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Abstract

Recently, many parallel computing models using dynam-
ically reconfigurable electrical buses have been proposed
in the literature. The underlying characteristics are sim-
ilar among these models, but they do have certain differ-
ences that can take form of restrictions on configurations al-
lowed. This paper presents a constant time simulation of an
R-Mesh on an LR-Mesh (a restricted model of the R-Mesh),
proving that in spite of the differences, the two models pos-
sess the same complexity. In other words, the LR-Mesh can
simulate a step of the R-Mesh in constant time with a poly-
nomial increase in size. This simulation is based on Rein-
gold’s algorithm to solve USTCON in log-space. The simu-
lation is also the first to be executed in constant time.

1. Introduction

Reconfigurable bus architectures have the ability to cre-
ate different interconnection topologies allowing processors
to exchange information efficiently. These architectures use
their buses as a computational resource, allowing the ex-
ecution of fast parallel algorithms. Reconfigurable models
are computationally more powerful than non-reconfigurable
models like the Parallel Random Access Machine (PRAM)
[4]. Nevertheless, there is skepticism with respect to some
of the assumptions of these models, such as the propagation
delay in buses, which is assumed to be constant [7].

Researchers have proposed a number of reconfigurable
bus-based models, such as the Reconfigurable Mesh (R-
Mesh) [7, 10], the Reconfigurable Network (RN) [1], the
Polymorphic Processors Array (PPA) [8], Reconfigurable
Multiple Bus Machine (RMBM) [13]. Among these mod-
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els, the R-Mesh is possibly the most widely studied model.
Researchers have also designed a great number of fast al-
gorithms for these models. Vaidyanathan and Trahan [14]
wrote a comprehensive book on dynamically reconfigurable
computer architectures and algorithms.

An R-Mesh is a two-dimensional array of processors
connected in a grid such that each processor has fixed con-
nections with its four neighbors through its N, S, E, and W
ports. In addition, each processor has the capacity to se-
lect one of fifteen internal connections between its ports at
the beginning of each machine cycle. The squares in Fig-
ure 1 represent processors with the fifteen possible internal
connections of an R-Mesh. Each circle represents an in-
put/output port.

The Linear Reconfigurable Mesh (LR-Mesh) is a re-
stricted version of the R-Mesh. Each port in the LR-Mesh
can connect to at most one other port in the same proces-
sor, so the LR-Mesh allows ten of the fifteen connections
of the R-Mesh. The type of buses allowed by an LR-Mesh
are called linear buses. Figures 1a to 1j show the ten pos-
sible connections for the LR-Mesh. The LR-Mesh and the
R-Mesh use undirected buses.
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Figure 1. The possible internal connections
of the R-Mesh and LR-Mesh.



The class of languages accepted by an LR-Mesh (R-
Mesh) in constant time with polynomial number of proces-
sors is equivalent to the class L (SL) of languages accepted
in deterministic logarithmic space (symmetric logarithmic
space) on a Turing machine [11]. For many years it was
widely conjectured that L ⊂ SL, but in 2005, Reingold [12]
proved that L = SL. The result of Reingold implies that
the LR-Mesh is computationally as powerful as the R-Mesh
and that the LR-Mesh can simulate an R-Mesh in constant
time, allowing the LR-Mesh a polynomial increase in the
number of processors. However, the amount of resources
required by the LR-Mesh to perform this simulation has not
been clear.

Fernández-Zepeda et al. [2] demonstrated, using the bus
linearization technique, that an LR-Mesh of N ×N proces-
sors can simulate an R-Mesh of the same size in O(log N)
time. This simulation is optimal in the number of proces-
sors, and before this paper, it was the fastest simulation of
this type. Until now, it was remained a challenge to reduce
the time required for the simulation.

