produces a binary
image whose projected image onto human eyes is very close
to the original image. The projected image is computed by
applying a Gaussian filter, which approximates the charac-
teristic of the human visual system. We define the total error
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of the binary image to be the sum of the difference of the in-
tensity levels over all pixels between the original image and
the projected image. The LES performs the local exhaus-
tive search for a small square window of size, say, ,
in the binary image, and finds the best binary image pat-
tern in the window, whose total error is the minimum over
all possible binary patterns. After that, a binary subimage
in the window is replaced by the best binary image pattern
obtained. The local exhaustive search is repeated until no
more improvement on the total error is possible.

Although the LES produces a high quality binary im-
ages, they may not produce good printed matter in many
practical applications. The generated binary images using
the LES contain a lot of isolated black and white dots, which
do not exactly appear in printed matter. For example, in
laser printers, small isolated black pixels are not printed
because toner is not transfered for minimum-size dot. In
ink-jet printers, a small isolated black dot gains a lot by
the ink blur. Also, isolated white dots disappear by the ink
blur. Therefore, it is desirable that dots in binary images
are clustered, that is, all black and white dots have two or
more pixels. The main contribution of this paper presents a
LES-based screening method that generates cluster-dot bi-
nary images (Figure 1). In particular, we will show screen-
ing methods that generate 2-cluster, 3-cluster, and 4-cluster
binary images in which each dot consists of at least 2, 3, and
4 pixels, respectively. Figure 2 shows the resulting binary
images of non-cluster-dot screening by the LES [7] and by
cluster-dot screening presented in this paper for a ramp im-
age.

The second contribution of this paper is to implement
the cluster-dot LES in an FPGA to accelerate the compu-
tation. An FPGA (Field Programmable Gate Array) is a
programmable VLSI in which a hardware design can be
embedded quickly. We have used Nallatech Xtreme DSP
kit [13], which is a PCI board with Xilinx VirtexII family
FPGA XC2V3000-4 [6], and embedded a circuit to perform
the local exhaustive search for a window of size . To
reduce the amount of used FPGA resource and the delay,
we use the instance-specific approach [3, 4, 11], which em-
beds a hardware depending on a part of the input instance.
The instance-specific approach is applied as follows. One
can think that the inputs of LES are an original image and a
Gaussian filter. Since a Gaussian filter can be fixed dur-
ing the computation by LES, we can embed a circuit to
perform the local exhaustive search for a specific Gaus-
sian filter. Further, we have developed an improved FPGA-
implementation which minimizes the overhead caused by
the high latency of the PCI bus. Consequently, we have
succeeded in accelerating LES by a speedup factor of more
than 200 over the software implementation.

2 FM Screening based on the Human Visual
System

This section defines the problem of finding the best bi-
nary image of an original gray-scale image as a combina-
torial optimization problem. The basic idea is originally
shown in our previous paper [7].

Suppose that an original gray-scale image of
size is given1, where denotes the intensity level
at position ( ) taking a real number in-
tensity in the range . The goal of screening is to find
a binary image of the same size that reproduces
the original image , where each is either 0(black) or
1(white). We measure the goodness of the output binary im-
age using the Gaussian filter that approximates the char-
acteristic of the human visual system. Let de-
note a Gaussian filter, i.e. a 2-dimensional symmetric ma-
trix of size , where each non-negative
real number ( ) is determined by a 2-
dimensional Gaussian distribution such that their sum is 1.
In other words,

(1)

where is a parameter of the Gaussian distribution and
is a fixed real number to satisfy . Let

be the projected gray-scale image of a binary
image obtained by applying the Gaussian filter
as follows:

( ) (2)

Clearly, from and is non-
negative, each takes a real number in the range
and thus, the projected image is a gray-scale image. We
can say that a binary image is a good approximation of
original image if the difference between and is small
enough. Hence, we are going to define the Gaussian error
of as follows. Gaussian error at each pixel location

is defined by

(3)

and the total Gaussian error is defined by

(4)

Since the Gaussian filter approximates the characteristics of
the human visual system, we can think that image repro-
duces original gray-scale image if is small

1For simplicity, we assume that images are square.
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non-cluster-dot screening

2-cluster-dot screening

3-cluster-dot screening

4-cluster-dot screening

Figure 2. Non-cluster-dot and cluster-dot screening

enough. The best binary image that reproduces is a binary
image is given by the following formula:

is a binary image (5)

The best binary image may have dots with isolated pix-
els. For example, let be a binary image of size with
every pixel having intensity . Then, the best binary image

satisfying (5) is a checkerboard, in which all pixels are
isolated.

