
Abstract: In this paper, we have proposed a time efficient,

energy saving and robust broadcast/multicast protocol for

reconfigurable cluster-based sensor network. In our

broadcast protocol, a broadcast can be executed

in rounds and each node needs to be awake in

 rounds, where and d are the degrees of G and

the sub-network induced by the network backbone,

respectively, and h is the height of the backbone. When k

channels are available, the broadcast can be executed

in rounds and each. We show that our

broadcast protocol can be readily modified to the one for

multicast. The cluster-based architecture used in this paper

for a sensor network is an improved version in [19]. The

proposed network architecture is self-constructible and

self-reconfigurable by using two topological management

operations: node-move-in and node-move-out. Details of the

protocol along with experimental results are discussed.

Simulation results show that the protocol performance is

much better than that in the theoretical analysis.

)(22 DhdO
)(2DO D

)/)((22 kDhdO

1. Introduction
Wireless sensor networks (WSNs) are clear application

specific and have specialized communication patterns in
which broadcast, multicast and data gathering are more
important than traditional point-to-point communication in
computer networks. The geographical topology of a WSN
changes when network connectivity changes. For example,
a power-trained sensor node withdraws its connection from
its network when its battery voltage is low and comes back
to the network when it is recharged. When the topology of a
WSN is changed as such, the routing protocol and network
architecture are necessary to be updated.

Broadcast protocols have been well studied in WSNs.
Given a flat WSN, say G (an unstructured WSN formed
naturally after sensor nodes are deployed) with n sensor
nodes, assuming that the nodes know only their IDs and use
a single radio channel without collision detection capability,
the lower bound of a broadcast is rounds [1].
An broadcast is achieved in [9]. If the nodes have
topology awareness, the lower bound of a broadcast can be

)(n
)(nO

* This work is supported in part by the grant from the ARO
W911NF-04-2-0049, U.S.A., the Japan Society for the
Promotion of Science, Grant-in-Aid for Scientific
Research(C) 17500036, and Scientific Research on Priority
Areas New Horizons in Computing (C08).

Novel Broadcast/Multicast Protocols for Dynamic Sensor Networks *

Wei Chen , A.K.M.Muzahidul Islam , Mohan Malkani
1
, Amir Shirkhodaie

1
,

1 2

Koichi Wada
2

, Mohamed Zein-Sabatto
1

1. Tennessee State University, USA (wchen, mmalkani, ashirkhodaie, mzein@tnstate.edu)

2. Nagoya Institute of Technology, Japan (wada@ nitech.ac.jp, islam@phaser.elcom.nitech.ac.jp)

reduced to rounds[1]; and in this case

an [8] and an [12] broadcast

are achieved, where L is the diameter of G. Though L is

much smaller than n, it is expensive to maintain an entire

network knowledge in each node for a dynamic WSN. In

addition to the above deterministic broadcast some

randomized broadcast protocols have been also proposed [3,

6, 10, 16, 21]. The typical approach in these protocols is to

combine a flooding approach with some heuristic and

genetic techniques to avoid broadcast storm problems

caused by flooding.

)(log 2 n
)log(2 nLO)log(5 nLO

A hierarchically organized sensor network usually offers

much better networking performance. Clustering has been

used to induce a hierarchical structure over a flat WSN

which minimizes communication overhead, facilitates

energy efficient sensing and networking operation, and

facilitates network self-reconfiguration. The basic idea is

that of breaking the network into clusters which are smaller

in scale and usually simpler and more efficient to be

managed by the node called as cluster head. By using

clustering induced hierarchy, a subsequent backbone is

formed consisting of cluster heads and gateway nodes

which serve as communication relays between the adjacent

clusters. For minimizing the overhead of clustering and the

structure maintenance, in many proposed approaches cluster

head nodes are selected through finding a small dominating

set (DS) or a large independent set (IS) of G [4, 5, 7, 11, 13,

20, 22]. Finding a minimum DS or an optimal IS of G is an

NP-complete problem. In a complete hierarchical

cluster-based structure, a cluster is formed by the cluster

head connected with its members and the backbone

communication route is formed by joining cluster heads

through gateway nodes. A cluster-based structure can be

constructed from O(n) to rounds depending on how

the structures of cluster and backbone are specified. An

asymptotically optimal maximum IS can be found in

polylogarithmic rounds by using randomized algorithms [13,

14]. After a cluster-based structure is built for a WSN,

sustaining its network topology is crucial.

)(2nO

Recently, several reconfigurable cluster-based
architectures have been proposed in the literature. In [17],
adaptive and reconfigurable overlays for multi-scale
communication in WSNs are proposed, where the scale of a
cluster called as cells is adaptable. However, the broadcast
and other network functions are discussed only inside cells,
and the approaches depend on conflict-free MAC protocols

1-4244-0910-1/07/$20.00 ©2007 IEEE

[2, 18]. In addition, in the broadcast inside a cell, each node
needs to be awake until all neighbors received the broadcast
message. In [19], another reconfigurable cluster-based
structure is proposed. It consists of at most p clusters with a
backbone tree of at most 12 p nodes, where the head
form a dominating set of G, and p is not larger than the
smallest number of complete sub-graphs in G. A broadcast
in G can be executed in at most rounds. In the
broadcasting mode, each node needs to be awake until all its
neighbors received the source data.

24 p

In this paper, we present time efficient, power saving

and robust broadcast/multicast protocols for an improved

cluster-based network structure as in [19]. Our broadcast

can be executed in rounds, where D is the

maximum degree of the nodes in G, d is the maximum

degree of the nodes in the graph induced by the backbone,

and h is the height of the backbone. The broadcasting

protocol in [19] is based on depth-first-order on the

backbone. Namely, only one node is allowed to relay the

source message at each round. Therefore, the broadcast will

be unsuccessful if a node/link failure happens. Our

broadcasting protocol is based on a collision-free-flooding

approach on the backbone which is independent to MAC

protocol. In the new broadcasting scheme, more than one

node can relay the source message at each round if the

nodes do not cause collisions. This approach is more robust.

