
Real-Time Distributed Scheduling of Precedence Graphs
on Arbitrary Wide Networks

Franck Butelle1, Mourad Hakem2 and Lucian Finta3

LIPN-CNRS UMR 7030
Université Paris-Nord
99 av. J.B. Clement
93430 Villetaneuse

France
{Franck.butelle,Mourad.Hakem,Lucian.Finta}@lipn.univ-paris13.fr

Abstract

Previous work on scheduling dynamic competitive jobs
is focused on multiprocessors configurations. This paper
presents a new distributed dynamic scheduling scheme for
sporadic real-time jobs with arbitrary precedence relations
on arbitrary wide networks. A job is modeled by a Directed
Acyclic Graph (DAG). Jobs arrive on any site at any time
and compete for the computational resources of the net-
work. The scheduling algorithm developed in this paper is
based upon a new concept of Computing Spheres in order to
determine a good neighborhood of sites that may cooperate
for the execution of a job if it cannot be guaranteed locally.
The salient feature of this new concept is that it allows the
algorithm to be performed on arbitrary wide networks since
it uses a limited number of sites and communication links.

1. Introduction

Real-time systems are those where the correctness of the
execution of a task depends not only on the logical results
but also on the time they are produced. Examples of such
systems include flight control, space shuttle avionics, nu-
clear power plants, robotics and multimedia. Loosely cou-
pled distributed systems are prevalent and natural candi-
dates for real time applications due to their high perfor-
mance and reliability.

This paper presents a framework for distributed real-time
scheduling of sporadic jobs with deadlines on arbitrary wide
networks. A job is a Directed Acyclic Graph (DAG) with
arbitrary precedence relations. Each task in the DAG has a

1-4244-0910-1/07/$20.00 c©2007 IEEE.

given Computational Complexity. Jobs arrive at any time
on any site and compete for the computational resources
represented by the sites of the network.

Scheduling such jobs with respect to their deadlines is
one major challenge in real-time systems.

Most previous researches in the area are restricted to cen-
tralized controlled systems and hence are inappropriate for
distributed systems. This study differs from previous works
for the following reasons:

• Our algorithm uses, for each site, its own local sched-
uler, and a multi-site mapper. Each site runs the local
scheduler independently of the other sites. Thus there
is no centralized scheduling control.

• We introduce the concept of Computing Sphere, that
is a “good neighborhood”: a set of sites that cooperate
for the execution of a job and a control structure over
this set.

The advantage of Computing Sphere is the use of a lim-
ited number of sites and communication links for the exe-
cution of a job.

We first introduce some assumptions and notations, next
we will present some related work. In section 4 we make
a first high level description of the algorithm, detailed in
Sections 7 through 10. Section 6 is devoted to the concept of
Computing Sphere. Before concluding we introduce some
discussions on algorithm generalizations.

2. Assumptions and Notations

The communication network is an arbitrary connected
graph composed of an unknown number of sites and bidi-
rectional communication links between them.

We assume that each site is composed of two processors,
one for the computation of tasks and the other for system
management: communications, local scheduler, work dis-
tribution, etc.

We assume that a site knows the communication cost
(delay) associated to each of its adjacent links. The edges’
weights do not satisfy the triangular inequality.

The links are supposed to be faithful, loss-less and order-
preserving. The sites are faultless.

For sake of simplicity we will first suppose that all site
are identical from Computing Power point of view (i.e. that
means that the Computational Complexity of a task repre-
sents its execution time).

Any site may receive jobs sporadically. The DAG asso-
ciated with such a job is denoted by G = (T,E), where T
is the set of tasks and E the set of precedence constraints.
Each task ti has a given Computational Complexity c(ti).
Each DAG has a given deadline d.

For sake of simplicity, all weights (Communication De-
lay, Computational Complexity, etc.) are considered to be
non negative throughout the paper.

The surplus Ik of a site k is computed as the ratio of its
available (or idle) time divided by the size of the observa-
tional window.

3. Related Work

Most of papers on scheduling competitive jobs or tasks
deal with centralized control over multiprocessor systems.
The case where multiple DAGs are to be scheduled in or-
der to minimize the response time for each one, is not a
real-time problem. For instance [7, 8] present a scheduling
heuristic based on a dynamic adaptation of the static DLS
algorithm presented by Sih and Lee in [11].