In this paper, we present an algorithm to perform this
simulation in constant time. The drawback of our simula-
tion is that the number of processors in the simulating model
is extremely high. However, at this time, ours is the only
simulation available of an R-Mesh on an LR-Mesh in con-
stant time. By establishing the equivalence between the two
models, we can now easily map an algorithm designed for
the R-Mesh to an LR-Mesh.

We present the simulation in three phases, with each one
running in constant time on the LR-Mesh.

1. Transform G into an expander. Given the rotation map
of the R-Mesh graph G, the LR-Mesh algorithm transforms
this graph into an expander Gγ . The output of this step is
the rotation map of Gγ . We use the algorithm of Reingold
[12] to accomplish this step.

2. Solve USTCON. Using the rotation map of Gγ , we
solve the undirected s − t connectivity in Gγ . We employ
this solution to create the transitive closure graph G∗ of G
and its adjacency matrix A∗.

3. Handle non-linear buses as linear buses. We use the
information of A∗ to handle non-linear buses accepted by
the R-Mesh, as linear buses accepted by the LR-Mesh. By
performing this transformation, the R-Mesh on LR-Mesh
simulation is straightforward.

We organize the remaining sections of this paper as fol-
lows. Section 2 provides some basic concepts and defini-
tions. Section 3 describes the transformation of a graph
G into an expander Gγ . Section 4 details the algorithm to
solve USTCON in the expander. Section 5 presents the sim-
ulation of the R-Mesh on the LR-Mesh. Finally, Section 6
provides some concluding remarks.

2. Preliminaries

This section explains basic notation and some concepts
related with Reingold’s algorithm [12]. A graph is x-regular
if the sum of all entries in each row of its adjacency matrix
is x. One useful form to represent a graph is the rotation
map. Let G = (V, E) be an x-regular graph, for some x,
and assume that each vertex assigns sequential labels to all
the edges that are incident to it. Given two arbitrary ver-
tices u, v ∈ V that are connected through edge e ∈ E, if e
is both, the ith edge of u and the jth edge of v, then the ro-
tation map of the pair (u, i) is the pair (v, j) and is denoted
by RotG(u, i) = (v, j). We use the term RotG when we
refer to the rotation maps of all possible pairs in G.

Given an undirected graph G = (V, E) and two vertices
s, t ∈ V , the undirected s − t connectivity problem (UST-
CON) is the process of determining whether there exists a
path in G that connects s to t. Reingold [12] designed a
deterministic log-space algorithm to solve USTCON (that
is complete for the class SL). With this result he proved
that L = SL. To solve USTCON, he basically designed a
log-space transformation of the input graph G into an ex-
pander graph Gγ that maintains the same structure in the
connected components. Since the diameter of any expander
is logarithmic in the number of vertices, it is straightforward
to check all possible paths of logarithmic size that leave s
to determine if at least one of them reaches t. An expander,
roughly speaking, is a sparse graph with high connectivity.
Researchers have designed methods to generate families of
expanders [3, 6, 9].

The transformation of the input graph G into an expander
is the medullar part of Reingold’s algorithm. This trans-
formation requires the generation of a small expander H .
Expander H is a regular graph, its degree and number of
vertices depends on the degree of G. This transformation is
described in Definition 1 and was obtained from [12].

Definition 1. Let G be a D16-regular graph with N vertices
and H a D-regular graph with D16 vertices, where D is a
constant. Given the rotation maps of graphs G and H , the
transformation T (G, H) = Gγ generates the rotation map
of the expander Gγ as follows:

• The value of γ is the smallest integer that satisfies:
(1 − 1/DN2)2

γ

< 1/2.
• Compute Gγ recursively by the rule:

Gγ = (Gγ−1 ©z H)8, where G0 = G. �

The symbol ©z represents the zig-zag product. The zig-
zag product betwen G and H , G ©z H , produces a graph
that is D2-regular with ND16 vertices. When this graph is
elevated to the power eight, the number of edges incident
to each vertex increases to D16. The successive combina-
tion of the zig-zag product and the exponentiation opera-
tion generates a family of graphs (G1, G2, . . . , Gγ) that are
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D16-regular and gradually improves its connectivity prop-
erties. The expander Gγ has ND16γ vertices. The value γ
is O(log N) [12]. If γ = C log N , where C is a constant,
then ND16γ = Nα, where α = (16 C log D) + 1, which is
polynomial in N .