For example, even some nodes fail to relay the broadcast

message, which may cause a partial part of the network fails

to receive the message, other nodes can still relay the

message to the remaining part of the network. We will show

that the new broadcast is also more energy efficient that is

each node needs to be awake only in rounds. A

backbone usually is much smaller than G, therefore, d and h

are small which means that our broadcast is fast. Our

approach can be readily modified to one for k radio

channels in which a broadcast can be executed

in rounds and each node in the broadcast

needs to be awake only in rounds. The proposed

collision-free-flooding approach can be also used for the

multicasting purposes. In our cluster-based WSN, each node

needs to know a bit more information about network

topology than that in [19]; however self-construction and

self-reconfiguration can be still achieved efficiently.

Simulation results show that not only in the worst case but

also in the average case the performance of our protocols

are much more time and energy efficient than in [19].

)(22 DhdO

)(2DO

)/)((22 kDhdO
)/(2 kDO

2. Cluster-Based Structure
Let a WSN be represented by an undirected graph G = (V,

E), where V is the set of nodes and E is the set of edges (Fig.
1 (a)). In G, nodes u and v have an edge between them iff
they are in the transmission range with each other. In this
section, we define a cluster-based structure of G with some
nice properties. Self-initialization and self-reconfiguration
of the structure will be discussed in Section 5.

In our clustering, the nodes of G are partitioned into
node-disjoint clusters. There is one head node in each
cluster which connects to all other member nodes. In any
two neighbored clusters, there is a gateway node which is
the member of one cluster but connects to the head nodes of
both clusters (Fig.1 (b)). The following definition gives a
precise construction of the clustering.

Definition 1 Given a graph G = (V, E) with a specified node

r, a cluster-based structure of G, called as cluster-net of G
and denoted as CNet(G), is a spanning tree of G with root r.
In CNet(G), each node knows its status either as
cluster-head, or as gateway, or as pure-member. The
structure of CNet(G) is defined recursively as follows:
(1) If G consists of only one node r, then r is the root of
CNet(G) and r is a cluster-head.

(2) Let),(EVGold
be a graph with n (n) nodes, and

its cluster-net be CNet() .Assume that

1

oldG),(CNetEV
)',}{(EEnewVG is a graph obtained by adding

a node new to
old

, and G 'E),{(unew Vu| , and

new and u are in the transmission range with each other}.

The cluster-net of G is defined as CNet(G) =

, where w is the parent

of new in CNet(G). Let U be the set of the nodes in V

connected to new. Node w and the status of the nodes in

CNet(G) are decided by the following rules:

)}),{(,}{(wnewEnewV CNet

(i) The nodes of G other than new and w have the same

status as they have in CNet(G),
old

(ii) Node w and the status of new and w are decided as
follows: If there exist cluster-heads in U, select one of
them to be w (based on the criteria an application needs,
such as on energy level). In this case, w remains as a
cluster-head and new is set to be a pure-member of w
(Fig.2 (a)). Else if there exist gateways in U, select one of
them to be w. In this case, w remains as a gateway and
new is set to be a cluster-head of a new cluster (Fig.2(b)).
Else, U contains only pure-members. In this case, select
one of them to be w; then set w to be a gateway and new
to be a cluster-head (of a new cluster) (Fig.2(c)).

r

memberhead

gateway

(a) A sensor network G (b) Cluster-net CNet(G)

r

memberhead

gateway

(a) A sensor network G (b) Cluster-net CNet(G)

Definition 2 Given a graph G and its cluster-net CNet(G), a
backbone of CNet(G), denoted as BT(G), is a sub-tree of
CNet(G) formed by cluster-heads and gateways and it has
the same root as CNet(G) (Fig. 1(b))

The root of CNet(G) can be considered as a sink in a
WSN. It can transreceive the information to and from a base

(a)

U

r

new

)(oldGCNet

w

(b)

U

new

r

)(oldGCNet

w

(c)

U

new

r

)(oldGCNet

w

(a)

U

r

new

)(oldGCNet

w

(b)

U

r

new

)(oldGCNet

w

(c)

U

r

Fig. 1 A sensor network G, and its cluster-net CNet(G) and

backbone tree (formed by cluster-heads and gateways)

new

)(oldGCNet

w

Fig.2 (a) new is connected to a cluster-head w and
new will be a pure-member of w; (b) new is
connected to a gateway w and new will be a cluster-
head of a new cluster; (c) new is connected to a
pure-member w; w will be changed to a gateway and
new it will be a cluster-head of a new cluster.

stations. In order to boost the robustness of the proposed
structure strongly robust, more than one cluster-net may be
selected in the same way from different roots (sinks) so that
if one cluster-net fails others can still be used.

Property 1 Assuming that G has n nodes and p is the
smallest number of the complete sub-graphs in G, CNet(G)
and BT(G) have the following properties [19]: (1) CNet(G)
has at most p clusters and BT(G) has at most 2p-1 nodes, (2)
there is no edge between cluster heads in G, and (3) when G
is a unit disk graph (G is a unit disk graph iff any two nodes
in G can transmit with each other when their distance is not
larger than one unit), the number of the clusters in CNet(G)
is not larger than |MDS|, where MDS is the minimum
DS of G.

5

Let the depth of the root to be null. According to
Property 1(2), the nodes of BT(G) in depth i are
cluster-heads if is even and they are gateways if is odd
(Fig.1 (b)).

i i

3. Broadcast and Multicast
In this section, we primarily presented a detail of the

sensor network model and our broadcasting and
multicasting protocols by Collsion-Free Flooding. We
compared our protocols with the protocol by
Depth-First-Order in [19].