For real-time centralized systems, [9] presents a schedul-
ing algorithm that also takes into account a reliability mea-
sure of the system.

In the case of real-time distributed scheduling of mutu-
ally independent tasks, many papers have been published.
Krithi Ramamritham et al. describe in [10] a set of heuris-
tics to schedule tasks with deadlines in a distributed system.
In [5, 12, 3], flexible algorithms, that combine focused ad-
dressing and bidding are proposed.

To our knowledge, the algorithm [4] is the only one to
address the case of real-time competitive DAGs in a dis-
tributed environment: when a DAG cannot be guaranteed
locally, it is distributed using focused addressing and bid-
ding scheme among a subset of sites. Selection of sites is
based on the surplus of each site that is broadcasted over all
the network periodically. Unfortunately, in [4] the descrip-
tion of the distributed scheduling algorithm is too succinct,
no details are given on what is really sent and how decision

is taken. Due to lack of details, we cannot implement and
compare this algorithm with the one we propose.

In our paper, we propose a new scheme to distribute a
DAG when it cannot be guaranteed locally. Selection of
good sites to send tasks to be executed, is based on the
concept of Computing Spheres. Our network may be un-
bounded since we never broadcast over all the network.

4. A High-Level Description of our RTDS Al-
gorithm

Our algorithm RTDS (Real-Time Distributed Schedul-
ing) will be described from the point of view of a site k.

• Construction of the Potential Computing Sphere
rooted in k (this is done only once since no site/links
failure may occur).

• Upon reception of a DAG

1. Test if the job (DAG) may be locally guaranteed

2. Construction of the Available Computing Sphere

3. Trial-Mapping construction by the Mapper

4. Mapping validation

5. Mapping execution after receiving a permutation
and tasks code.

5. Local Scheduler

When a new job arrives on site k, local test is performed.
It consists on verifying if all tasks of the job may be sched-
uled in-between tasks already accepted to be scheduled on
site k before deadline d.

A similar test will be done for a subset of those tasks
during Trial-Mapping validation.

6. Computing Spheres

A DAG arriving on site k is either executed locally or,
if possible, executed over a particular neighborhood of k
named Computing Sphere (or CS for short). The sites in the
Computing Sphere are “close” to k: in terms of hops and
communication delay. During the CS construction, a sub-
sequent communication control structure is devised, allow-
ing local broadcast. In the CS the following nice properties
exist: each site has a unique minimum communication de-
lay path to k, the diameter in terms of hops is bounded by
a constant h and minimum communication delay path be-
tween any pair of sites of the Potential Computing Sphere
of k (PCS).

2

Figure 1. Algorithm overview

7. Distributed PCS Construction Algorithm

The Potential Computing Sphere of a site k is a set of
sites that may collaborate for the execution of a job (DAG).
It is constructed at the initialization of the system. Obvi-
ously, for two sites k and j one may have a non-empty in-
tersection of their PCS. A site in this intersection may par-
ticipate to the execution of DAGs arriving on k and j.

Several known algorithms may be adapted to achieve
PCS construction.

Here we present a PCS construction algorithm based on
an interrupted All-Pairs Shortest Paths algorithm. The in-
terruption is made in order to limit network flooding.

First we briefly describe the algorithm of [2] and next
how we adapt it.

7.1. Distributed All-Pairs Shortest Paths
Algorithm [2]

Start conditions: each site starts with a vector of dis-
tances (delays) to all directly attached sites (immediate
neighbors). Each node maintains a routing table consisting
of route lines like <destination, distance, next Hop>.

Send step: Every site sends its routing table lines to all
immediate neighbors. These updates are sent periodically.

Updates are send out whenever destination vectors entries
in the routing table change.

Receiving step: Update lines of the routing table with the
received tuples.

7.2. Our Adaptation of All-Pairs Shortest
Paths Algorithm [2]

The periodic updates sent by this algorithm is useless
since we do not cope neither with topological changes nor
topological failures. We construct the PCS by stopping the
previous algorithm after a given number of phases.

First, we adapt it slightly to make it organized into logi-
cal phases. Site k starts its PCS construction by sending its
routing table. A phase is composed of send step and recep-
tion of all neighbor routing tables. This ensure us that each
new phase makes distances being accurate one hop further.