Let [X ] be the set {0, 1, . . . , X − 1}. Denote the label of
each vertex in the expander Gγ as (v, a0, . . . , aγ−1), where
v ∈ [N ] and ai ∈ [D16], for 0 ≤ i < γ. Additionally, we
can decompose each ai in a sequence of 16 digits in base
D, denoted by ki,0, . . . , ki,15.

The pseudo-code of Algorithm 1 [12] computes the
transformation T (G, H) = Gγ .

Algorithm 1. Reingold’s algorithm.
input: Rotation maps of G (RotG) and H (RotH)

output: Rotation map of Gγ (RotGγ )

begin
for j = 0 to 15 do

Set (aγ−1, kγ,j) ← RotH (aγ−1, kγ,j)

if j is even, recursively set
((v, a0,..., aγ−2), aγ−1)← RotGγ−1 ((v, a0,..., aγ−2), aγ−1)

if j = 15, reverse the order of individual labels in aγ :
Set kγ,0, . . . , kγ,15 ← kγ,15, . . . , kγ,0.

end for

end

Notice that Algorithm 2 is recursive. To compute RotGγ ,
this algorithm first needs to compute RotGγ−1, and so on.
Remember that RotG0 = RotG. For convenience, in Algo-
rithm 2 we make index j to vary from 0 to 15; in [12] index
j varies from 1 to 16.

3. Transformation of G into an expander

This section presents the implementation of the algo-
rithm of Reingold [12] on an LR-Mesh. This algorithm
transforms an arbitrary non-bipartite D16-regular graph
G = (VG, EG), where |VG| = N , into an expander Gγ .
We assume that we know the rotation map of graph G and
each RotG(u, i) is stored in a different processor of a row
or column of processors in the LR-Mesh. The output for
this transformation is the rotation map of Gγ .

Each step of Algorithm 1 can be viewed as a permutation
that an LR-Mesh can compute in constant time. To imple-
ment all the steps of Algorithm 1 in the LR-Mesh, connect
as many permutation stages as the number of operations in
the algorithm. These types of connections in the LR-Mesh
basically form a multistage interconnection network (MIN),
where stage i of the MIN computes the operation that Al-
gorithm 1 computes in time i.

The pseudo-code of Algorithm 2 (that runs in the LR-
Mesh) is the parallel implementation of Algorithm 1. (Al-
gorithm 2 includes the generation of H as a step; in Al-
gorithm 1, H is an input). Steps 1 to 5 generate the MIN
and Step 6 computes the rotation map of Gγ . The LR-Mesh

executes all these steps in O(1) time. Next, we briefly ex-
plain each step and discuss the resources required by the
LR-Mesh.

Algorithm 2. Generate expander Gγ

input: Rotation maps of G (RotG)

output: Rotation map of Gγ (RotGγ )
begin

1. Generate expander H
2. Compute the number, r, of permutations in the MIN
3. Find the permutation sequence p0, p1, . . . , pr−1

4. Assign rotation maps to each vertex
5. Set the permutations in the MIN
6. Compute the rotation map of Gγ

end

Step 1. Generate H . Generate the rotation map of a D-
regular expander H = (VH , EH), where |VH | = D16.
Since the expander H has a constant number of vertices and
edges, a single processor of the LR-Mesh can generate H
in constant time by using some of the methods mentioned
in the literature to generate expanders. This processor also
sends each RotH(u, i) to different processors in a single
row or column of the LR-Mesh, so the LR-Mesh can move
them easily if necessary.