3 Cluster-dot FM Screening

This section shows our new idea to generate good
cluster-dot binary images.

The idea for generating cluster-dot binary images is to
give appropriate restriction when the best binary image is
computed. We say that two black pixels forms a 2-cluster
if they are adjacent in either vertical or horizontal direc-
tion(Figure 3). A binary black pixel is 2-cluster if it is one
of the pixels in a 2-cluster. In other words, if a black pixel
has a black neighbor pixel, it is 2-cluster. Similarly, a bi-
nary white pixel is 2-cluster if one of its neighbor is white.
A binary image is 2-cluster if its all pixels are 2-clusters.

2-clusters

3-clusters

4-clusters

Figure 3. 2-cluster, 3-cluster, and 4-cluster
dots

Clearly, a 2-cluster binary image has no isolated dot, and
each dot consists of either more than one white pixels or
more than one black pixels.

Similarly, we can define 3-cluster and 4-cluster binary
images. We say that 3 black pixels form a 3-cluster if they
are in a region(Figure 3). A binary black pixel is
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3-cluster if it is one of the pixels in a 3-cluster. We can
define 3-cluster for white pixels in the same way. A binary
image is 3-cluster if all the pixels are 3-cluster. We also
say that 4 black pixels form a 4-cluster if they are in
region(Figure 3). A binary black pixel is 4-cluster if it is
one of the pixels in a 4-cluster. 4-cluster for white pixels
can be defined in the same way. A binary image is 4-cluster
if all the pixels are 4-cluster.

Note that isolated 3 black pixels in a or
region do not form 3-cluster although they are adjacent.
The reason is that, a dot with smaller diameter gains fewer.
For example, 3 black pixels in a region has diame-
ter , while each 3-cluster in Figure 3 has
diameter of . Hence, we exclude 3 black
pixels in a or region from the 3-cluster. By the
same reason, we exclude 4 pixels that do not fit in a
region from the 4-cluster.

Suppose that a gray scale image is given. Let be
either 2, 3, or 4. It should be clear that the best -cluster
binary image that reproduces is a binary image
such that

is a c-cluster binary image (6)

Our goal is to find a -cluster binary image for a
given gray scale image .

4 The Local Exhaustive Search for Cluster-
dot Screening

The main purpose of this section is to present our new
algorithm to find a good binary image whose total er-
ror with respect to original gray-scale image may not be
minimum but is small enough. Our approach to obtain c-
cluster-dot binary image ( , or 4) updates a small
square region of a temporal binary image by the best binary
pattern, in which the total number of non-c-cluster dots and
the total Gaussian error is the minimum over all possible
binary patterns.

For a binary image of size , let
( or 4) denote the number of non- -cluster pixels
in . Note that if is -cluster then .
Hence, the goal of -cluster-dot screening is to find a good
binary image satisfying . Suppose
that an original image of size are given. The er-
ror Error of a binary image with respect to is
defined as follows:

In other words, the error is a pair of “the number of non-
-cluster pixels in ” and “the difference between and

the projected image of ”. We assume that the compari-
son of any two values of are based on
the lexicographical order, that is,

if and only if

or,

and

Our new screening algorithm attempts to finds a binary im-
age with small .

Suppose that an original image and a temporary binary
image are given. Further, let be a window of size

in whose top-left corner is at position . Our
first idea is to compute the error for all binary patterns
in and replace the current binary subimage in the
window by the best binary pattern that minimizes the total
error. In other words, we find a binary image such that

and differ only in (7)

Next, let us see the details on how satisfying for-
mula (7) above is computed. Since we use a Gaussian
filter of size , the change of the bi-
nary pattern affects the errors in a square region of size

, which we call the affected region (Fig-
ure 4). Also, let is a region of size
which can be obtained by explaining the window
by one pixel. We call the expanded window of

. It should be clear that the best binary pattern can
be selected by computing

the total Gaussian errors of the affected region of size
, because the change of the bi-

nary pattern does not affect errors at pixels outside the
affected region, and

the number of non- -cluster pixels in , be-
cause the change of the binary pattern does not affect
the number of non- -cluster pixels outside .