3.1 Model of Sensor Networks
In this paper, the model of a flat (unstructured) sensor

network G is as follows: (1) all nodes use a single radio
channel; (2) each node has a distinct ID number and it has
no other network knowledge (e.g., neighbors’ IDs, diameter
of the network, number of nodes in the network, etc.); (3)
each node repeats transmission or reception and performs its
local computation in a fixed interval, called round. In each
round, a node acts as either a transmitter or a receiver; and
(4) nodes have no collision detection, i.e., a node that acts as
a receiver will get a message in a given round iff there is
exactly one of its neighbors that transmits in this round.

3.2 Broadcast by Depth-First-Order
In [19], the nodes of cluster-net CNet(G) were built from

a flat network G under assumption that each node knows its
neighbors’ IDs. In order to transmit a broadcast message to
all nodes of G from the source node, the broadcast message
is relayed on backbone tree BT(G) in a depth-first order. In
other words, the message travels an Eulerian tour in BT(G)
by replacing every undirected edge in BT(G) with two edges
in opposite directions. In the tour, each node of BT(G)
transmits the message at least once, and at each round only
one node transmits the message. Therefore, when the tour
finishes, all nodes of G have received the message without
collision. In general, the transmission tour of a message m
from a source node s to all other nodes in a tree T can be
described as a procedure Eulerian(s, T, m) as follows.

Let v (at the beginning s) be the node with a token for
relaying m. First, v selects a node u from v’s neighbors to
whom v has not send m yet, and then transmits m with u’s
ID. When u received m with u’s ID, it got the token and it
will relay m at next round. Other neighbors of v will discard
the message when they received it. If v has already
transmitted m to all its neighbors, v will pass the token to its
parent (i.e., it transmits m with its parent’s ID) which is the
node v received m first from. This procedure will repeat
until the token turns back to source node s. In the tour, each
node transmits m exactly the times of its degree in T. In

other words, m is relayed on each edge of T exactly twice.
According to Property 1(1), BT(G) has at most

12 p nodes, therefore, the broadcast Eulerian(s,
BT(G)),m) can be completed in at most rounds.24 p

3.3 Broadcast by Collision-Free Flooding
Our broadcast in G is executed by flooding the broadcast

message on CNet(G) from one depth to next depth starting
at the root. If the source node is not the root, it will transmit
the source message along the path back to the root using at
most h rounds, where h is the height of CNet(G). To avoid
collision in the flooding, time division mechanism (TDM) is
used: each internal node in CNet(G) is assigned with a
time-slot numbered from 1 to such that if nodes at depth i
transmit a message at the assigned time-slots then nodes at
depth i+1 will receive the message without collision. The
flooding will stop at the leaves of CNet(G).

We assume that CNet(G) is constructed (in Section 4 and
Section 5) with following knowledge: each internal node v
in CNet(G) knows its depth and transmission time-slot
v.time-slot numbered from 1 to (will be determined
later), and r knows it is the root and knows . The
transmission time-slots assigned to the nodes have to meet
the following condition:
Time-Slot Condition 1: (1) For each node v of CNet(G) at
depth i+1, assuming that v is the set of the nodes at
depth i who are connected with v by the edges of G, there is
at least one node in v whose transmission time-slot is
different from those of the other nodes in .

P

P

vP

depth i

depth i+1

2 1 2

v

x

Fig. 3 Transmitting time-slots, where solid lines are
the edges of CNet(G), and dot lines are edges

of G which are not in CNet(G)

P(v) depth i

depth i+1

2 1 2

v

xx

Fig. 3 Transmitting time-slots, where solid lines are
the edges of CNet(G), and dot lines are edges

of G which are not in CNet(G)

P(v)

In Fig. 3, v ={x, y, z}. The transmission time-slot of y is
1 and it is different from the time-slots of x and z.

P

 Algorithm1CollisionFreeFlooding(CNet(G), ,m)
 Root r : r transmits package (m, r.time-slot, ,0) at round

r.time-slot, where m is the broadcast message.
Other node v: If v is an internal node at depth i+1

)20(hi and it received package (m, t, , i), v
wait t rounds, and then transmits (m,
v.time-slot, ,i+1) at round v.time-slot.

Lemma 1 By using CNet(G), a broadcast can be completed
in G in)1(h rounds, where is the largest
transmission time-slot in CNet(G), h is the height of
CNet(G). In the broadcast, each node needs
to be awake in 2 rounds.
Proof: In Algorithm 1, node v at depth i+1 needs to wait

t rounds after it received the message (m, t, , i) in
order to let all nodes at depth i finish transmission. Then, v
transmits (m, v.time-slot, , i+1) at time-slot v.time-slot.
Therefore, each node needs at the most 2 rounds in
woken up for receiving and transmits the message.
According to Time-Slot Condition 1, each node in CNet(G)
can receive the broadcast message at least at one time-slot
without collision. The transmission from one depth to the
next depth can be finished in rounds.