Step 2. Compute r. Let r be the total number of permuta-
tions in the MIN. Let Sγ be the total number of operations to
calculate the expander Gγ in Algorithm 1. Since Algorithm
2 maps each operation from Algorithm 1 to one permuta-
tion in the MIN, r is equal to Sγ . From Algorithm 1, we
conclude that Sγ = (Sγ−1 + 2)× 8 + 1, where S0 = 1. An
LR-Mesh can compute Sγ in constant time with a network
that consists of γ stages in cascade. Each stage i consists
of an adder (performs Si−1 + 2), a multiplier (multiplies
the previous result by eight), and another adder (adds one
to the previous result), all of them also connected in cas-
cade. This network is very similar to the network presented
in [5]. The value of r is O(N3), thus it is necessary at least
an LR-Mesh of O(N3) × O(N3) processors to compute r.

Step 3. Find p0, p1, . . . , pr−1. The goal of this step is to
find the sequence of permutations p0, p1, . . . , pr−1 for the
MIN that computes the operations of Algorithm 1. There
are three types of permutations in the MIN, H, G and X .
Permutations H are based on the rotation map of graph H .
Permutations X corresponds to the last operation in each
recursion level of Algorithm 1. Finally, permutations G
are based on the rotation map of graph G. There are some
subclasses for these permutations, denoted by Ht

s, X t and
Gt. The indices t and s indicate the depth of the recursion
and the operation number inside the recursion, respectively,
where 0 ≤ t ≤ γ and 0 ≤ s ≤ 15.

For each permutation number x, where 0 ≤ x ≤ r − 1,
we find its type of permutation and its indices t and s. Fig-
ure 2 shows the structure of the order that the permutations
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Figure 2. Structure of the order of the permu-
tations in the MIN.

follow in the sequence. To generate the sequence of permu-
tations p0, p1, ..., pr−1, we built a label of γ digits in base
25 for each permutation in the structure of Figure 2.

For each permutation Hγ−1
s , X γ−1 and Gγ−1 (top row

in the structure of Figure 2) the most significant digit of its
label is its position (0 to 24) in its row; the γ − 1 remaining
digits of its label are zeros. The permutations of the types
Hγ−2

s , X γ−2 and Gγ−2 form eight rows (each one of 25
permutations). Each row replaces one permutation Gγ−1.
The label for each permutation is the following. The most
significant digit of the label is the most significant digit of
the permutation label its row is replacing. The second most
significant digit of its label is its position in its row. The
γ − 2 remaining digits of its label are zeros. We continue
with this labeling for all permutations. This labeling is ex-
actly the same as the one most editors use to label chapters,
sections, and subsections of a book. Additionally, each per-
mutation keeps its row position, so it knows its index s and
also maintains the level of recursion t.

The algorithm stores the 25 permutation labels of each
row of permutations in the 25 first processors of a row of
processors. So the algorithm requires O(N3) rows of pro-
cessors for this purpose. To facilitate the movement of la-
bels, the LR-Mesh assigns 24 empty rows of processors be-

tween each row of processors with labels. So the LR-Mesh
can move all the permutation labels to a single column in
constant time.

To generate the sequence of permutations, we just elim-
inate all the permutations Gi, except for i = 0, and sort the
remaining permutations with respect to their labels using
the constant time algorithm of Jang and Prasanna [5]. An
LR-Mesh of O(N3) × O(N3) performs Step 2 in constant
time.

Step 4. Assign rotation maps. Each stage of the MIN
contains D16Nα vertices. Each vertex has a unique label
(v̄, ā), where v̄ = (v, a0, a1, . . . , aγ−1) is the label of a
vertex of the expander Gγ and ā = aγ is the label of one of
its edges.

• If pi = G0, then each vertex (v, a0, a1, . . . , aγ) of
stage i in the MIN stores RotG(v, a0).