Let us evaluate the computing time necessary to find the
best binary pattern in the window. The Gaussian error of
a particular pixel in an affected region can be computed in

time by evaluating formulas (2) and (3). Hence all
the Gaussian errors in the affected region can be computed
in time. After that, their sum can be com-
puted in time. Also, it can be determined in

time if a particular pixel is -cluster easily. Hence the
total number of non- -cluster pixels in the expanded win-
dow of size can be computed in time.
Thus, the total error in the affected region, which is a pair
of the total number of non- -cluster pixels in the expanded
window and the total Gaussian error in the affected region
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Gaussian filter

affected region

window

expanded window

Figure 4. Illustrating a window of size , the expanded window of size , a Gaussian
filter of size , the affected region of size

can be computed in
time.

Since we need to check all the possible bi-
nary patterns, the best binary pattern can be obtained in

time. We can improve the comput-
ing time by flipping a pixel in the order of the gray code
of binary numbers. Recall that the gray code represents
a list of all -bit binary numbers such that any two adja-
cent numbers differ only one position. Thus, by flipping
an appropriate bit using the gray code, we can list all the

binary numbers with bits. Using the gray code with
bits, we can evaluate the errors for all binary patterns in

time as follows. Starting with the current pixel
pattern in the window, we repeat flipping an appropriate
pixel according to the gray code. In each flipping operation,
we compute the total Gaussian error in the affected region
for the current binary pattern in the window. Since the flip-
ping operation for a single bit affects the Gaussian error of

pixels, the total Gaussian error can be
computed in time in an obvious way. Also, we can
compute the change of the number of non- -cluster pixels
by checking the number of non- -cluster pixels in pix-
els whose center is the flipped pixel. This computation takes

time. Thus, the best binary pattern can be computed
in time by the local exhaustive
search.

We are now in position to show our new screening
method. Let be an original gray-scale im-
age and be an appropriate initial binary im-
age. Although we can initialize the binary image using
any screening method, we assume that is initialized by

the random dither method. In the random dither method,
a binary pixel takes value 1 with probability if the pixel
value of the corresponding pixel of an original image is
( ). Thus, with probability for every
and . We repeat sliding a window of size and improv-
ing the binary pattern in the window by replacing the pixel
values in it by the best binary pattern. We perform window
sliding in the raster scan order as illustrated in Figure 5,
to obtain a better quality binary image . The same pro-
cedure is repeated, that is, the window sliding operation is
applied to and obtain a better binary image ( )
until and are identical and no more improvement
is possible. When computing for , we do not have
to perform the exhaustive search for all the windows. If the
projected image of the affected region for the current win-
dow did not change, then we can omit the exhaustive search.

The details of our new screening algorithm are spelled
out as follows:

Local Exhaustive Search( )
Set an appropriate initial binary image in ;

;
for to do

for to do
Perform the exhaustive search in for
and update by the best binary pattern.

;
do

;
;

for to do
for to do
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Figure 5. Sliding window in raster scan order

If the projected image in the affected regions of
for and are not identical then

perform the exhaustive search in for
and update by the best binary pattern.

until ( and are identical)
output ( );

5 Hardware Acceleration for the cluster-dot
LES using an FPGA

We have developed a hardware accelerator using the
PCI-connected FPGA that performs the local exhaustive
search in order to find the best binary pattern in a win-
dow. This section is devoted to show the architecture of
our FPGA-based hardware accelerator.

Let be an original gray-scale image of size
and be the current binary image of .

Before showing the architecture, we first show how our
hardware accelerator is used by the host PC. The hard-
ware accelerator is used to compute the best binary pat-
tern in a window . For this purpose, the host PC
sends necessary information to the hardware accelerator.
Let be the extended region of . Note
that, if the original window has pixels, then
has pixels. For the purpose of compute
the best binary pattern in the host PC sends, to the
hardware accelerator,

the current values of binary pixels in , and

the current Gaussian errors of all pixels in the affected
region of .