Algorithm 1 has some other nice properties.
Relaxation of Synchronization: To avoid collision,
time-slots (or rounds) are synchronized in Algorithm1.
However, the synchronization is not needed among all
nodes. It is clear to see that only the nodes at the same depth
need to be tightly synchronized.
Robustness: In the broadcast by depth-first-order [19] in
Section 3.2, at each round only one node relays the
broadcast message. If one node or link fails, the whole
broadcast in Eullerian tour will stop. However, in the
broadcast by collision-free-flooding, more than one node at
the same depth are allowed to relay the message at the same
round. Even some nodes or links fail, the others who got the
message will continue to relay it in the network.
Multi-Channels: In Algorithm 1, we use a single radio
channel. If k channels are available, then the nodes at the
same depth which are assigned by transmission time-slots
i+1, i+2, …, i+k, where ki /0 , can transmit the
message at same time-slot using k different channels,
Therefore, the broadcast can be completed in rounds
and each node needs to be awake in rounds.

kh /
k/2

In the remaining of the section, we focus on improving
Algorithm 1. Let = () be the subgraph of
G induced by BTV , where BT is the set of nodes in BT(G)
and F is the set of all edges in G with both ends in BTV .
According to Lemma 1, by using BT(G) in Algorithm 1, a
broadcast in can be completed in

)(BTVG FVBT ,
V

)(BTVG)1(h rounds,
where is the largest transmission time-slot assigned to
the internal nodes of BT(G). Since BT(G) contains only
cluster heads and gateways, it is much smaller than CNet(G).
Therefore, is much smaller than . In the following
improved algorithm, the broadcast message m is first
flooded into the nodes of BT(G) in by executing
CollisionFreeFlooding(BT(G),

)(BTVG
 ,m), and then into the

leaves of CNet(G). Two types of transmission time-slots are
assigned to the internal nodes of CNet(G): b-time-slot is
used for flooding the message to the nodes of BT(G), and
l-time-slot is used for transmitting the message to the leaves
of CNet(G). They need to satisfy the following condition:
Time-Slot Condition 2: For each internal node (leaf, resp.) v
of CNet(G) at depth i+1, assuming that v is the set of the
nodes at the depth i who are connected with v by the edges
of G, there is at least one node in v whose b-time-slot
(l-time-slot, resp.) is different from those of the other nodes
in .

P

P

v
We assume that the nodes of BT(G) know their depth and

their b-time-slots and l-time-slots, and the root know the
height of CNet(G) and

P

.

Algorithm2
ImprovedCollisionFreeFlooding (CNet(G), ,m)
(Step 1) The root calls CollisionFreeFlooding (BT(G) , ,
(m,h)) to broadcast in the message m with and
the height h of CNet(G). In the algorithm, each node uses
its b-time-slot as the transmission time-slot.

)(BTVG

(Step 2) For any node w of BT(G) at depth i
(), if w received the message sent out by a
node u at u’s b-time-slot t, w waits

11 hi

tih)1(time-slots until Step 1 finishes, and then
transmits m at its l-time-slot.

Theorem 1 (1) A broadcast in G can be completed in
h rounds. (2) Each node needs to be awake in

2 rounds. (3) If k channels are available, a broadcast
can be completed in kh /)(rounds and each node
needs to be awake in k/)2(rounds.
Proof: We first prove conclusion (1). In the first step of

Algorithm 2, the broadcast in is executed on BT(G).
According to Lemma 1, the broadcast can be finished
in

)(BTVG

h rounds. When a node received the broadcast
message in Step 1, it waits until Step 1 finishes; then it
transmits the message at its l-time-slot which is not larger
than . Therefore, the transmission in Step 2 can be
completed in rounds.

Now we prove conclusion (2). According to Lemma 1, in
Step 1 the nodes in BT(G) need to be awake in 2 rounds.
In Step 2, node w of BT(G) needs to wait tih)1(
rounds until Step 1 finishes; then it transmits the broadcast
message to the leaves of CNet(G) at its l-time-slot. In order
to save the energy, w goes to sleep-mode after it relayed the
message in BT(G) in Step 1; then it wakes up after

tih)1(rounds. It needs to wake up when Step 1
finished and then transmits the message at its l-time-slot.
Therefore, w needs to be awake at most rounds in Step 2.
The proof of conclusion (3) for k channels is similar to that
for Algorithm 1.

In Section 4, we will prove that b-time-slots and
l-time-slots are not larger than D(D+1)/2+1 and d(d+1)/2+1,
respectively, where and d are the degrees of the sensor
network G and , respectively. Relaxation of
synchronization and robustness for Algorithm 2 can be
discussed in the same way as that we have done for
Algorithm 1. In Algorithm 2, before starting Step 2 the
internal nodes of CNet(G) needs to wait certain rounds until
Step 1 finishes. To relax the synchronization among the
waiting rounds, the nodes can take a synchronization before
they transmit the message to the leaves of CNet(G).

D
)(BTVG

3.4 Multicast
A multicast is the broadcast to a group of specified nodes.

In a multicast, in addition to the group nodes, some other
nodes are needed to relay the broadcast message. Let G
have k groups and each node has a group list indicating
which groups it belongs to. Our broadcast protocols can be
readily modified to the one for multicast using relaying
nodes as least as possible.

Let us consider a cluster-based structure for multicast,
denoted as MCNet(G). In MCNet(G), in addition to all the
properties that CNet(G) has, each node maintains a
group-list, and the internal nodes of MCNet(G) keep one
more list called relay-list, where a node v has f in its
group-list if v belongs to group f, and it has g in its relay-list
if v has a descendant in MCNet(G) belonging to group g.
Fig.4 shows an example with two groups. In the figure,
there are two lists at each node, the upper one is the
group-list and the lower one is the relay-list. The
construction and reconfiguration of MCNet(G) will be

]

(1) (1) (1) (1) (1) (1) (1) (1)

(1,2)

,2[1

Fig. 4 MCNet(G) and MBT(G): at each node the upper is the

group-list and the lower is the relay-list.

Cluster head

Gateway node

Cluster

Pure member

(1,2) (1) (2) (1) (1) (2) (2) (2) (1)

(1,2) (1) (1,2) (2)

(2)

,2]

(1,2)

[1] (1)

[2]

(1,2)
[1,2]

(2)(1,2)

[1]

(1,2)

[1,2]

(1)

[1]

(1)

[1]

vu

(1) (1) (1) (1) (1) (1) (1) (1)

(1,2)

,2

[1

[1]

Fig. 4 MCNet(G) and MBT(G): at each node the upper is the

group-list and the lower is the relay-list.