• If pi = Ht
s, then each vertex (v, a0, a1, . . . , aγ)

of stage i stores RotH(a0, w), for all w. Also, each
vertex (v, a0, a1, . . . , at−2, at−1, at, . . . , aγ) exchanges the
value RotH(a0, w) with the value RotH(at−1, w) of vertex
(v, at−1, a1, . . . , at−2, a0, at, . . . , aγ), for all w.

• If pi = X t, there is nothing to assign.
It is possible to embed the connections between two ad-

jacent stages of the MIN on an LR-Mesh of 2D16Nα ×
D16Nα processors. The LR-Mesh requires O(Nα) ×
O(Nα+3) processors to embed the whole MIN.

Since the values of RotH and RotG are distributed in a
single row or column of processors of the LR-Mesh, the LR-
Mesh can broadcast each of these values to its respective
destination in constant time. Notice that there are enough
processors between each stage of the MIN to exchange the
required data in constant time.

Step 5. Set permutations in the MIN. For all 0 ≤ i < γ,
each vertex of stage i in the MIN (called source vertex) de-
termines to which vertex it connects in stage i + 1 (called
destination vertex). Each vertex of stage i knows permuta-
tion pi.

• If pi = G0 and the source vertex is (v, a0, a1, . . . , aγ),
then its destination vertex is (v′, a′

0, a1, . . . , aγ) where
(v′, a′

0) = RotG(v, a0).
• If permutation pi = Ht

s, the label of the source vertex
is (v, a0, . . . , at, at+1, . . . , aγ), and the 16 digits in base D
of at+1 are (kt+1,0, . . . , kt+1,s, . . . , kt+1,15), then its des-
tination vertex is (v, a0, a1, . . . , a

′
t, a

′
t+1, . . . , aγ), where

the value of a′
t+1 = (kt+1,0, . . . , k

′
t+1,s, . . . , kt+1,15) and

(a′
t, k

′
t+1,s) = RotH(at, kt+1,s).

• If pi = X t and the label of the source vertex is
(v, a0, . . . , at, . . . , aγ) then the label of its destination ver-
tex is (v, a0, . . . , ăt, . . . , aγ), where ăt is at when all its
digit in base D are reverse.

Once each source vertex knows its destination vertex, we
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can create all the connections between stages of the MIN
simultaneously. The LR-Mesh needs two rows of proces-
sors to embed one row of the MIN; assume that the source
vertex is j and the destination vertex is k. We can set
a connection between vertices j and k in an LR-Mesh of
2D16Nα × D16Nα as follows. Start in j, follow the upper
row of the pair j until the main diagonal, then turn up (if
j < k) or down (if j > k) and follow the vertical bus until
the lower row of pair k, finally turn right (if j < k) or left
(if j > k) to reach vertex k. This procedure takes constant
time. The factor of two is necessary to avoid collisions.

Step 6. Compute rotation map of Gγ . We compute the ro-
tation map of each vertex of Gγ as follows. All the vertices
of stage γ transmit their complete label leftwards through
the MIN. Each vertex of stage 0 reads the label.

If vertex with label (v, a0, a1, . . . , aγ) receives label
(v′, a′

0, a
′
1, . . . , a

′
γ) then RotGγ((v, a0, . . . , aγ−1), aγ) =

((v′, a′
0, . . . , a

′
γ−1), a′

γ).
Notice that all the values of RotGγ are distributed and

stored in a single column of the LR-Mesh.

Lemma 2. Given the rotation map of a non-bipartite undi-
rected D16-regular graph G = (VG, EG), where |VG| = N ,
an LR-Mesh of O(Nα)×O(Nα+3), where α is a constant,
computes the rotation map of the expander Gγ in O(1)
time. �

4. Solving USTCON

In this section, we solve the undirected s−t connectivity
problem for selected vertices of graph Gγ on the LR-Mesh
in constant time. Then, we employ this solution to create
the adjacency matrix A∗ of the transitive closure G∗ of G.
We assume that the input for this phase is the rotation map
of Gγ .