So, if the algorithm is stopped after h phases, the dis-
tances computed so far by the algorithm, on each site, will
contain the accurate minimum distance to any site up to h
hops away from this site.

In fact, the algorithm is stopped after 2h phases, such
that each node of the PCS of k discovers a path to every
other nodes of the PCS of k (which will be of hop-radius h).

8. Available Computing Sphere Construction

When a new job (DAG) cannot be guaranteed locally,
ACS construction starts (see Figure 1).

ACS members are dynamically selected as a subset of
the PCS rooted at site k. Its construction is done by mark-
ing/enrolling sites of PCS using the site’s routing table.

Mutual exclusion for enrollment from initiator is guaran-
teed by a lock variable on each local site.

Each enrolled site sends a message back to the initiator k
with its surplus.

It also keep a lock value associated to initiator k. If a
locked site receive an enrollment message, this message is
ignored until reception of unlocking message from k. The
set of enrolled sites is called ACS.

9. Trial-Mapping Construction by the Mapper

We do not describe here the details of this algorithm. Al-
most any heuristic can be adapted to our purpose (see for
example [6]).

The Mapper have the following inputs: a DAG to par-
tition using a list of sites with their associated surplus in
descending order. The Mapper decides if the DAG is re-
jected or computes a mapping. Trial-Mapping construc-
tion/validation delay should be short enough to avoid dead-
line missing of the job.

3

A Trial-Mapping M is a set of three functions: S : T →
U (where U = 1, . . . , |U | is a set of logical processors/sites
and S(t) is the logical site to which task t is assigned), r :
T → R+ where r(t) is the release time of the task t and
d : T → R+ where d(t) is the deadline of the task t. Recall
that, from the DAG definition, we also have c : T → R+

where c(t) is the Computational Complexity of the task t.
Trial-Mapping M is constructed by the mapper based on

PCS and ACS knowledge: surplus of each site j of the ACS
and distances between any pair of sites in the ACS.

10. Trial-Mapping Validation

The previous computed mapping have still to be vali-
dated by several sites in ACS since the Mapper knows only
the surplus but not the exact start and end of idle intervals
for a given processor. To do so we broadcast in ACS the
mapping M .

Each site j, in ACS, try to endors the role of each logical
processor. The initiator k expects, from each site j, the list
of logical processors ids that j may endors.

More precisely, upon reception of M , a site j tries to
validate all tasks assigned to a logical site i for each i ∈ U .
Let Ti be the set of tasks assigned to logical site i (i.e. Ti =
{t ∈ T / S(t) = i}). A set of tasks Ti is locally satisfiable
by a local scheduler iff each task t of Ti may be executed
with respect to its release r(t) and deadline d(t). The list of
sites i, for which the set Ti is locally satisfiable, is sent back
to the initiator k.

When k has received all the lists from the sites of ACS, it
computes a maximum coupling (classical problem in graph
theory solved in polynomial time, see e.g. [1]). If the car-
dinality of the maximum coupling is less than |U | then no
combination satisfy all Ti (i ∈ U) of M thus the DAG is
rejected and ACS members are unlocked.

If a subset of size |U | of the maximum coupling is found,
it gives a permutation of the sites that are able to achieve
DAG’s computation.

11. Distributed Execution

k sends the previous permutation with the tasks codes to
all sites in the ACS.

A site j receiving the permutation learn if it is involved in
the execution or not (in this case the lock of j is released). If
it is, let i be the logical site identity assigned to j. j executes
tasks t ∈ Ti with respect to their release r(t) and deadline
d(t).

The lock of j is immediately released after the insertion
of all tasks of Ti in its own scheduling plan.

12. Mapper Instance and Detailed Example

The mapper implementation needs to specify how:

• a task ti is selected for assignment to some processor

• a processor pi is selected to execute task ti

• the release ri (resp. deadline di) is assigned to task ti.

Here we give only a simple proposal for this three points:
our goal is not to give their best implementation, but only a
possible implementation in order to detail an example.

Task ti selection is done by list scheduling based on crit-
ical path: the priority of a task ti is the length of the longest
path from ti to a sink task in the graph (node weights only,
ti included). The list contains only free tasks (task with all
predecessors already mapped).