Cluster head

Gateway node

Cluster

Pure member

(1,2) (1) (2) (1) (1) (2) (2) (2) (1)

(1,2) (1) (1,2) (2)

(2)

,2]

(1,2)

[1] (1)

[2]

(1,2)
[1,2]

(2)(1,2)

[1]

(1,2)

[1,2]

(1)

[1]

(1)

[1]

vu

[1

similar to CNet(G). Group-lists and relay-lists need to be
updated when topology of G changes. We will discuss this
in Section 5. A collision-free-multicast for a specified group
can be done by using Algorithm 2. The only difference is

that in the multicast algorithm, the group ID will be
transmitted with the broadcast message. When a node
receives the message with the group ID, it will transmit the
message to its children if the group ID belongs to its
relay-list; otherwise, it will stop the transmission. For
example, in Fig. 4, in a multicast for group 2, nodes u and v
will stop transmission when they receive the source
message with group ID 2 since 2 does not belong to their
relay-lists; however, other internal nodes will transmit the
message since 2 belongs to their relay-lists. The subtrees
which has no node belonging to the specified group will be
excluded from the multicast. In this way, a multicast will be
much faster than a broadcast.

4. Assignment of Transmitting Time-Slot
In this section, we show the self-assignment of

b-time-slots and l-time-slots at the internal nodes of

CNet(G). We assume that we already have CNet(G). In

Section 5, we will show the initialization and

reconfiguration of CNet(G). The algorithm is incremental.

Let graph
old

have n (n) nodes, CNet(
oldG)

CNet
, and the internal nodes of CNet(

old
) have

b-time-slots and l-time-slots. According to Definition 1, a

graph obtained by adding a node new into is a graph

where

),(EVG
EV

1
),(G

oldG
},E'E,}{(newVG 'E Vuunew |),{(,

and new and u are in the transmission range with each

other}. Cluster-net of G is CNet(G) =

, where w is the

parent of new in CNet(G). After new is added in, some

nodes of CNet(G) need to update their b-time-slots and/or

l-time-slots so that they do not violate Time-Slot Condition

2.

)}),{(,}{(wnewEnewV CNet

We assume that new has been added into CNet(G) but
b-time-slots and l-time-slots have not been updated yet. For
better clarity, we assume that at this point each node in
CNet(G) has the following knowledge: (i) it knows its depth
in CNet(G) and its neighbors in G, (ii) for the internal nodes
of CNet(oldG), they know their b-time-slot and l-time-slot.
When we say a node knows its neighbors, we mean that it
knows its neighbors’ knowledge. We will show how to build
a CNet(G) with the above knowledge in Section 5.

Let v be a node at depth i in CNet(G), P(v) be the set of
nodes at depth i -1 who connect with v by edges of G, and
C(v) be the set of nodes at depth (i+1) who connect with v
by edges of G (Fig. 6). Node v knows P(v) and C(v) from
the assumed knowledge it has.

Algorithm 3 UpdateTimeSlot (, new, w))(GCNet
Node new is a leaf in and therefore, it does not
need b-time-slot and l-time-slot. If there is one node in
P(new) whose l-time-slot is different from the l-time-slots
of other nodes in P(new), then Time-slot Condition 2
holds, i.e., this node can transmit the broadcast message
to new without collision. In this case, no node needs to
change its b-time-slot and/or its l-time-slot. The algorithm
completes. Otherwise, new selects a node w from P(new);
then sends w a message of “updating the time-slots”.
When the w receives the message, it executes the
following steps.

)(GCNet

Case 1: w is an internal node of CNet() (Fig 5 (a)).

In this case, w has a new leaf new. Node w recalculates its
l-time-slot by procedure CalculateLTimeSlot(CNet(G),
w).

oldG

 Case 2: w is a leaf of CNet(old) (Fig 5(b)). In this case,
w has a new leaf new and w itself changes from a leaf to
an internal node. It means that to w’s parent u, w changes
from leaf to internal nodes. Therefore, w updates its
l-time-slot by procedure CalculateLTimeSlot(CNet(G), w),
and u updates its b-time-slot and l-time-slots by
procedure CalculateBTime-Slot(CNet(G),u) and
procedure CalculateLTimeSlot(CNet(G), u).

G

new

w

(a)

new

w

u

(b)

new

w

(a)

new

w

u

(b)

Fig. 5 Two cases of adding node new

The following procedure is used to calculate b-time-slot
(l-time-slot, respectively) for a node y.

Procedure1
CalculateBTimeSlot(LTimeSlot, resp.) (CNet(G), y)
(i) Node y sends a request to ask the nodes of C(y)

sending their b-time-slots (l-time-slots, resp.) back in
turn (Fig. 6).

(ii) When a node v in C(y) receives the message, it checks
the b-time-slots (l-time-slots) at the nodes of P(v). If v
can find two distinct b-time-slots (l-time-slots) which
are different from those of the others in P(v), v sends
back nothing. Otherwise, v packs all different
b-time-slots (l-time-slots) at the nodes of P(v) and
send them back to y at v’s turn.

(iii) When y receives the b-time-slots (l-time-slots) from
the nodes of C(y), y selects the minimum positive
integer which is different from all received
b-time-slots (l-time-slots), and set it to be y’s
b-time-slot (l-time-slot).