4.1 Basic notation and definitions

Let Gγ = (Vγ , Eγ) be an expander, where |Vγ | = Nα

and α is a constant. We use graph GM (that is basically a
MIN) to represent how a path of Gγ evolves in time. It is
useful to think of stage i of graph GM as a photograph of
the position, in time i, of a traveler when he/she follows a
path in Gγ . Figure 3a shows an example of a graph Gγ and
Figure 3b shows graph GM .

Remark 1. The graph of Figure 3a is not an expander,
but we use it to give an idea of the relation between Gγ and
GM .

Graph GM has δ + 1 stages, denoted by s0, s1, . . . , sδ,
where δ = O(log Nα) is the diameter of Gγ . Since Gγ

is D16-regular, there are D16 edges between each vertex of
stage i and the vertices of stage i+1, for 0 ≤ i < δ. Notice
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Figure 3. a) example of a 2-regular graph
with N=8; b) Graph GM obtained from the left
graph; c) Graph GR for the path 0,1,0.

that each vertex of stage i, 0 < i < δ, has D16 incoming
edges from stage i− 1 and D16 outgoing edges to the stage
i + 1. Each vertex of stage 0 has only D16 outgoing edges,
and each vertex of stage δ has only D16 incoming edges.
A path in graph GM is a sequence of edges e1, e2, . . . , eδ,
where ei is an edge between stages i − 1 and i. In an arbi-
trary path of length δ, edges ei and ei+1 are adjacent, for all
1 < i < δ. Each outgoing edge of a vertex in GM has a la-
bel from the set [D16]. We can think of any arbitrary path of
length δ as a number of δ digits in base D16. If δ = k log N ,
starting from vertex s, there are T = D16δ = Nβ different
paths of length δ, where β = (16k log D) and k is a con-
stant. Denote these paths by q0, q1, . . . , qT−1.

Consider the following restricted version of USTCON.
Given an arbitrary path px of Gγ that starts in s, determine
if the path reaches vertex t. To solve this problem is more
convenient to use graph GR. This graph is a subgraph of
GM that has the same vertices but only 1/D16 of its edges.
For example, if path qx uses edge ei = c, then all the edges
except edges with label c are useless between stages i − 1
and i. Graph GR eliminates useless edges in all the stages.
Figure 3c shows graph GR for the path 0, 1, 0. Moreover,
since we are just interested in the connectivity among ver-
tices of G rather than vertices of Gγ , we are considering s
and t to be sets of vertices rather than individual vertices. In
this variation, our goal is to determine if one vertex of set
s is connected to one vertex of set t. Notice that we check
simultaneously the same path but starting in many different
vertices of Gγ . Notice that graph GR is a forest since each
vertex in the stage i has at most one neighbor on stage i+1.
We can construct graph GTE by replacing each edge of GR

by a pair of edges. Since we can directly embed graph GTE

in an LR-Mesh, we use this graph to solve this version of
USTCON in the LR-Mesh.
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4.2 LR-Mesh USTCON algorithm

In this section, we present an algorithm that solves UST-
CON in the LR-Mesh. We briefly describe each main step
and discuss the number of processors required by the LR-
Mesh. Algorithm 3 shows its pseudo-code.

Step 1. Transform x to radix D16. As we can see in the
pseudo-code of Algorithm 3, for each path qx, we need to
transform number x from base 10 to base D16 to obtain the
labels of edges e1, e2, . . . , eδ in the path. Remember that
0 ≤ x ≤ Nβ . This transformation starts with a division of
x by D16; then divide the quotient of this operation by D16,
and repeat this process until the quotient is zero. We can use
an LR-Mesh of O(Nβ) × O(Nβ) to accomplish this task
for each transformation by using an algorithm similar to the
one presented in [5]. Once the set of quotients are avail-
able, the LR-Mesh computes concurrently the reminders of
each division. The remainders are the edges e1, e2, . . . , eδ.
The LR-Mesh completes the transformation in O(1) time.
The size of the required LR-Mesh to perform this step is
O(N2β) × O(Nβ), since we require Nβ transformations.