The hardware accelerator computes the errors for all pos-
sible binary patterns in and returns the best
binary pattern whose error is the minimum. The host PC
receives the best binary pattern and updates the values of
binary pixels by the received binary pattern.

We are going to show the architecture of our hardware
accelerator. Figure 6 illustrates a part of the FPGA-based
hardware accelerator, which outputs the error for every bi-
nary pattern. To list all possible binary patterns in

, we simply use -bit binary counter. We also use
a circuit that checks if each pixel in is a non- -
cluster from the current binary pixel values in .
After that, the number of non- -cluster is computed by a
binary summing circuit, which can be implemented effi-
ciently on the FPGA [9, 10, 12]. Next, we need to com-
pute the total Gaussian errors. For this purpose, we use a
circuit that to compute the Gaussian error at each pixel in
the affected region, which can be implemented using in-
teger addition/subtraction circuits. After that the sum of
the Gaussian errors are computed by an integer summing
circuit, which can also be implemented efficiently on the
FPGA [12]. In this way, the error of the current binary pixel
values of which is a pair of the number of non- -
cluster pixels and the total Gaussian errors is computed. By
using the -bit binary counter for , we can com-
pute, in clock cycles, the best binary pattern whose error
takes the minimum all possible binary pattern.

6 Experimental Results

This section presents the experimental results. We have
developed a software that performs our cluster-dot screen-
ing based on the LES. We have used a Pentium4-based PC
(Xeon 4.0GHz) with Linux operating system (Kernel 2.6)
for software implementation. The source program is com-
piled by gcc 3.4.6 with -O2 and -m64 options. We also
developed FPGA-based implemetation. In this implementa-
tion, we use a PCI board with Xilinx VirtexII family FPGA
XC2V3000-4 [6], and embedded a circuit to perform the
cluster-dot local exhaustive. The source program is devel-
oped using Verilog HDL, and Xilinx ISE 8.2i for logic sys-
nthesis, mapping, and implementation. The timing analysis
by Xilinx ISE 8.2i reported all of our implementations run
in 102.23 MHz. Thus, we set the clock frequency the pro-
grammable oscillator on the FPGA board to 100MHz.

We used an 8-bit gray-scale images “Lena” of size
for the experiment. Also, we use a window of size

and Gaussian filter of size and parameter .
Table 1 shows the computing time for non-cluster, 2-cluster,
3-cluster, and 4-cluster screening. In software implemena-
tion, 4-cluster screening takes most time. This is due to
the overhead for checking if a pxiel is 4-cluster. Since the
overhead for checking if a pixel is 3-cluster is a bit smaller,
3-cluster screening needs fewer time than 4-cluster screen-
ing. By the same reason, 2-cluster needs fewer time than 3-
cluster screening. Also non-cluster screeening is the fastest,
because it is not necessary to check if a pixel is -cluster. In
the FPGA implementation, computing time are almost the
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the current Gaussian errors
in the affected region

circuit to determine if each pixel
in is non-c-cluster

circuit to compute the Gaussian error
at each pixel in the affected region

circuit to compute the numuber
of non-c-cluster pixels

circuit to compute the total
Gaussian error

the error of the current binary pattern of

Figure 6. Illustrating a part of the hardware accelerator.

same because they runs in the same clock frequency. Also,
for our cluster-dot screening, our appoarch using FPGA-
based accelerator as an accelerator attains the speed up fac-
tor of more than 200 over the software implementation. The
readers should refer to Figure 7 for the resulting binary im-
ages.
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Table 1. The computing time for screening “Lena” using the software and FPGA implementation
non-cluster 2-cluster 3-cluster 4-cluster

Software sec sec sec sec
FPGA sec sec sec sec
(slices) (5545) (5658) (5752) (5692)
Speedup 173 203 218 226

non-cluster-dot 2-cluster-dot

3-cluster-dot 4-cluster-dot

Figure 7. The resulting binay images of non-cluster-dot and cluster-dot screening for “Lena”
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