Lemma 2 (1) Procedure CalculateBTimeSlot
(LTimeSlot,resp.)(CNet(G), y) calculates y’s b-time-slot
(l-time-slot, resp.) in d (D, resp.) rounds, where d is the
degree of , and D is the degree of G; (2) in the
procedure, only the knowledge at the nodes of C(y) are
used; and (3) the b-time-slot (l-time-slot, resp.) of y does not
exceed

)(BTVG

2/)1(dd +1 (, resp.).12/)1(DD

yy

C(y)C(y)

(a) (b)

v

P(v)

v

P(v)
yy

C(y)C(y)

(a) (b)

v

P(v)

v

P(v)

Fig. 6 (a)Calculate b-time-slot, and (b)Calculate l-time-slot

Proof: Conclusion (2) is obvious. To prove conclusion (3),

we see that in the procedure step (ii), node v in C(y) sends y

the time-slots at its turn only when there are no two distinct

b-time-slots (l-time-slots) which are different from those of

the others in P(v). Therefore, v sends back at most

(|P(v)|+1)/2 b-time-slots (l-time-slots), and y receives no

more than 2/)1|)((|)(vPv

yCv

2/)1)(deg()(vv

yCv d(d+1)/2 (D(D+1)/2)

b-time-slots (l-time-slots), where deg(v) (Deg(v)) is the

degree of v in (in). Since y selects the

minimum positive integer which has to be different from all

received b-time-slots (l-time-slots), the selected b-time-slot

(l-time-slot) will be not larger than

)(BTVG G

2/)1(dd +1

(D(D+1)/2+1).
Now we prove conclusion (1). It is easy to see that node y

uses one round to send the request, and the nodes of C(y)
need |C(y)| d-1 (D-1) rounds to send the b-time-slots
(l-time-slots) back to y in turn.

It is easy to show that updating the time-slots at y will
only affect the nodes of C(y). In order to prove the
correctness, we argue that each node v of C(y) can receive a
broadcast message with no collision after updating: If v can
find two distinct b-time-slots (l-time-slots) which are
different from those of others nodes in P(v), then no matter
what b-time-slot (l-time-slot) that y will be assigned, v will
get the broadcast message from at least one of the two
distinct b-time-slots (l-time-slots). Otherwise, according to
step (iii) in the procedure, the b-time-slot (l-time-slot) of y is
different from all those of nodes in P(v), which means that v
can get the broadcast message from y without collision.

Lemma 3 Algorithm 3 can update b-time-slots and
l-time-slots using 2d+D rounds in CNet(G) after a new node
is added, and the largest b-time-slot (l-time-slot, resp.) in
CNet(G) is not larger than +1
(, respectively).

2/)1(dd
12/)1(DD

Proof: In algorithm 3, w knows that it is an internal or a leaf
of CNet(old) from the knowledge it has. In the algorithm,
at most two nodes need to recalculate their b-time-slots and
one node needs to recalculate its l-time-slots. From Lemma
2, the algorithm updates the b-time-slots and l-time-slots
correctly in 2d+D rounds, and the updated b-time-slots
(l-time-slots) are not larger than

G

2/)1(dd +1
().12/)1(DD

In the proof of Lemma 2, in order to find an upper bound
for b-time-slots (l-time-slots) assigned to a node y, we used
inequalities p(y) deg(y) (Deg(y)) and C(v) deg(v)
(Deg(v)). Since deg(x) = C(x) +P(x) for any node x,
b-time-slots (l-time-slots) actually are around one fourth of
the upper bound in Lemma 3.

5 Construction/Reconfiguration of CNet(G)
According to the definition of CNet(G) in Section 2 the

broadcast algorithms in Section 3, and the time-slot
assignment algorithms and Section 4, each node in CNet(G)
needs to have the following knowledge:
(I) It needs to know its neighbors (it means that it need to

know the neighbors’ knowledge) in G and CNet(G),
and the parent in CNet(G). It needs to know its status
(as a cluster-head or a gateway or a pure-member).

(II) It needs to know its b-time-slot and l-time-slot, and its
depth and height in CNet(G) if it is an internal node in
CNet(G). If it is the root, it knows (i.e., the largest
b-time-slot in CNet(G)) and height of CNet(G). (For
multicast, nodes need to know a group list and a
relay-list).

In [19], two operations, node-move-in and node-move-out,
are used for constructing and reconfiguring CNet(G), where
the nodes of CNet(G) maintain knowledge (I) only. In this
section, we show the algorithms for maintaining knowledge

(II) in both operations. There are two ways for constructing
a CNet(G): one is to add nodes of G one by one into
CNet(G) by using node-move-in operation; and the another
is to do a gossip on G so that every node knows the
knowledge of whole network G in O(n) rounds [7], and then
each node constructs a sub-CNet(G) locally.

5.1 Node-Move-In Algorithm
Let graph),(EVGold

 have n nodes and CNet(
old

)G
),(CNetEV . A graph obtained by adding a node new into

 is a graph
oldG G , where)',}{(EEnewV

}|),{(' VuunewE and new and u are in the

transmission range with each other}. Cluster-net of G is

defined to be CNet(G) =

, where w is the

parent of new in CNet(G). According to [19], a

node-move-in operation can be done in expected

rounds, where new is the degree of new in G. Each node

in G has knowledge (I) when the operation finished.

)}),{(,}{(wnewEnewV CNet

)(newdO
d

We add two additional steps into the node-move-in
operation of [19] as follows:
(1) Update the b-time-slots and l-time-slots by algorithm
UpdateTimeSlot(, new, w). Set the depth of new
to be 1+the depth of w .

)(GCNet

(2) Send the largest one of the updated b-time-slots (not
more than two) back to the root. The root compares them
with the existing , and updates . The nodes on the path
from new to the root update their height as follows: new
sends a message “updating your height” with height 0 to its
parent w; when w received the message, it compares with
the received height and updates its height if it needs, and
then w relay the message with its height to its parent. This
procedure is repeated until the root updates its height.

According to Lemma 3, step (1) can be finished in 2d+D.
Step (2) requires 2h rounds: h rounds for sending
b-time-slots back to the root and another h rounds for
updating the height of the nodes on the path from new to the
root.