Algorithm 3. USTCON on an LR-Mesh
input: Rotation map of Gγ (RotGγ)
output: Adjacency matrix A∗ of the transitive closure G∗ of G.

begin
for each path qx, where 0 ≤ x < T pardo

1. Transform x to radix D16 to obtain e1, e2, . . . , eδ

for each pair s, t ⊂ VG pardo
2. Create copies of GTE

3. Generate the adjacency matrix A∗
end for

end for

end

Step 2. Creating graph GTE . We can create all the
stages of graph GR simultaneously. To generate the set
of connections between stage i − 1 and i, each vertex
v̄ = (v, a0, a1, ..., aγ−1) of stage i − 1 needs the value of
edge ei and the rotation map RotGγ(v̄, ei) = (v̄′, e′i), both
are available. Perform the connection between source ver-
tex v̄ and destination vertex v̄′ in the same way as explained
in Step 5 of Section 3.

We can generate graph GTE from GR by increasing the
size of the LR-Mesh by a factor of four to create a double
bus structure and generate a pseudo-tour of Euler. We can
accomplish this task by using a procedure similar to the one
presented in [2]. It is possible to embed graph GTE in a
LR-Mesh of O(Nα) × O(Nα log N).

The above procedure generates a graph to check connec-
tivity for only one specific path. So we perform the same
process simultaneously for all the Nβ different paths. Even
more, this step generates all the entries of row v of the ad-
jacency matrix A∗. To compute the remaining rows, gener-
ate N copies of each of the above graphs and compute the

entries concurrently. The size of the required LR-Mesh to
perform this step is O(Nβ+α+1) × O(Nα log N).

Step 3. Generate A∗. Once the connections of the pseudo-
tour of Euler are set in all Nβ graphs, each vertex of stage
zero whose label starts with v writes v on its bus. If a vertex
whose label starts with u in any stage of the Nβ graphs
reads v, then there exists a path that goes from v to u and
A∗(v, u) = 1; otherwise, A∗(v, u) = 0. An LR-Mesh uses
an OR operation to compute this step in constant time.

The LR-Mesh stores each row of the adjacency matrix
A∗ in a different row of the LR-Mesh. We allow N − 1
empty rows of processors between each row of processors
with information. In this way, the LR-Mesh can move all
the entries of A∗ to a single row or column in constant time.

Lemma 3. Given the rotation map of an expander Gγ =
(Vγ , Eγ), where |Vγ | = Nα, and sets of vertices s, t ⊂
Vγ , an LR-Mesh of O(Nβ+α+1) × O (Nα log N) solves a
variation of USTCON in O(1) time. �

By combining Lemmas 2 and 3, we obtain Corollary 4.

Corollary 4. Given the rotation map RotG of a non-
bipartite undirected D16-regular graph G = (VG, EG),
where |VG| = N , an LR-Mesh of O(Nβ+α+1)×O

(
Nα+3

)

computes adjacency matrix A∗ of the transitive closure of G
in O(1) time. �

5. Simulation of the R-Mesh on the LR-Mesh

In this section, we present a simulation of an R-Mesh
of M × M processors on an LR-Mesh that runs in con-
stant time. For this purpose, we just need to show that an
LR-Mesh can simulate an arbitrary machine cycle of the
R-Mesh in constant time. A machine cycle of an R-Mesh
consists of the following four sub-cycles:

• Port configuration
• Bus write
• Bus read
• Computation
Before describing the simulation, we define the graph,