The processor selection is done in a greedy manner: pi is
the processor that allows the earliest finishing time for the
execution of the selected task ti.

Communication delay between tj (immediate predeces-
sor of ti) and ti (denoted by ω(p(tj), p(ti))) is taken into
account as being (over-estimated by) the computed diame-
ter (in terms of delay) of the current ACS.

Surplus of processor pi (i.e. Ii) is used for the evaluation
of the execution duration of ti: the execution of ti is the
ratio of Computational Complexity c(ti) over Ii (the surplus
of processor pi). Start time of ti on pi is not sooner than the
end of the previous task mapped on pi, nor before the end
of the communications from immediate predecessors of ti
(if any).

Let S be the schedule computed above and M be its
makespan. Release time ri (and resp. deadline di) is given
by the starting (and resp. finishing time) of ti on pi. For-
mally, let Γ−(ti) and Γ+(ti) denote the sets of immediate
predecessors and successors of ti respectively.

∀ti ∈ DAG, di = ri + c(ti)/Ij (1)

ri =
{

r if Γ−(ti) = φ
maxtj∈Γ−(ti){dj + ω (p(tj), p(ti))} otherwise

(2)
These values do not take into account the deadline d of

the job. We first introduce an example and then we show
how releases and deadlines are scaled.

12.1. Example

Consider the example job of Fig. 2, we assume that sur-
pluses for processors p1 and p2 are I1 = 0.5 and I2 = 0.4.
We consider the deadline of the job is d = 66 and for sake
of simplicity its release is r = 0. We suppose that the com-
puted diameter of the ACS is equal to 3.

4

Figure 2. A task graph instance

Figure 3. The schedule S computed by the
Mapper

12.2. Adjustment of the Parameters ri and
di

Figure 4. The schedule S∗ computed by the
Mapper

Let S∗ be a schedule constructed using the same map-
ping for the tasks as in S, but with processors surpluses
equal to 100% (see Figs. 3 and 4). The makespan of S∗ is
denoted byM∗.M∗ is the lower bound ofM for the same
mapping.

i) IfM∗ > d− r then, the job is rejected.

ii) IfM≤ d−r then update d(ti) and r(ti) in topological
order, for each task using equations (3) and (5).

iii) IfM∗ ≤ d− r ≤M then update d(ti) for all tasks in
reverse topological order using equation (4) and then
update r(ti) using equation (5) for all tasks in topolog-
ical order.

d(ti)← r + (di − r)
d− r

M
(3)

Let η be the maximum number of tasks belonging to any
critical path in the schedule S∗. In order to respect commu-
nication delays, the deadlines d(t) are scaled by the laxity:
`(t) = (d− r −M∗)/η

Thus,
if Γ+(ti) = ∅ then d(ti)← d, otherwise,

d(ti)← min
tj∈Γ+(ti)

{d(tj)− `(tj)− c(tj)− ω(pi, pj)} (4)

r(ti)←
{

r if Γ−(ti) = ∅
maxtj∈Γ−(ti){d(tj) + ω(pj , pi)} otherwise

(5)
For our example, the adjusted values are in Table 1.

M = 33 and the scaling factor is d−r
M = 2 (see Table 1).

Table 1. Adjusted r(ti) and d(ti)
ti ri di r(ti) d(ti)
1 0 12 0 24
2 0 10 0 20
3 13 21 24 42
4 15 20 27 40
5 23 33 43 66

13. Discussion

We present in this section some generalizations of our
RTDS algorithm.

• Preemptive Case: This algorithm may provide better
results in the preemptive case.

• Uniform Machines: For sake of simplicity, the pre-
sented algorithm deals with the case of identical ma-
chines. It is easily extendable to the case of uniform
machines (related machines) by scaling the site surplus
by its Computing Power.

5

• Local knowledge of k: If k is one of the processors
selected by the mapper to execute some tasks of the
current job, the mapper may use the local knowledge
(local idle intervals) instead of using surplus of k only.

• Laxity Dispatching: For the case (iii) in the previous
section, the extra laxity d− r −M∗ is equitably scat-
tered over all tasks belonging to the longest (in terms
of number of tasks) critical paths of the schedule S∗.
For each such tasks, the busyness (1 − I) of the pro-
cessor where this task is executed may be used in order
to ponderate the extra laxity scattering (tasks on busy
processors receive more extra laxity).