Theorem 2 (1) A node-move-in operation can be completed
in

new
expected rounds if the nodes of CNet(G)

maintain knowledge (I); and it can be completed in
rounds if the node already know its neighbors [19]. (2) It
needs additional

)(dO
)1(O

Ddh 22 rounds if the nodes
maintain knowledge (II).

5.2 Node-Move-Out Algorithm
Let graph),(EVGold

 have n (n) nodes and
CNet(

oldG)
Net

1
),(CEV . A graph obtained by deleting a

node lev from is a graph
oldG)',}{(EElevVG ,

where 'E }. We assume that G is
connected. CNet(old) can be divided into two sub-trees:
one is the tree T with lev as the root, and one is the tree H
whose root is the root of CNet(

oldG) (the case that lev is the
root of CNet(

oldG) can be dealt similarly and we will add it
in the full paper) (Fig.7). Assuming that i (i = 1,2,3,…)
are the sub-trees of lev in T. Since G is connected, after lev
leaves, there exits at least one edge e in G which is neither
an edge of T nor an edge of H but connects a node u of T
with a node v of H.

|),{(xlev Exlev),(
G

C

In [19], CNet(G) with knowledge (I) is reconfigured in
O(|T|) rounds with a node-move-out operation in which the
nodes of T are moved into H one by one. The operation
consists of the following two steps:
(Step 1) Before lev leaves from , it calls Eulerian(lev, T,

oldG

message1) in which the message1 is “finding an edge of G
which not belong to T” to find the edge e = (u, v) (Since e
does not belong to T, u and v belongs to different sets of T
and H. We suppose u belongs to T).

(Step 2) node u calls Eulerian(u, T, message2) in which
the message is “moving the current node into H” to start a
Eulerian tour in T from node u until all the nodes of T
moved into H.

In our node-move-out operation, we need to maintain
knowledge (II). Before the nodes of T are moved into H, the
nodes of H need to delete the nodes of T from their neighbor
lists and recalculate their b-time-slots and l-time-slots if
necessary. According to Lemma 2 (2), for any node v, only
the nodes in P(v) will use v to calculate their time-slots.

Our node-move-out operation has one step before and
one step after the node-move-out operation in [19]:
(Step 0) (i) lev sends message “I will leave” with its height
back to the root. Each node on the path from lev to the root
updates its height according to the height it received, and
then sends the message with its updated height to the next
node. (ii) lev starts an Eulerian tour on T from lev. The
processing at each node x in the tour is as follows: x sends
out a message “delete me and recalculate time-slots” with
its ID. When the neighbors of x in H received the message:
(i) they delete x from their neighbor lists, (ii) the nodes of
P(x) in H recalculate their b-time-slots and l-time-slots in
turn, and (iii) the recalculated b-time-slots are sent back to x
in turn. The largest recalculated b-time-slot will be kept and
sends to the next node in the tour.
(Step 1 and Step 2): The steps are the same as Step 1 and
Step 2 of node-move-out operation in [19]. However, the
nodes of T are moved into H by using our node-move-in
algorithm in Section 5.1. In our node-move-in operation, the
largest recalculated b-time-slot needs to be sent back to the
root. In order to save time, it is not sent back to the root, but
sent to the next node in the tour so that the largest updated
b-time-slot so far is kept in the tour.
(Step 3) The largest revised b-time-slot obtained in Step 0
and Step 1 & 2 are sent back to the root of CNet(G). Based
on it, the root updates .

Theorem 3 Given a graph G and CNet(G), a node-move-out
operation can be completed in rounds.)||(2DThO
Proof: In Step 0 (ii), each node x in the tour invokes the
nodes in P(x) to update their time-slots, which needs totally
at most)2(|)(||| DdxPT D(2d+D)|T| rounds. Since
our node-move-in operation needs rounds, Step 1
& 2 needs rounds. Other parts need at
most O(|T|+h) rounds.

)2(DdO
))2(|(| DdTO

6. Simulation Results
To evaluate the average performance of the protocols, we

tested them on a cluster-based WSN with the scales of
units, units and units, where each

unit is 100 meters. The communication range of a node is 50

meters. The number of nodes used for testing varies from 64
to 720. We show the results on units only because
of the space limitation.

88 1010 1212

1010

We tested the time (Fig. 8) and energy (Fig. 9) needed in
our collision-free-flooding (CFF) broadcast protocol
comparing with the results of depth-first-order (DFO)
broadcast in [19]. We also tested and compared the average
size and height of the backbone for a WSN (Fig. 10), and
the average size of D and d, the largest degrees of the WSN
and the graph induced from its backbone, respectively
(Fig.11). More simulation results will be added into the full
paper.

From Fig. 8 and Fig. 9 we can see that our CFF broadcast
protocol is much faster and much more energy saving than
the DFO broadcast protocol. Also we can see that as what
we discussed at the end of Section 4, the real performance
of the network is much better than the theoretical upper
bound in the Lemma 3. In Lemma 3, and are proved
not larger than 2/)1(dd +1 and 12/)1(DD ,
respectively; however, in the simulation, we found that

and are even smaller than d and D, respectively. From
Fig. 10, we can see that the height of the backbone is much
smaller than the size of the backbone. From Fig. 11, we note
that d is much small that D. It is clear that d and h increase
slowly when the number of the nodes a sensor network
grows. It means that our broadcast protocol performs better
when the sensor network gets denser.

CNet(G)

HT

lev

3C 3C
1C

Fig. 7 Separating CNet(G) into two subtrees T and H

0

100

200

300

400

500

600

1 2 3 4 5

number of nodes

n
u

m
b

e
r

o
f

ro
u

n
d

rounds by CFF Broadcast

rounds by DFO Broadcast

Fig. 8 Time (number of rounds) needed for completing a

CFF broadcast and DFO broadcast

0

100

200

300

400

500

600

1 2 3 4 5

number of nodes

ro
u
n

d
s

to
 b

e
aw

ak
e

Rounds to be awake for CFF
Rounds to be awake for DFO

 100 200 300 400 500

Fig. 9 Number of rounds a node needs to be awake

in a CFF broadcast and a DFO broadcast

References
1. N. Alon, A. Bar-Noy, N. Linial, D. Peleg, “A lower

bound for radio broadcast”, Journal of Computer and
System Science, no 43 (2), pp. 290-298, 1991.