G, of an R-Mesh configuration. This graph is a represen-
tation of the connections between the ports of the R-Mesh.
Each block in the port partition of a processor generates a
vertex of G. Thus, one can view each vertex of G as a set
of ports internally connected within a processor of the R-
Mesh. Let v1 and v2 be vertices of G. An edge exists in
G between v1 and v2 iff an edge exists in the R-Mesh be-
tween ports p1 and p2, where ports p1 and p2 are elements of
the partition blocks that generate vertices v1 and v2, respec-
tively. Notice from Figure 1, that the internal connections
of a single R-Mesh processor can generate up to four nodes
of G, so the number of vertices, N , of G is at most 4M2.
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Since Corollary 4 requires the input graph G to be regular,
add as many self-loops to each vertex as necessary.

The inputs for the simulation are the port configuration
of each R-Mesh processor, the bus data that each processor
is going to write in its bus or buses, and the computation
to be executed by each processor. Store this information on
the first 4M2 processors of the top row of the LR-Mesh,
such that a group of four processors of the LR-Mesh stores
the information of a single processor of the R-Mesh. This
arrangement of the inputs facilitates the movement of infor-
mation in the LR-Mesh and reserves enough space to assign
each node of graph G to a single processor of the LR-Mesh.

Next, we describe how the LR-Mesh simulates each of
the four sub-cycles in constant time.

Port Configuration. Based on the port configuration of
each R-Mesh processor, the LR-Mesh can determine the
number of vertices of the graph G associated to each R-
Mesh processor. The LR-Mesh can assign a sequential la-
bel to each vertex of graph G by performing a prefix sum
[10] in constant time. Then, by exchanging indices between
processors that store the information of neighboring proces-
sors of the R-Mesh, the LR-Mesh obtains the rotation map
of each vertex of G in constant time. The LR-Mesh requires
N × N processors to generate (RotG).

Since (RotG) is known, by using Corollary 4, the LR-
Mesh obtains the adjacency matrix A∗ of the transitive clo-
sure of G in constant time using O(Nβ+α+1)×O

(
Nα+3

)

processors.
The ones in each row of matrix A∗ represent the set of

vertices that belong to same connected component of G.
Using neighbor localization on linear buses [10] and prefix
sum, the LR-Mesh can assign to each vertex of G a con-
nected component label. Then the LR-Mesh can sort [5] all
the vertices by its component number in constant time and
fuse them together to create a single linear bus per com-
ponent. This step takes constant time in an LR-Mesh of
O(N) × O(N) processors. for each row of A∗

Bus write simulation. Each vertex writes their bus data to
its bus and let the bus to decide the final bus data based on
the write rule assumed by the LR-Mesh. This step takes
constant time.

Bus read simulation. The bus data is available at the bus
at the end of the bus write sub-cycle. Each vertex reads its
bus and stores the resulting value in some variable.

Computation. A single processor of the LR-Mesh can per-
form this operation based on the vertices of graph G it han-
dles. This operation takes constant time since at most, a
processor handles four vertices of G.

Theorem 5 summarizes the result of this paper.

Theorem 5. A Common or Collision CRCW R-Mesh of
M ×M processors can be simulated by a CREW LR-Mesh
of O(M2(β+α+1))×O

(
M2(α+3)

)
processors in O(1) time,

where β and α are constants. �

6. Concluding remarks

We have shown that an LR-Mesh can simulate an R-
Mesh in constant time. This is the fastest simulation of this
type. The drawback of the simulation is the great amount
of resources required by the LR-Mesh. We think it is pos-
sible to optimize portions of the operations and reduce the
size of the required LR-Mesh; however, the great number
of processors is due mainly to the large number of vertices
in the expander and the paths generated to solve USTCON.
Notice that Reingold’s algorithm is very efficient in space
in the sequential version, but it requires an extremely high
number of operations. Notice that the LR-Mesh does not re-
quire concurrent writes to perform the simulation. Since the
graph G of the R-Mesh has at most degree four, we there-
fore conjecture that it may be possible to reduce the number
of processors in the simulating model.
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