• Communication Delays: The Communication Delays
model only distance (propagation delay) between sites:
data transfer rate (throughput) of the links and data vol-
umes between tasks are not considered for sake of sim-
plicity.

To be more realistic, data volumes may be easily
taken into account (decoration of the arcs in the DAG)
when all throughputs are identical: communication de-
lays should be adjusted by the ratio data volume over
throughput. This adjustment should be done as well for
communication delays due to result sending from pre-
decessor to successor task, as in the case of task code
sending from k to the processors that participate in the
computation of the job (i.e. the job release must be
augmented by the computation time taken by the map-
per, the time taken by Trial-Mapping validation and
also by the dispatching of tasks code).

14. Conclusion

In this paper, we have presented a new approach for
real-time distributed scheduling sporadic competitive jobs
on arbitrary wide networks. Jobs have deadlines and are
composed of tasks with arbitrary precedence relations. The
mean features of our algorithms are:

• It is a distributed scheduling scheme and there is no
centralized scheduling control

• The jobs may arrive sporadically on any site

• The new concept of Computing Sphere introduced in
this paper reduces the communication overhead and al-
low the algorithm to use a limited number of sites and
communications links to distribute a job (when the job
is rejected locally). This leads to an increase of the
number of accepted (executed) jobs.

References

[1] C. Berge. Graphes et Hypergraphes. Monographies uni-
versitaires de mathématiques. Dunod, Paris, 1970. English
translation : Graphs and Hypergraphs (North-Holland, Am-
sterdam 1973).

[2] D. P. Bertsekas and R. G. Gallager. Distributed asyn-
chronous bellman-ford algorithm. In Data Networks, chap-
ter 5.2.4, pages 325–333. Prentice Hall, Englewood Cliffs,
1987.

[3] A. K. Bhattacharjee, K. Ravindranath, A. Pal, and R. Mall.
Ddsched: a distributed dynamic real-time scheduling algo-
rithm. Progress in computer research, pages 170–184, 2001.

[4] S. Cheng, J. A. Stankovic, and K. Ramamritham. Dynamic
scheduling of groups of tasks with precedence constraints
in distributed hard real-time systems. In IEEE Real-Time
Systems Symposium, pages 166–174, 1986.

[5] M. Hakem and F. Butelle. A new on-line scheduling algo-
rithm for distributed real-time system. In Proc. of the 3rd Int.
Symp. and School on Advanced Distributed Systems, volume
3061 of Lecture Notes in Computer Science, pages 241–251,
2004.

[6] M. Hakem and F. Butelle. Efficient critical task scheduling
parallel programs on a bounded number of processors. In
Proc. of the 17th Int. Conf. on Parallel and Distr. Comp. and
Syst. (PDCS’05–IASTED), pages 139–144, 2005.

[7] M. Iverson and F. Ozguner. Dynamic, competitive schedul-
ing of multiple dags in a distributed heterogeneous environ-
ment. In HCW ’98: Proceedings of the Seventh Hetero-
geneous Computing Workshop, page 70, Washington, DC,
USA, 1998. IEEE Computer Society.

[8] M. Iverson and F. Ozguner. Hierarchical, competitive
scheduling of multiple dags in a dynamic heterogeneous en-
vironment. Distributed Systems Engineering, 6(3):112–120,
1999.

[9] X. Qin and H. Jiang. Dynamic, reliability-driven schedul-
ing ofi parallel real-time jobs in heterogeneous systems. In
Proc. Of the 30 th International Conference on Parallel Pro-
cessing, pages 113–122, 2001.

[10] K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed
schedulings of tasks with deadlines and resource require-
ments. In Proc. IEEE trans. on Computers, volume 38,
pages 1110–1123, august 1989.

[11] G. Sih and E. Lee. A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor ar-
chitectures. IEEE Trans. on Parallel and Dist. Systems,
4(2):75–87, 1993.

[12] J. A. Stankovic and S. C. Krithivasan Ramamritham. Eval-
uation of a flexible task scheduling algorithm for distributed
hard real time systems. In Proc. IEEE trans. on Computers,
volume C-34, pages 1130–143, december 1985.

6