2. L. Bao, J. J. Garcial-Luna-Aceves, “A new approach to
channel access scheduling for ad hoc networks,”
Proceedings of the 7th Annual International Conference
on Mobile Computing and Networking,” pp. 210-221,
2001.

3. R. Bar-Ychuda, O. Goldreich, A. Itai, “On the
time-complexity of broadcast in radio networks: an
exponential gap between determinism and
randomization, Journal of Computer and System
Science, no 45, pp. 104-126, 1992.

4. S. Basagni, “Distributed clustering for ad hoc
networks”, Proceedings of the 1999 International
Symposium on Parallel Architectures, Algorithms, and
Networks, pp. 310-315, 1999.

5. S. Basagni, M. Mastrogiovanni, C. Petrioli, “A
performance comparison of protocols for clustering
and backbone formation in large scale ad hoc
networks”, Proceedings of the 1st International
Conferences on Mobile Ad-hoc and Sensor Systems, pp.
70-79, 2005.

6. J. Blum, M. Ding, A. Thaeler, X. Cheng, “ Connected
dominating set in sensor networks and MANETs,”

Handbook of Combinatorial Optimization, Kluwer
Academic Publisher, pp.329-369, 2004.

7. I. Chlamtac, A. Farago, “ A new approach to the design
and analysis of peer-to-peer mobile networks”,
Wireless Networks, vol. 5, no. 3, pp. 149-156, 1999.

8. I. Chlamtac, S. Kutten, “The wave expansion approach
to broadcasting in multihop radio networks”, IEEE
Transaction on Communication, no 39(9), pp. 426-433,
1991.

9. B. S. Chlebus, L. Gasieniec, A. M. Gibbons, A. Pelc,
and W. Rytter, “Deterministic broadcasting in ad hoc
radio networks”, Distributed Computing 15, pp. 27-38,
2002.

10. T. Clausen, C. Adjih, A. Laouiti, P. Minet, P.
Muhlethaler, A. Qayyum, L. Viennot, “Optimized link
state routing protocols,” RFC 3626 Network Working
Group, 2003.

11. D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan,
A. Srinivasan, “Fast distributed algorithms for
(weakly) connected dominating sets and linear-size
skeletons”, Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 717-724,
2003.

12. I. Gaber and Y. Mansour, “Centralized broadcast in
multihop radio network”, Journal of Algorithms, 46, pp.
1-20, 2003.

13. F. Kuhn, T. Moscibroda, T. Wattenhofer, “Initializing
newly deployed ad hoc sensor networks”, Proceedings
of the 10th Annual International Conference on Mobile
Computing and Networking, 2004.

14. T. Moscibroda, T. Wattenhofer, “Efficient computation
of maximal independent sets in unstructured multi-hop
radio networks”, Proceedings of the 1st International
Conferences on Mobile Ad-hoc and Sensor Systems, pp.
70-79, 2005.

15. K. Nakano, S. Olariu, “Randomized initialization
protocols for radio networks”, Handbook of Wireless
Networks and Mobile Computing, pp. 195-218, 2002.

16. S. Y. Ni, Y. C. Chen, J. P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” Proceedings of
the 5th ACM/IEEE International Conference on Mobile
Computing and Networking, pp. 151-162, 1999.

17. S. PalChaudhuri, R. Kumar, R. G. Baraniuk, “Desing
of adaptive overlays for multi-scale communication in
sensor networks,” DCOSS, LNCS 3560, pp. 173-190,
2005.

18. V. Rajendran, K. Obraczka, J. J. Garcial-Luna-Aceves,
“Energy-efficient collision-free medium access control
for wireless sensor networks,” Proceedings of the First
International Conference on Embedded Networked
Sensor Systems, pp. 181-192, 2003.

19. J. Uchida, I. Muzahidul, Y. Katayama, W. Chen, K.
Wada, “Construction and Maintenance of A
Cluster-based Architecture for Dynamic Radio
Networks,” 39th Hawaii International Conference on
System Sciences, 2006.

20. P. J. Wan, K. M. Alzoubi, O. Frieder, “Distributed
construction of connected dominating sets in wireless
ad hoc networks”, ACM/Kluwer Mobile Networks and
Applications, MONET, vol. 9, no.2, pp. 141-149, 2004.

21. J. Wu, F. Dai, “Broadcasting in ad hoc networks based
on self-pruning,” Proceeding of Infocom’03, 2003.

22. J. Wu, H. Li, “ On calculating connected dominating
set for efficient routing in ad hoc wireless networks”,
Telecommunication Systems, vol. 18, no. 1/3, pp. 13-36,
2001.

23. http://www.stetson.edu/~efriedma/cirincir/

0

20

40

60

80

100

120

140

160

1 2 3 4 5

number of nodes

si
z
e

a
n

d
 h

e
ig

h
t

o
f

b
a
c
k

b
o

n
e

Size of backbone
height of backbone

 100 200 300 400 500

Fig. 10 Size and height of the backbone of a WSN

0

5

10

15

20

25

30

35

1 2 3 4 5

number of nodes

D
e
g

re
e
s

a
n

d
 t

im
e
 s

lo
ts

D d

Fig.11 D, d, and : maximum degree of the leaves of

CNet(G) in G, maximum degree of the internal nodes of

CNet(G) in G, largest l-time-slots assigned to the leaves

of CNet(G), and largest d-time-slots assigned to the

internal nodes of CNet(G)..

